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INTRODUCTION

So you thought you would like to master machine code? So
what's the story so far? Oh I see! You know the basics but want
to learn the heavy stuff? Well, you have just picked up the right
book because in this book I assume a very basic knowledge of
machine code, but even if you haven't a clue read on — I am
not finished yet! Is machine code really heavy stuff? Or is it as
easy as riding a bike? Well, in this book it is my job to make it as
easy as riding a bike, but until the day of the flat screen, I don't
think I can teach you to ride a bike at the same time. Now a
quick note for those who are absolute beginners. As I have
said, this is a book for those who know the basics but, even if
you don't, try reading the first part of Chapter One and if this
inspires the mind without tying it in knots then buy this book.
If, on the other hand, your brain gives you 'Nonsense in
English' messages then you're going to need some extra
tuition which can be found in the form of 'First Steps In
Machine Code' by James Walsh. His book starts from the very
beginning and moves at a very light pace to give the reader a
basic knowledge of machine code on your ZX Spectrum. Now,
if you already own this copy of the book then take a deep
breath and dive into Chapter One. On the other hand, if you're
just browsing through in a shop then either buy this book or
put it back — after all, what do you think this is, a library?

Y
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Chapter O
GOING PLACES

Before we get stuck into the business of writing machine code
programs, let us review what we shall aim to do in the
following chapters and how to use the book.

The book, as I mentioned in the introduction does not cater for
the absolute beginner but for someone who knows the bare
essentials of machine code. Just in case you need reminding
about the bare essentials, have a brief summary of what you
should know before starting.

Machine code is a programming language that the CPU
(Central Processing Unit) understands. It is represented by a
series of numbers in the memory that the CPU understands
and will execute. An example of this is the ROM, a giant
program in a Read Only Memory that organizes the Spectrum.
This ROM understands our BASIC instructions, interprets
them and executes machine code routines to do jobs like
PRINT and GOTO.

Machine code is much closer to the actual machine, much
faster and has nothing to do with the ROM; the Z80 chip in the
Spectrum is the only part that deals with machine code. Z80
machine code, though stored in the memory, has appropriate
names for each instruction, so we have an idea what it does.
These names are called 'mnemonics'. The Z80 has a number of
registers and these are the foundation of the language. We use
these registers like we would use variables in BASIC. There are
two sets of registers, bank one and bank zero and some special
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Each box contains one register. The shorter boxes can hold
numbers between 0 and 255, and the long boxes can store
numbers between 0 and 65535. If we join two adjacent short
boxes we can make a long box. For instance, if we join B and C
we get a 'double byte register' called BC. We can only use
registers A, B, C, D, H and L. Their equivalents in bank one and
IX and IY. The other registers are special purpose registers for
use by the Z80 chip itself.

In addition we can only use one bank of registers at a time. The
instruction:

EXX

switches to the other bank so we may use the other registers.
To put a value in a variable in BASIC we say:

LET A=20

In machine code we use the word 'load' instead, which gets
abbreviated to LD, so:

LD A, 14

is the equivalent. We say fourteen not as decimal, our
everyday numbers, but as hexadecimal. This is base sixteen. The

14

registers, the equivalent of the system variables. This is how
we think of the registers.

Bank 0 Bank 1A F A' F'
B C B' C'
D E D' E'
H L L'

IX

IY

number fourteen is the Hex (an abbreviation for hexadecimal)
for decimal 20. This is because 1 x 16 +4 makes 20. The right
hand column is the units, the next the sixteens, the next (if we
use a double byte number) is the 255s and the fourth is the
4096s. Because we, in base sixteen, need the numbers 0 to 15
we have to use letters when we get past nine. Here are the first

20 numbers.

Hex Decimal

00 0

01 1

02 2

03 3

04 4

05 5

06 6

07 7

08 8

09 9

OA 10

OB 11

OC 12

OD 13

0E 14

0F 15

10 16

11 17

12 18

13 19

14 20

Two Hex digits can be stored in a memory byte and so this
allows to use decimal numbers 0 to 255.

With registers we can perform lots of operations. We have
instructions like LD to set a value and others such as ADD to
add two registers. We store the program, as I have already
mentioned, in the memory as a series of codes. For instance,
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the instruction 'Load A with Data' has two Hex numbers:

LD A,d	 3E d

The first number is 3E Hex to show that we are going to 'load'
A with data' and the 'd' (that can be any one byte number) is
the data to be put in A. In the case of loading a double byte
register such as BC we need to name two data bytes, but
unusually these are always the opposite way round. So this is
how we would load BC with 156A Hex:

LD BC, 156A	 01 6A 15

The first byte is 01 to show that we are doing a load instruction
and next is the 'least significant byte' of the data, that is the
two digits on the right-hand side of 156A. The next number,
15 Hex is the 'most significant byte' of 156A. We always put
the least significant byte first — this is convention and must
always be followed.

There are many more instructions and these are all
summarised in Appendix D. The instructions you should know
are the load instructions, arithmetic such as ADD and SUB,
RET and you'll also need to know about the stack though it is
explained in this the first chapter.

If you find an instruction in a program that you don't
understand and isn't explained in the chapter then you will find
definitions of all the instructions in Appendix A.

Throughout the book I use a BASIC hexadecimal loader
program with which the programs can be entered. If you have
one of the machine code editors that are available then by all
means use it. All the listings in the book show the address of
the code and the program code itself. Note also we use
hexadecimal in all the listings but in the text after a number
there usually appears 'Hex' or 'decimal' to clarify what sort of
number it is. If you have an assembler then you can enter the
programs from the given mnemonics, but make sure your
assembler accepts standard Zilog Z80 mnemonics and can
assemble the machine code for the addresses shown.
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In Chapter Two, we start by looking at the various methods of
jumping in a program. Then we go on to see how the computer
can make decisions and in this chapter is a program to allow
double height characters to be used on the Spectrum. Chapter
Three is a chapter of bits and looks at the bits in a byte, how to
set, reset and test these bits and look at the attribute file as an

example.

In Chapter Three we conclude with a program that allows the
Spectrum to become an intelligent typewriter. Chapter Four
deals with the logical instructions XOR, AND and OR again
using the attribute file for demonstrating examples. The next
chapter looks at the Rotate instructions and their uses; also in
Chapter Five is a brief look at binary Coded Decimal and how to
use it with Z80 instructions.

Chapter Six details 'ports' and discusses how a computer
communicates with the outside world and how to use these
communications. Much time is spent looking at how sound
effects can be generated on a Spectrum. The final chapter
'May I interrupt?' looks at a topic which links with hardware —
the interrupt system. It is explained with the aid of material
from the ROM and describes the two types of interrupts and

the three interrupt modes.

At the end of the book are four appendices which list: Hex,
decimal, ASCII and Z80 mnemonics; the way Z80 instructions
adjust flags; the system variables with extra explanations; and
the definitions of what each and every Z80 instruction does.

So now we have dealt with all that, we can now start our first
topic, jumping in machine code, a key part of any machine

code program.

When programming in BASIC we often want to move to
different parts of one program. We can do this quite easily
using the GOTO statement. Rather conveniently it doesn't
have to be followed by a number, it can have an 'expression'
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after it. Because it can have an expression, such as:

GOTO 10*A + 100

We have a very versatile system of jumping. The word
jumping, is really associated with moving around in machine
code rather than BASIC. But it is a quite appropriate word for
any language that allows you to 'move' from one part of the
program to another.

In machine code things are a little different. 'Expressions' don't
exist, but we do have two different types of 'instruction' to tell
the microprocessor in the Spectrum (a Z80-A, if you didn't
know that then you ought to!) to carry on elsewhere in the
program.

But as usual, machine code holds more complicated solutions
to everything it seems. So first we'll have a look at our dear
friend the Program Counter (PC) to make some iater
explanations clearer.

Inside one Z80 CPU (Central Processing Unit) there are lots of
registers, more than most CPUs, that help us go about
programming. There are a few which really belong to the CPU
for its own reference. A bit like the system variables in BASIC.
One of these is the Program Counter.

The Program Counter tells the CPU whereabouts it's up to in
your program. Consider the following program.

8.000 L D A } 2t^ 3E 14
8002
ûoeht

Li?
ADD

03
R . ^F

0 5
80

08
3^;:^ S F7 ET cg

On the left we have the addresses starting at 8000. That's
where the code is stored. Looking down the actual program
we can see that A is being loaded with 10 Hex. Make sure that
is fixed in your mind that we're working in Hex otherwise you
will get confused! Next, 08 Hex is loaded into register B. A and
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B are then added together. The RET instruction sends us back

to BASIC.

Now to the Program Counter. As one CPU 'collects' each
instruction, its Program Counter keeps a check on where it is
up to. Firstly, as we 'execute' this program, the Program
Counter, PC, holds Hex value 8000 (where to find the first
'instruction'). The CPU recognises that it is to load the
Accumulator with a 'direct value' and so moves PC up to the
next address 8001, where it finds the value 10 Hex. That is
loaded into the Accumulator, then PC is moved onto address
8002 to 'collect' the next instruction. It carries on like that until
it is told to go elsewhere. In this case by one RET instruction,
but we'll look at that in more detail later.

You are bound to be asking 'how do I send it elsewhere?', so
now I shall move quickly to the point and tell you. We use the
instruction JP followed by an address (the place to go). It's
quite like GOTO really, except that you can't use expressions;
you can use some registers but we'll cover that later. Look,at
this rather pointless program.

8000 ' LC/ )1, 10
3002 LC? @ , 01
8004 ADD A ,B
S005 NIP 4004

What it actually does is set the Accumulator up with 10 Hex
and register B up with 01 Hex. Then it adds B to A. Now the JP
instruction causes it to go to address 8004 where it again adds
A to B. This carries ad infinitum, or when you trip over the

mains lead!

What actually happens is that when the CPU finds the JP
instruction, it collects the next two following bytes and loads
them into PC. Now PC has a different value the CPU starts
'executing' from a different place, in this case 8004. Notice
how 8004 is stored in the program, the 04 first then the 80.
Always keep to this 'backwards' way of storing numbers when
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it consists of two bytes. In the case of JP, it is always followed
by two numbers.

For instance, if you wish to jump to address 0001 you cannot
miss off the first two zeros:

6FF 9 0 1
6FFC 21
6FFF E9
7000 09
7001 E9
7002 C9

02 00
00 70

L D
LD
JP
RDO
J F
RET

£;Z• ,^.̂à.̂L.^:c
HL ,7000

f?-4L?

HL , Et C-

t #•^ L ?

tz000 ..JP eete i C3 01 00

Have a look at the following program:

5000 JP 8006 C3 06 808003
8006 JP

JP
8009
8003

C3
C3

09
e3

80
803009

800C
JP
RET

8003 C3 03 80
JP 800G C3 OC 80

Will it ever reach the RET to return to BASIC?

As you should have realised by now, the code for JP is C3 and
it is followed by two bytes which tell the CPU where to jump to.

There are quite a few more forms of J P, most of them we shall
look at in Chapter Two, but there are a few we'll have a look at
now.

JP(HL)
JP(IX)
JP(IY)

In BASIC we can say:

GOTO A

And in machine code, with a few limitations we can do this as
well. Using HL or the index registers. The IY register cannot be
used otherwise it will mess up the Spectrum's 'works', though
not permanently, it may cause the loss of your program.

JP(HL)

The above instruction causes a jump to be made to the
address in HL. For instance, if HL contained 700C (Hex) a jump
would be made to 700C.

20

Again, a pointless program but see if you can follow its

operation.

6FF9 — BC is loaded with 2.
6FFC — HL is loaded with 7000.
6FFF — A jump is made to the value in HL, currently 7000.

7000 — BC is added to HL, so now HL has (2+7000) 7002
held it in.
7001 — Another jump is made to HL, this time 7002
(pointless because it is the next instruction).
7002 — RET, the return to BASIC.

Now we shall try putting a few short programs into your
Spectrum. The first one will be the one we have just covered so
you can prove to yourself that it works.

To get a program into the Spectrum, we shall need a small
BASIC program to 'POKE' it all above RAMTOP. Type in the

following:

10 LET adds ass=28E88
15 RERG a$
20 LET bitte =0
30 FOR 1=1 TO 0 STEP -1
40 LET .a=COLE a$-=S: IF a$':":"

THEN LET a =a +7
50 LET buta =byte+a *1/Fiti LET a

=.a $ (2 TO ) NEXT i
60 POKE add I- ass .bute : LET addl-

ess =address t1: IF LEN •a$=0 THEN
GO TO 15

70 GO TO 20
80 DATR "010200" "210070" "E9"

j "09" "ES" "09" "
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which, as you know, makes the BC register pair hold the value
two. This is why when we use PRINT, with a USR statement, a
number appears on the screen. We do not always want to have
a figure appear on the screen, in part of a game for example,
but we can get round this using the LET statement. We use a

'dummy' variable. This is a variable which serves no useful
purpose, except to match up with the LET statement. Try:

LET dummy= USR 28665

Nothing appears on the screen this time, but it has worked.
Just to prove it, type:

PRINT dummy

Surprise, surprise! Up comes the number two on the screen.

Sometimes we will want to move a program around. For
instance, we have a program which we have written to fit at the
very top end of RAM on a 16K Spectrum. Then a friend wants
to use the program, but this time at the top end of RAM on a
48K Spectrum. Using our BASIC loader program, the obvious
thing to do would be change the value assigned to 'address' in
line 10. But if we had used JP in the program, that would not
be all that would need changing.

?FF0

7FF4
7FF

S F F F

LD S„08
LD Ar4C
AL?C? A?B
JR 7FFF

RE-1-

The above program is the one written for the 16K Spectrum. It
tucks right up to 7 FFF, the last byte of RAM. It just adds 08 to
4C (Hex) then jumps to 7FFF where it 'meets' a RET
instruction, to return to BASIC.
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The above program will translate hexadecimal into decimal,
then POKE it to any point in RAM we choose. In line 10 we see:

LET ADDRESS =28665

This is because the first instruction is at 6FF9 (28665 in
decimal). The op-codes in Hex, are stored in a DATA
statement in line 80. We have moved RAMTOP down using
the CLEAR command, to 28600; this is lower than necessary
but you should always leave room for movement. You may
want to alter or change a program, for instance.

Now type:

RUN

The program will stop with:

Out of DATA Line 80

That's fine, it is just that we haven't put a check in for one end
of the DATA — no harm done.

The program is loaded into ten bytes of RAM starting at 6FF9
or 28665 decimal. We can give it a run now — type:

PRINT USR 28665

On the screen appears the number two.

The first thing we know is that it does manage to reach the R ET
instruction at 7002 Hex. This we can be sure of (otherwise it
would have got stuck in an endless loop, so you would have
had to pull the plug out!). The second thing we notice is that a
two is printed.

What happens is that whenever the Spectrum finishes 'doing'
our machine code, (by meeting a RET) it returns the last value
held in BC on the screen. If we look at the program we see:

LD BC,0002
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Now let's have a look what happens if we simply move it up in
RAM for the 48K Spectrum:

FFF0
FFF 2
FFF4
FFFE

FFFF

LL? 5,08
LD R,4U
ADD A,6
JP 7FFF

•

RET

Now again it succeeds in adding 08 and 4C together but it
jumps to 7 FFF. This byte could be filled with any old rubbish on
your friend's Spectrum, so we have to alter the JP to FFFF —
then it would work properly. That is quite straightforward, but
imagine a large program with 50 JPs in it. That would take
some time to alter all of those. What we need is a program that
is 're-locatable'. That is one that can be put almost anywhere
without alteration.

In machine code we have a special instruction to make this
possible. It has a few more limitations compared with JP, but
still is a very versatile instruction. To use it we must understand
the two's complement convention.

The jump itself is called Jump Relative (JR), and is followed by
a number, specifying how many bytes to skip, and whether
forwards or backwards. If it is to jump backwards, then a
negative number is used, and this is where we need to learn
about the two's complement convention.

Normally the CPU just deals in positive numbers but
sometimes, as in the case of JR, it can recognise certain types
of single byte numbers as being negative.

To form a negative number, let's say negative 10 (Hex), you
subtract it from 100 Hex.

100 Hex-10 Hex =FO(or —10 HEX)
256 dec — 16 dec = 240 (or — 16 dec)

24

The bottom calculation is the same, but in decimal. It is
probably easier for you to work the subtraction out in decimal,
so a little conversion is required. You can use Appendix A in
the Sinclair Manual for this or Appendix A in this book, to
convert the values.

In one Z80 instruction set there is an instruction which will do
this calculation for you:

NEG

It makes a positive number in the Accumulator into a negative
one like we did manually before. To show this in action we shall
try a small program.

Type in the BASIC program listed earlier (forget that if you still
have it in your Spectrum) and make sure you type:

CLEAR 28600

Now, here is the machine code program we shall use:

7000 3E 10	 LD	 A,10
7002 ED 44	 NEz
7004 4F	 LD	 C , t.;
7005 06 00
	 LD 8,00

7007 C9
	 PET

Notice that NEG is a two byte instruction. ED Hex is the prefix
then 44 is the op-code.

To load it into the Spectrum change line 80, the DATA
statement, to:

60 >DATA
00-,-C9 - ..C9,.

Change line 10 to:

10 LET address=28672
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Now type:

RUN

Now type:

PRINT USR 28672

As we expect, up on the screen comes 240, that is the decimal
answer, the same as we worked out before.

Looking at the program:

7000 A is loaded with 10 Hex.
7002 It is made into negative 10.
7004 We put A into BC so we can see the answer on the

screen.
7005 The high byte, B, is cleared because it is not needed

with numbers smaller than 256.
7007 RET returns us to BASIC.

Have a look at this program:

7000 0E 00 UD C,00 0GJ
7002 e6 01 à`D s.ï31
7004 18 04 JR 700R
7006 0E 10 LD C . 10
7000 0E 00 LD e,.e0
700A C9 RET

First it clears C and loads B with 01 Hex. So BC contains 0100.
Then it Jumps Relative, the 04 means skip the following four
bytes, so it misses out the LD C,10 and LDB 4 O0 thus reading
one RET instruction. The number following the J R instruction,
in this case 04, always operates from that byte when positive.

So if 08 followed, it would skip the next eight bytes.

Now look at this program:

7000 C 9 RET
7001 3E .10 107003 05 0E LD E. C3^
7005 00 ADD R .. ^
700E
700E

18
00

F8 JR
NOP

7000
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If we started it at 7001, then A is loaded with 10, B with 06, the
two added together and we come to Jump Relative. This time
the following number is negative. It jumps backwards by eight
bytes. If we start at the NOP, and move eight bytes backwards,
we 'land' on RET telling the CPU to return to BASIC. Let's
check this out:

256 — 8 = 242 ; convert to Hex:

242 = F8 Hex

F8 follows the JR instruction, so that seems fine.

Using two's complement we can have positive numbers
0-127 decimal and — 1 to — 127 decimal. (Yes, zero is
counted as being positive.) In a long program we would not be
able to use JR all the time because we would not be able to
jump further than 127 bytes forwards or backwards. In this
way, we cannot make all programs relocatable.

Study this:

7000 18 FE
	

%J R
	 7000

7002 C9	 RET

You should recognise that the FE Hex is interpreted as — 2. So
it would just loop back to the JR instruction forever, or until
you unplug the Spectrum.

If you do not mind typing the BASIC loader in again, you can
try the above program.

Just change line 80 to:

^.30 cATR " :ïsFe" f ..cs..

Type RUN then:

PRINT USR 28672

Nothing appears to happen!
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The computer is stuck in an endless loop! Try pressing
BREAK. Nothing happens again. Remember BREAK does not
work with machine code. You can test it for yourself in the
program, and we shall learn how to do that later on in the book.
For now you will just have to unplug and start again.

can print the result in decimal when we return to BASIC. Now
let's give it a run through ensuring line 10 is:

1@>LET address =286?2

Change line 80 to:

Sometimes in a program, you will want to use the same routine
lots of times. To save you having to enter it every time it is
needed you can use subroutines. They're quite like the ones
we use in BASIC using GOSUB and RETURN. In machine
code we do have RETURN written as RET but instead of
GOSUB we have CALL.

When we use machine code on the Spectrum, our routine is
actuallya subroutine CALLed by the ROM. So when we wish it
to end and return to the ROM (back to BASIC) we use the RET
instruction.

CALL uses a direct address, eg. it is simply loaded into PC, not
calculated relatively like JR. There is no form of CALL relative
which also inhibits the use of relocatable programs.

The following program adds the two double byte numbers
held in BC and DE and returns the result in HL.

> t?flTR "60,• ? ., 59
.. ? 

"2.9"
 ? "C9" a ..,q,

14-C2R'• + .. ti?E4D.. } ..C><?oet-70.. . ..44.. , ..4
D..

Now type RUN. Then:

PRINT USR 28672

Up comes 30666 on the screen. That's the answer in decimal.

There are some subroutines which are useful to use in many
programs. For instance, there is one in Chapter Seven which
tests the BREAK key. The ROM itself holds many very useful
subroutines, two of these we shall look at later.

As you should have noticed the Hex code for an unconditional
CALL is CD. Following it is the direct address, two bytes:

eg. 'CALL 7000 — CDCO 70'

There are other forms of CALL called conditional CALLs but we
shall look at those in Chapter Two. Another form of CALL is
RST. It is different in that you can only access subroutines at:

It is written as a subroutine, here is a short program to use it.

7004- ^-.3- 1 4.0 2R L D Bi , 2R4.0
70437 11 7E 4-D LD DE, 4-07E
700R VD 00 7 t2f CALL 7000
740D 44 LD fR, H
700E 4D L t3 C , L
7tis0E C3 PET

It loads BC with 2A4C and DE with 4D7E then CALLs the
'adding' subroutine. The result is loaded back into BC so we

:`0tr30 60
7'001 E+9
7f-qpip 1g
7005 C9

LD
L D
RDL?
RET

L 
HL,DE

0000
0008
0010
0018
0020
0028
0030
0038
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Those addresses are all in the ROM. It is faster than the CALL
and only occupies one byte because a different code is used for
each RST address. RST is short for RESTART.

RST 00
	

C7
RST 08
	

CF
RST 10
	

D7
RST 18
	

DF
RST 20
	

E7
RST 28
	

EF
RST 30
	

F7
RST 38
	

FF

You may be wondering why I'm telling you this, because if
they're addresses in the ROM you can't use them for your own
subroutines.

and more! Have a look again at Appendix A, you will see the
INK control code is 10 Hex. Now, if we send this code to the
print routine, then send a number between 00 and 07, the
appropriate INK colour will be selected! Let's try a Blue Peter.

70#.̂ 0
7002

aE
D7

10
åsT 10 1°

7003 3E i.̂ f 1 LL^ R. t}$.
7005
7 OkE

D7
3E Efl

R5T
LD

10
A , 5O

7no s 07 R57 10
7Rog 3E 65 La R ,, 65
7006 D7 R5T 10
700C 3E 74- LD Rr7^i-
700E D7 R5T 10
7e+OF ;iE 65 LD R,65
7011 D7 RST 10
70 12 3E 72 L^? 72
7014 D7 R5T 10
7015 C7a RET

BUT!! This is where one of the most useful routines in the
ROM lies — at RST, 10. It is the print routine and from here a!!
the FLASHY, BRIGHT and colourful characters can be printed.

The subroutine is a minor goldmine for us machine coders, and
saves a lot of the trouble of printing. First, the A register must
be loaded with the character you want to print, then you can
use the instruction RST 10 to have it printed on the screen. For
instance, say you want to print 'HI':

LD A,48
RST 10
LD A,49
RST 10
R ET

First, one Accumulator is loaded with 48 Hex. Look at the table
in Appendix A of the Sinclair manual of this book to check this
is the code for the character 'H'. Then RST 10 makes the CPU
execute a subroutine starting at 0010 Hex, to put it technically.
And then it goes on to print 'I' in a similar manner. I did mention
colour earlier, and I shall explain how to 'colour' your words
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To begin with it sends 10 in the Accumulator to the print
routine, so the next code to be sent must be a colour code, in
this case it is 01 for Blue. If it is not a valid code (valid being
between 00 and 09 inclusive) then an error message is given:

K Invalid colour

Looking further down the program you should realise, using
Appendix A, that the codes are for 'Peter'. Note particularly
that the code for RST 10 is D7. You may be thinking that the
program is very long-winded just to print 'Peter' in Blue but
that is the slow way of doing it (slow to put in, very fast to
execute) but sooner or later you'll figure out a quicker method.
But if you don't then you can use my routine described a little
further on. Now we can give Blue Peter a whirl!

Change line 10 of the loader to:

_0>LET	 dr SSS=2E6ra

(it may already be that!)
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and line 80 to:

a	
`

^Q>[^
y rA
A

^
TA "^^E10••,J ,ÿ'.^g^,.. • .. 3E^ g.., — D7^^♦t, 

- 3E50 —!' "D7",J"3E65",\lD—,,\\, 11!}=• '74 .L

, "D7" , "3E65" „ "D7" ? "3E72" , ..07.. a ..^

Now after you've checked it (make sure it's all correct) then
type RUN then:

PRINT AT 0,0;:RANDOMIZE USR 28672

Hopefully a 'Blue Peter' will appear on the screen (as you may
have guessed this is an adapted BBC program!). Have a look at
the third block of data in line 80 of the loader, "3E01". Try
changing the 01 to another colour code to check if it works
properly. If you do, remember to run the loader again, before
typing the USR line. I can't claim to know everything and one
thing I admittedly haven't figured a definite reason for is that
when the PRINT AT is left out and the USR statement is
executed alone, 'Blue Peter' merely appears and disappears.
Try it for yourself:

RANDOMIZE USR 28672

See what happens? Now find out what happens when you
type:

i CLS : RANDOMIZE USR 28672
ii PRINT TAB 10 : RANDOMIZE USR 28672
iii PRINT' : RANDOMIZE USR 28672
iv PRINT; : RANDOMIZE USR 28672
v PRINT, : RANDOMIZE USR 28672

There are plenty more things that can be done by using one
print routine. You can set it to FLASH (how rude!) or make it _.
BRIGHT. Once again, have a glance at that kernel of
information, the infamous Appendix A and look up the code
for FLASH. With any luck you'll find it is 12 Hex. If you didn't
come to that then there is either a printing error, or you need
glasses! Now, to turn FLASH on we simply follow 12 with 01
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and to turn it off we use 00, and similarly with BRIGHT whose
code is 13 Hex we use 00 and 01 to turn it off and on
respectivel y. Let's try making 'Blue Peter' BRIGHTer and
FLASHier than before! Insert another section of Hex data at
the beginning of line 80 (just before the "3E10"):

"3E12", "D7", "3E01", "D7", "3E13", "D7", "3E01"

You should understand that the 12 is for FLASH and the 13 is
for BRIGHT. Remember to check it, then RUN the loader, then

type:

PRINT AT 0,0;: RANDOMIZE USR 28672

There are many other control codes we can use — here is a full
list:

06 This moves the print position to column 00 or
16 whichever is next, just like using a comma in
a PRINT statement. Just use 06 on its own.

08 LEFT
	

These four codes you would expect to move
09 RIGHT
	

the cursor up, down etc. but only left (08)
0A DOWN
	

works, the others print a '?' 08 (LEFT) can be
0B UP
	

used for overprinting as described in the
Sinclair manual.

10 INK We have used this code already but just to
recap it must be followed by a valid INK code
(00-09), to change the INK colour.

11 PAPER
	

This, in the same manner as 10 (INK), sets the
PAPER colour. Again a valid code must follow.

12 FLASH Code 12 turns FLASH on when followed by 01,
and off when followed by 00. Code 08, can be
used for 'transparent' printing. That is printing
that is just the same as what was underneath.
(A full explanation is given in Chapter 16 of the
Sinclair manual.)
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Chapter Two
TO GO OR NOT TO GO

We now know how to jump, Jump Relative and how to call a
subroutine and return from it. The next thing for us to look at
are decisions; after all, a computer is defined as a machine
capable of making logical decisions.

DECISIONS, DECISIONS

The CPU makes decisions based on a single register, the 'F'
register or 'Flags'. Let us have a look at the bits of the 'F'
register.

BIT 0 C Carry Flag
1 N Add/Subtract Flag
2 P/V Parity/Overflow Flag
3 NOT USED ALWAYS ZERO
4 H Half carry Flag
5 NOT USED ALWAYS ZERO
6 Z Zero Flag
7 S Sign Flag

As you can see there are only five flags, two bits being unused.
Each bit has a letter or two letters as an abbreviation for its
meaning. We can ignore the Add/Subtract Flag (S) and H Flag
because the CPU cannot make decisions based on these, and
has little need to.

The flags change after certain instructions and in certain ways.
They usually change when an operation is done with one
Accumulator such as subtraction or addition; they also change
when a register is INCremented or DECremented and in many

13 BRIGHT

14 INVERSE

15 OVER

Changes the luminosity (for me, you and the
window cleaner, that's brightness!) in the same
manner as described for FLASH (12).

Turns inverse printing on and off in the same
way as BRIGHT.

This code turns the OVER printing mode off or
on. Used in conjunction with code 08 (cursor
left) can be used to put characters 'on top' of
each other. Follow it with a '1' or '0' as required.
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other situations. For instance, if we add 10 Hex to the
Accumulator, the flags will tell us if the Accumulator is now
zero, if it is negative (according to two's complement
convention) or if it had overflowed and caused a carry.

THE FLAGS THEMSELVES

The Carry Flag tells us if an overflow occurred. For instance,
if we add 10 Hex and F3 Hex, we get 103 Hex which is too large
for a single byte register and so the first digit (one) gets
removed, leaving 03 as the result. But F3 + 10 does not equal
03 so the Carry Flag is set to one to warn us that an overflow
has taken place. Also, if there is an underflow it will be set. For
instance, if we take 05 from 03 the result is a minus number in
two's complement convention. But we do not know if that
number is a positive Hex number, or a two's complement
number. So we can check the Carry Flag to see if there has
been an underflow and if there has, the Carry Flag will be set.

Parity/Overflow Flag The use of this flag and the conditions
of when it is set or reset are a little complicated and would not
hold much relevance if I explained them in this section of the
book.

Zero Flag The use of this flag is quite simple: it tells us if the
result of the last operation was zero. For instance, if we first
load register B with 02 Hex. Now, if we DEC B, the Zero Flag
will be rest to zero because B did not end up as 00Hex. If we
now DEC B again it does end up as zero so the CPU sets the
Zero Flag to one. This is a VERY useful flag and we will see
more of this later on.

Sign Flag If we are working by two's complement convention,
the Sign Flag will tell us if the result of the last operation was
negative. If it was negative by two's complement convention
then the Sign Flag will be set, otherwise it is reset.

The other two flags, the H and N flags are for the CPU's
reference only — so we won't bother to examine them.
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Consider this example:

LD A,1 0
LD B,10
SUB A,B

10 is subtracted from 10 which leaves zero, so one Z flag is set.
There has been no carry so the C flag is reset. The Sign Flag is
reset to indicate that the Accumulator had a final value that
was positive:

Z	 :	 1
C : 0
S : 0

Have a look at the following examples; below each are the
resulting flag conditions:

1. LD A,00
LD B, B5
ADD A,B

Z	 : 0 (Zero)
C	 : 0 (Carry)
S	 : 1 (Sign)

2. LD A,00
SUB 20

Z	 : 0 (Zero)
C	 : 1 (Carry)
S	 : 1 (Sign)

3. LD A,00
SUB B5

Z	 : 0 (Zero)
C	 : 1 (Carry)
S	 : 0 (Sign)

4. LD A,00
ADD 20

Z	 : 0 (Zero)
C	 : 0 (Carry)
S	 : 0 (Sign)

37



What would be the resulting value if we added 10 Hex to 70
Hex?

as 'if the result of the last operation was zero then jump directly
to 705C'. Also:

What would the Zero, Carry and Sign Flags hold?

Well, firstly, if we add 70 Hex to 10 Hex we get 80 Hex or — 80
in two's complement form. Neither 80 or — 80 are zero, so the
Z flag is reset. There hasn't been an underflow or overflow so
the Carry Flag is reset. But bit 7 is set indicating that by two's
complement convention the number is negative so the sign bit
is set to one.

'Where is all this Flags business leading to?' you may well ask.
Well, using JR, JP, Call and RET in their conditional forms, we
can make conditional jumps:

JP cond 1 , nnnn
CALL cond 1 , nnnn

JR cond2 , dis
RET cond1

cond 1 = Z/NZ/NC/C/PO/PE/M/P	 dis =± Hex number
cond2 = Z/NZ/NC/C	 nnnn = two byte Hex address

As you can see, each of the jumps and the return instruction
now has a letter or pair of letters suffixing them. This is what
the letters mean:

Z	 = If Zero Flag is set.
NZ	 = If Zero Flag is not set.
C	 = If Carry Flag is set.
NC	 = If Carry Flag is not set.
PO	 = If parity odd (if P/V flag is reset).
PE	 = If parity even (if P/V flag is set).
M	 = If minus (if S flag is set).
P	 = If positive (if S flag is reset).

So we can interpret:

JP Z, 705C
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CALL NC, 700A

can be interpreted as 'if the last operation didn't cause a carry
then call the subroutine at 700A.

By 'the last instruction' we mean the last instruction which
alters the flags. Instructions such as 'LD' and many others do
not adjust the flags at all.

LD A, 10
ADD A, 05
LD B, 03
LD HL, 0735
R ET Z

When, in the above program, 'RET Z' is reached the flags are
still set to reflect the value of A after 'ADD A, 05'. The various
'LD' instructions can be ignored when looking at the flags.
Here is a list of the instructions which do adjust the flags that
interest us, that is the C,Z,S and P/V flags.

ADC
ADD
AND
BIT
CCF
CP
C PJ
CPJR
CPDR
CPL
DAA
DEC	 (single byte registers only)
INC	 (single byte registers only)
IN
INI
IND
INIR
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INDR
LD A,I
LD A,R
LDI
LDD
LDIR
LDDR
NEG
OR
OUTI
OUTD
OTIR
OTDR
POP AF
RLA
RL
R LCA
RLC
RLD
RRA
RR
RRCA
RRC
RRD
SBC
SCF
SCF
SLA
SRA
SRL
SUB
XOR

(note, these are the only basic 'LD'
instructions that adjust the flags)

(flags are set by top byte of stack)

We have not looked at some of these instructions yet so do not
start worrying.

As you can see, most of these instructions are mathematical in
some form or another. If you wish to check the exact flags
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altered for each instruction check Appendix C at the back of
the book.

There are two very common uses for the flags these use firstly
the 'DEC' instruction and secondly the 'CP' instruction.

In BASIC we can quite easily form loops using a FOR ..
TO... (STEP) ... NEXT sequence. In machine code things are
quite different although the principle is the same. Firstly, to
form a very basic type of loop, we load a register with the
amount of times we want a particular thing to be done. Then,
where we would put a 'NEXT' in BASIC we decrement the
register, and if it is not yet zero the loop is done again. Have a
look at this program to make things clearer. It prints 5 'A's
using 'RST 10' as we described in Chapter One.

70430 06 05	 LD 5,05
7002 3E 41	 LD R,41
7004 D7	 R5T 10
'005 05	 DEC 5
7006 20 FR	 JR	 Ws , 70027005 C9	 RET

7000	 : B is set up with 05 Hex.
7002 : A is loaded with 41 Hex because this is the code for

'A'
7004 : the character is printed.
7005 : B is decremented because it is the counter.
7006 : If B hasn't reached zero then we need to go back to

7002 so another 'A' can be printed, — we use JRNZ
meaning 'Jump Relative if not zero'.

The B register is very commonly used as a counter. This is
because we have a useful instruction exclusively for register B.

DJNZ (dis)	 10xx

This instruction combines 'DEC B' and 'JR NZ' into one
instruction and has two advantages:

(a) It uses up less memory — one byte for the instruction and
another for the displacement.
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(b) It is quicker than doing 'DEC B', 'JR NZ' and this can
sometimes be critical in precision timing loops.

This means we can save a byte and re-write the program as:

7000 06 05 LD B4O5
7002 3E 41 LD R,41
7004 D7 R5T 1 0
7005 10 FR D J$IZ 7 00 1
7007 cg RET

Type the modified version in — the data is:

$0}DATa "0505",..3E4 3.. ,..D7..,..10
FR., , .C9.,

Ensure line 10 is:

10 :LET address =28)572

Now once you have done that and checked it, type:

RUN, then:

PRINT AT 0,0;: RAND USR 28672

Remember that we need the 'PRINT AT 0,0;' because
otherwise the Spectrum thinks it is printing on the Edit line (or
just above, in fact) and so when it has finished it clears the lot.
Now, if your typing is accurate you will find five beautiful
capital 'A's on your screen.

This system of looping is fine when a simple count is needed,
but what if you need a loop using values 10 to 20 Hex? Now this
system will not do because it relies on the counting register
ending up with 00 Hex. So here is where we introduce a very
useful instruction:

CP

Its literal meaning is 'Compare the following with the
Accumulator'. The results of the comparison are reflected in
the flags. What it actually does is subtract the following data
from A without actually putting the result in A — it just sets the
flags to that result.
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The following data can be a single byte register, direct data or
the memory location pointed to by HL, IX + (dis) or IY + (dis).

CP nn	 FE nn

CP A	 BF
CP B	 B8
CP C	 B9
CP D	 BA
CP E	 BB
CP H	 BC
CP L	 BD
CP(HL)	 BE
CPIIX +(dis))	 DD BE
CP(IY +(dis))	 FD BE

Above are the codes for each of the CP instructions.

The compare instruction is useful in emulating IF ...THEN
situations; for instance, if we 'CP20' then if A contains 20 the Z
flag will be set (20 — 20= 0), if A is less than 20 then the C flag
will be set and if it is greater than 20, then the C flag will be
reset.

The following situations can be interpreted into almost BASIC
meanings:

1 . CP 5F
JP Z, 7000

As you can see, 5F is theoretically subtracted from A. In this
case, if the calculation results in zero, a jump is made. The only
way it can result in zero is for the Accumulator to hold 5F to
begin with (5F-5F = 00), so we could say:

If A=5F (Hex)THEN GOTO 7000(Hex)

2. CP 2C
JP C, 7000

2C, in this case, is theoretically subtracted from A. (Remember
we say theoretically because the result is never put into A.)
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Now if A is larger than 2C then 2C taken from it will give a
positive result. But if A is smaller than 2C then it will give a
negative result, an underf/ow, so the Carry Flag is set. We
could write this as:

IF A< 2C(Hex)THEN GOTO 7000(Hex)

3. CP 10
JP NC, 7000

Now if we take 10 from A and A contained a number greater
than 10 then the result is positive. This means that there will be
no overflow and so the Carry Flag will be reset. So for this we
could write:

IF R>10(Hex)THEN G4TL? 7000 (Hex)

Now getting back to our problem of a loop that doesn't end in
0. Have a look at the following, it loops from 10 Hex to 1 F Hex.

700Q 3E 10
70tåQ SC70U-"^3 FE 20
700E 2e F57007 Cg

Firstly A is loaded with 10, the value we start the loop at. Then,
at 7002 the Accumulator is incremented, then 'CP 20'
compares 20 and if the Accumulator does not hold 20 then the
Z flag is reset so a jump is made back to 7002. We compare
20 because it is one more than the last value we want it to do. If
we compared 1 F then it would increment A at 1 E, make it 1 F
but a return would be made and 1 F would never be run.

Expanding on this program, here is a program that prints 16
'A's in columns, 16 to 31 decimal or 10 to 1 F Hex.

E..€2	 R43.RST /.6
F4,13CP 20

JR	 NZ ,1P8tr2
PET

7000 B is set up with 10 instead of A because we will need A
for the printing.

7002 A is loaded with 17 Hex, the control code for TAB.
7004 The TAB control is 'sent'.
7005 Now we get the column number, in B, into the

Accumulator.
7006 The column number is 'sent'.
7007 A is then loaded with the code for 'A'.
7009 That is then printed.
700A We now get the count, in B, into A so we can test it.
700B 20 is compared because the last value that should be

used is 1 F (31 decimal).
700D If the Accumulator is not yet 20 then another A is

printed.
700F Return to BASIC.

With loops using single byte registers everything is quite
straightforward, but when we come to need double byte
counting there is an added complication. The decrementing of
a double byte register affects the flags so that they will not

work. So you can not do this, for instance:

LD BC, 062D
DEC BC
JR NZ....

We shall discuss how to get around this problem in Chapter
Four where we shall learn all about instructions that operate
'logically' on a register.

L. ,t}	 a , 1 0
ïAiC. R
CP 20
JR 	, 7002REï'

7000 05 107 002 3E /7?004 P7
70^.-^- 5 78
7005 D7

LD	 5t t0L.D	 17R5T 30Fi . €ïRST 20

THE CHARACTER SET

Before I give you a neat little routine which provides double
height characters, we shall revise the character set.
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TOP

BOTTOM

It is quite convenient that there are user-defined graphics on
the ZX Spectrum because this means less explaining is needed
from me! You should all know that each character is made up
of 64 dots in an eight by eight square. Many of you will know
that each 'slice' of eight dots is stored in memory as eight bits
or a byte.

128 64 32 16 8 4 2 1

0 0 0 0 0 0 0 0 00
0 0 1 1 1 1 0 0 3C
0 1 0 0 0 0 1 0 42
0 1 0 0 0 0 1 0 42
0 1 1 1 1 1 1 0 7E
0 1 0 0 0 0 1 0 42
0 1 0 0 0 0 1 0 42
0 0 0 0 0 0 0 0 00

The usual Sinclair character set is stored at 3D00 onwards.
Here, there are the definitions of the characters from a space to
the copyright symbol. The user-defined graphics are stored
separately and the graphics are calculated by the ROM. If we
re-define the character set elsewhere we must change the
value in CHARS (5C36) in the system variables. It is normally
3000, which is 100 Hex less than the address of the character
set. You must remember that when you define a new character
set, this must be changed to 100 Hex less than the actual
address so that you can use the character set.

DOUBLE HEIGHT CHARACTERS

To create a double height character set we must in fact create
two character sets. One for the top half of the characters and
one for the bottom half. To generate these two character sets
we get one original character and 'stretch' them into two
halves. For example, with A. (see over).

So, for the top four bytes we copy each one in double into the
first character set for the top half. Then we must copy the
bottom four bytes in double into the second character set for
the bottom half.
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By using machine code we can have this laborious job done in a
blink of an eye. Firstly, we need to have an outer loop which
cycles through each of the 96 characters. Then we want one
inner loop to the top half of each character and another loop to
do the bottom.

DO EACH CHARACTER

DO TOP HALF <	 1

DO BOTTOM HALF < I

NEXT CHARACTER 	

Now we must decide where to put these character sets. The
best place is above RAMTOP and this is where we will store
them. If you have a disassembler, editor or alterer which sits
above RAMTOP then you will have to change the addresses.
Where it says PUT1 and PUT2 in this first bit of the program
use the following addresses:

48K : (PUT1 ); FAIPUT2); FD
16K : (PUT1); 7A(PUT2); 7D
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Our first task is to set up a loop to process each of the
characters. We will need to have two addresses on hand,
which will tell us whereabouts we're up to in the two different
character sets.

So that is our first piece. We set the address for the bottom half
(BOTS ET) and stack it. We then set the address for the top half
(TOPSET) and leave this in HL.DE is loaded with SNCSET
(3D00) which is the beginning of the Sinclair character set.
Finally, C is loaded with 60 Hex because there are 60 Hex (96
decimal) characters to be done. Next, we want the loop for the
top half of the character.

Notice how the first instruction loads B with four. This sets B
up as a counter and since we are to do four 'slices', it is loaded
with four. The Accumulator is then loaded with the byte
pointed to be DE; remember that DE points to the Sinclair
character set. This byte is now transferred into the top
character set. HL is then incremented and the byte, once
again, is stored in (HL) (if you remember we have to put each in
double to get the stretch effect). Next, DE is incremented so
that it points to the next 'slice' of the character.

This process is repeated four times using the DJNZ instruction
we learnt about earlier.

Our final step before closing the outer loop, is to make the
bottom half of the character. This is done in a very similar way
to the process of making the top half as described above.
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EX HL , (5P) E3
L C B, 04	 06 04
LD R, (DE)	 IR
LC (HL) ,R	 77
INC HL	 23
L(? (HL) :ß	 77
INC HL	 23
INC DE	 13
E?JNZ BSL ICE 10 F8
EX HL , (5P) E3
DEC C	 OD
JR NZrTPHRLF 20 E5
POP HL	 E i
RET	 C9

This bit starts quite differently with EX HL,(SP). For the
uninitiated this quite useful instruction simply stops the value
in HL and the top value on the stack over. This is used here to
switch from HL pointing to the upper character set. This is so
the lower character set it set up at a different address,
otherwise things would be a mess! After DJNZ BS LICE there is
another 'EX HL,(SP)'. This switches the values again so HL is
set up for the top character set. C is then decremented, and if it
isn't zero then it Jumps Relative to do the next character. If
there are no more characters left to do then the last two
instructions will be executed, 'POP HL' and 'RET'. The 'POP
HL' is there so that the top value on the stack is removed, that
value being the pointer in the 'top' character set.

7000
7003

21
E5

00 70 LE>
P3l35H

HL 7D00
HL

7004 2 ß. 00 7R LO t-iL, 7Aßß
7007 13 00 30 LD 0E ,3000
700t? 0E 60 LO C , 6(^?
700C 05 04 LO B , 04
700E 1A LD A, ((,?E)
700F LI) (HL) ,Fi
70/0 23 INC HL
7011 77 LD (HL) ,A
7012 23 INC HL
701 3 1 3 ZNC G E
7014 d- 10 F0 DUNZ 700E
7010 E3 Ew. (5P) .HL
7017 05 04 L0 E . ^€4
7019 1A LO R . (DE)
703.A 77 LD (i-tf_? . R
7015 23 ZN--C HL
701C 77 LC tHL)
70;_D 2;1 1NC HL
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701E 13 INC DE
701F 10 F C DJN: 7019
7021 E3 E X (SP) ,,HL
7022 OD DEC C
7023 20 E7 JR NZ .700C
7025 E 1 POP HL
7026 Cg RET

To get this routine into action put the Hex codes into data
statements at end of the Hex loader. Remember to put in the
appropriate numbers for 16 or 48K (whichever machine you
have). I have given the 16K ones in the program but if 48K
users look back they will see where I have explained how to
change them. If you are using a machine code monitor that
uses addresses 7A00-7FFF on the 16K or FA00 FFFF on the
48K then some adjustments will have to be made to the
addresses otherwise the program will set up the character sets
in your monitor!

Now down to hows and whys of using your double height
character generator. Assuming you have entered the data and
RUN the loader then you now want to know how to use the
new letters.

Firstly, we shall set up two variables:

For the 16K — LET TOP = 121
LET BOT = 124

For the 48K — LET TOP = 249
LET BOT = 252

Now, let's imagine we want to print 'Hello'.

10 POKE 23607, TOP: PRINT "Hello"
20 POKE 23607, BOT: PRINT "Hello": POKE 23607, 60

In the first line we point CHARS (A system variable, see
Appendix C) to our top half character set. So then it uses our
top halves of characters. Then to add our bottom half directly
below we use POKE once again to point CHARS this time to
our lower halves. The last POKE at the end of line 20 is what
needs to be done to reset printing to normal.

See what happens when you:

POKE 23607, TOP

in direct mode. Also:

POKE 23607, 0

Why does it do that?

Can you think of a use for it?
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Chapter Three
A CHAPTER OF BITS

As you should know a byte consists of eight bits. Each of these
bits is binary digit which represents a number, if set. All these
numbers added together form a byte. Sometimes we use a
byte, not all together as an 'eight bit word', but as separate bits
for flags or smaller numbers. We have already looked at the F
register and its bits, and how each bit tells us something about
the last operation or comparison. The colour attributes file
(starting at 5800 Hex) has a byte for each character square on
the screen. Each attribute byte tells the logic chip the INK
colour, PAPER colour and whether that square is flashing or
not, bright or normal.

1

I

0

I

1

INK
PAPER
BRIGHT
FLASH

If we want to make a character square flash, we set bit 7, but
none of the other bits must be adjusted. To do this we have the
instruction:

SET

The following program makes the first character on the screen
flash:

708tQ 21 00 58	 LC' HL.5800
7003 GE FE	 5ET 7 , (HL)
7005 09	 RET

This is how an attribute byte is arranged:

1 617 1 5 4 3 1 2
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7 000
7o 0 3
f, 005
7007
7008
7O‘2.sR

21
05
CB
1.0
C9

00 58
00
FE
FS

LG`
LD
SET
INC
RET

HL, 5500
5 ,(D0
7, (HL)
HL
7005

7000

7 003

7005
7007
7008
700A

HL is loaded with the address of the first byte,
5800.
B, being used as a counter, is loaded with 00 so
the first 256 bytes are filled.
The flash bit is set in (HL).
HL is moved on to the next attribute.
The DJNZ causes 256 operations.
Return to BASIC.

Lets try this out, using one BASIC loader program change line
80 to

a0?DRTR "21e055" ,. "05013" ..CSFF.:^ 2 ^:. ^ .^ ^^7FB" "C9" ,

And check line 10 is:

10>LET 3ddre1s=256?2

Now type RUN and when you get the error message type:

RANDOMIZE USR 28672

7000 HL is loaded with 5800 Hex. This is the address of the
first attribute byte, which refers to the first character on the
screen.
7003 The SET instruction sets bit 7 of location (HL) to 1, and
since HL points to the first attribute and bit 7 is the flash bit, it
makes the first character flash.
7004 Return to BASIC.

The SET instruction only sets the specified bit to one — it
leaves all the other bits as they were. It can be used to set any
bit (0 to 7) of any single byte register (A, B, C, D, E, H or L) or any
location pointed to by (HL), (IX+ dis) or (IY+ dis). Here is a
list of the SET instructions ((x) is any number 0-7):

So, if we want to stop that first character flashing we can set
bit 7 to 0 using the RES instruction.

7000 21 00 58 	 LL%	H1_,5800
7003 C8 BE
	 RE5 7, (HL.)

701;_7; 5 C9
	 RET

Because there are so many different SET and RES instructions
it would be a waste of space to list them here but you can find
them all in Appendix A in either this book or your Sinclair
manual.

The following program demonstrates the SET instruction by
making the top eight lines of the screen flash.

SET (x), A
SET (x), B
SET (x), C
SET (x), D
SET (x), E
SET (x), H
SET (x), L
SET (x), (HL)
SET (x), (IY + dis)
SET (x), (IX + dis)

To complement the SET instruction we have RES. It operates
in a very similar manner except that it resets the appropriate bit
to zero.

RES (x), A
RES (x), B
RES (x), C
RES (x), D
RES (x), E
RES (x), H
RES (x), L
RES (x), (HL)
RES (x), (IY + dis)
RES (x), (IX + dis)
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.'000
7003
7005
7007
7008
?00R

00 58
00
F6

FB

LD
LD
SET

Q
INt Ĉ)

t.iiYi
RET

HL,580tJ
6,00
6, (HL)
Hi_
70e5

21
05
CB
23
10
Cg

As you can see, the top eight lines are flashing. (If they're not,
you've mis-typed something — if you've lost the loader, load it
in again and try again, otherwise check line 80.) Now just to
prove to yourself it won't affect anything else in those
character squares, type:

LIST: RANDOMIZE USR 28672

And hey presto! You have got a program which is flashing its
top!! As we responsible citizens cannot allow further
disgusting behaviour, we must BRIGHTen the outlook with a
slight modification.

Instead of setting bit seven we now are setting bit six, the
BRIGHT bit. So change "CBFE" in line 80 to "CBF6".

Now type RUN, then:

LIST: RANDOMIZE USR 28672

Now if you are using white paper, the bit washed in machine
code is whiter than white!

There is one more instruction concerning bits which we have
to look at:

BIT

The BIT instruction tests a certain bit and if the bit is zero the Z
flag is set, or if the bit is one the Z flag is reset. The different
forms of the BIT instruction are similar to RES and SET, and
like RES and SET they all have the prefix code CB. The codes
can be found in Appendix A of this book or the Sinclair
manual.

BIT (x), A
BIT (x), B
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BIT (x), C
BIT (x), D
BIT (x), E
BIT (x), H
BIT (x), L
BIT (x), (HL)
BIT (x), (IX + dis)
BIT (x), (IY + dis)

The following program changes all the flashing characters to
none flashing and vice versa.

7000
7003

0 57005
7007
73z+0g
70r$8
7 000
700E
700F
7011
7013

21 00
CS 7E

{2̂  p$ 04
 LI SE

10 02
CB FE
23
7C
FE 58
20 F0
Cg

58 LO
BIT
JR
FfiES
JR
SET
INC
LE.+
CR
JR
RET

HL r5800
7.. (HL)

^.^ 71^^38
7, t}-tL)

700D
7, (HL)
HL
€E,t^
58

NZ , 7003

7000	 is loaded with the start of the attribute file.
7003	 The flash flag of (HL) is tested.
7005	 If the character is not flashing it goes to 700B.
7007	 Else stop it flashing.
7009	 J R to 700D.
700B	 Make the character flash.
700D	 Move HL to the next attribute.
700E	 Get H into A and test to see if it is at the end of

attribute file.
701 1	 If not open GOTO 7003 to do the next byte.
7013	 Return to BASIC.

Let's give it a try.

Change line 80 of the loader to:

80 >DRTR "210058'• r ..CS7E" , "7C".^cBfB^-"2804.",, ..CSB.. "1802" E ^, "^CSFE`r i "23"3" i "7C"P
.. FE55 .. "20F0" , "CS"
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EDIT
LEFT
RIGHT
DOWN
UP
DELETE
ENTER

DEFB 07
DEFB 08
DEFB 09
DEFB OA
DEFB OB
DEFB OC
DEFB OD

a)
b)
c)
d)
e)

Now type RUN, then:

RANDOMIZE USR 28672

The screen is flashing! Now type:

RANDOMIZE USR 28672

Now it has stopped. Try typing:

PRINT AT 10,0; FLASH 1; "Testing FLASH 2 routine".

Now we can make everything else flash but the test message:

RANDOMIZE USR 28672

We shall now collect all we know so far and get cracking on a
new program.

TYPEWRITER

The program we shall write is Typewriter. It is a simple
program allowing the use of the screen as a page on which to
do some typing — you could use it for making printed program
instructions if you have a printer or just to have fun if not. The
main functions of Typewriter are:

Cursor controls; up, down left and right.
Auto repeat.
Cursor Home.
Delete.
Carriage return (or Enter).

Firstly we want to have two bytes of data telling us where the
cursor is on the screen, and two bytes of data telling us where
to print in the attribute file. The fifth data byte will tell us what
key was pressed. We shall give all these data bytes names:

PRINT —	 6D00
ATTRB —	 6D02
KEY —	 6D04

We will start writing the program at 6D05 immediately
following the data.
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So far I have not explained how to get a keypress in machine
code. Well, it is very simple indeed. In the system variables
there is a location called LAST K, this contains the key that was
last pressed. This is updated every 50th of a second (in the UK)
or every 60th of a second (in the U.S.A.). The procedure to
wait for a keypress and put it in the accumulator is:

1. Make LAST K zero.
2. Get LAST K into the Accumulator.
3. If the Accumulator is zero go back to step 2.

The good thing about this is that the system will generate an
auto repeat for you.

We can use our knowledge of RST10 to print on the screen
using the AT control code, but the flashing cursor cannot be
done by RST10 because it would destroy what would be
underneath our cursor. This is because our cursor will be
different from the Spectrum's. Instead of going in between the
characters it will go on top of them, a flashing blob. This saves
the trouble of shifting everything around each time the cursor
is moved.

The program will do one of two things when a key is pressed,
print the character or do a cursor operation such as delete or
cursor up. It will have to know what codes it should print and
what codes are cursor controls. What we shall do is make the
program look through a table of codes, each code having a two
byte address after it. If the keypress code matches a code in the
table it jumps to the address following it. If it doesn't find a
matching code it prints the keypress code. Have a look at the
table:

07 05 6D
08 83 6D
09 5A 6D
OA 69 6D
OB 76 6D
OC 94 6D
OD A6 6D
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DEFB OF —
DEFB FF —

GRAPHICS OFA5 6D
TABLE END FF

START

RESET
VARIABLES

	•
SET PRINT

POSITION IN
ATTRIBUTES

FETCH KEY

CRINT
KEY

MOVE PRINT
POSITION

RIGHT

In the table there are the codes for a number of the control keys
— each of the codes has two byte numbers following it. This
two byte number points to the start of the routine which
handles that control key:

07 EDIT Move cursor to 0,0.
08 LEFT Move cursor to left.
09 RIGHT Move cursor right.
OA	 — DOWN Move cursor down.
OB UP Move cursor up.
OC DELETE Delete character.
OD ENTER Carriage return.
OF GRAPHICS Exit 'Typewriter'.

GOTO FOLLOWING
ADDRESS IN

TABLE

MOVE
U RSOR
LEFT  

DELETE ELETE "E`
CHARACTER

MOVE
CURSOR

UP

'Delete' deletes the character underneath the cursor and
moves the cursor one square to the left. 'Enter' moves the
cursor to the left-hand edge of the line below. 'Graphics' exits
to BASIC leaving the screen intact, available for COPY.

Now we have cleared up a few problems we can draw
ourselves a flow chart. On the next page you will see a
complete flowchart for 'Typewriter'.

From this flowchart we can write the program systematically,
writing the bit for each box in turn. So let's have a look at that
first box.

START: SET PRINT AT 0,0;

Now as we have decided, our cursor position as AT co-
ordinates will be stored in data bytes called PRINT (6D00 Hex).
So quite simply for this first box PRINT (column number) and
PRINT + 1 (line number) must be loaded with 00.

MOVE
CURSOR

DOWN

KEY

MOVE
CURSOR TO

LEFT OF
NEXT LINE

ENTER

MOVE CURSOR
TO TOP EDIT KEY

LEFT OF
SCREEN

GRAPHICS "Y

C
RETURN

TO BASIC

TYPEWRITER PROGRAM FLOWCHART
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6D05 RESET	 LD HL, 0000
	

21 00 00
LD (PRINT), HL
	

22 00 6D

SET ATTRIBUTE PRINT POSITION

60



What this entails is to find the address of the corresponding
byte in the attribute file given the AT co-ordinates. To do this
we multiply the line number by 32 add this to the column
number and then add the result of that to ATTRBS, the
beginning of the attribute file.
6DOB ATRSET

MULT 32

The last instruction refers to 6002 which as we said is ATTRB,
the print position is the attribute file. There is no need to
attempt to enter any of this yet — just understand each bit in
turn and at the end we shall go about entering and running it
all.

PUT CURSOR ON SCREEN

This is very simple indeed. HL contains the print position in the
attribute file because that was calculated in the last box. So all
we need do is set bit 7, the flash bit, in (HL).

LD A,(HL)
LD (KEY),A

The key value that was received is stored in 'KEY' (6D04).

REMOVE CURSOR

We now quite simply remove the cursor using the RES
instruction.

6D30 NOCURS	 LD HL,(ATTRB)	 2A 02 6D
RES 7,(HL)	 CB BE

IS KEY ON TABLE?

Now we must find out if a special key is being pressed such as
ENTER or DELETE or whether the code is simply to be printed.
To do this we shall use the table I listed earlier which will be
located at 'TABLE'. Operation will be as follows:

1. Point DE to the start of the table, 'TABLE' (6DAC).
2. See if (DE), the code in the table is the same as the

keypress, 'KEY'.
3. If it is, move DE up by one byte.
4. Collect the following two bytes in the table and put them

in HL. The JP (HL) to the routine for the key.
5. If the table code isn't the same as the keypress KEY, then

move DE up three bytes to the next code in the table.
6. If that byte is FF then print the KEY, else go back to step

2.

LD DE, (PRINT)
	

ED 5B 00 6D
LD C,E
	

4B
LD E,D
	

5A
LD D,00
	

16 00
LD HL,ATTRBS
	

21 00 58
LD B,20
	

06 20
ADD HL,DE
	

19
DJNZ MULT32
	

10 FD
LD E,C
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ADD HL,DE
	

19
LDIATTRBI,HL
	

22 02 6D

7E
32 04 6D

6020 CURPUT	 SET 7, (HL)	 CB FE

GET KEYPRESS

As I described before, reset LAST K (5C08) to 0 and wait for a
change.

6D22 KEYGET

6D35 SEARCH LD DE,TABLE
LD HL, KEY

TSTKEY	 LD A,(DE)
CP(HL)
JR NZ,NEXBYT
INC DE
EX DE, HL
LD E,(HL)
INC HL
LD D,(HL)

11 AC 6D
21 04 6D
1A
BE
20 07
13
EB
5E
23
56

LD A,00
LD HL,LAST K
LD(HL),00

KEYTST	 CP(HL)
JR Z,KEYTST

3E 00
21 08 5C
3600
BE
28 FD
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EX DE,HL
JP (HL)

NEXBYT INC DE
INC DE
INC DE
CP FF
JR NZ,TSTKEY

EB
E9
13
13
13
FE FF
20 EE

We shall deal with the boxes for special keys later but now.

6D5A RIGHT

6D63 NEXLIN

MOVE CURSOR DOWN

The cursor is moved down one square unless it is on the 22nd
line of the screen. A jump is then made to ATRSET.

LD HL,6D01
	

21 01 60
LD A,15
	

3E 15
CP (HL)
	

BE
JP Z,ATRSET
	

CA OB 6D
INC (HL)
	

34
JP ATRSET
	

C3 OB 6D

6D69 DOWN

PRINT A CHARACTER

We looked in Chapter One at RST 10 and how it facilitates easy
(very easy, in fact) printing on screen. We shall use control
code 16 and RST 10 to get our keypress onto the screen.

6D4D PUT KEY LD DE, (PRINT)
LD A,16
RST 10
LD A,D
RST 10
LD A, E
RST 10
LD A, (HL)
RST 10

ED5B006D
3E 16
D7
7A
D7
7B
D7
7E
D7

MOVE CURSOR RIGHT

After a character has been printed the cursor is moved one
square right. If, before it was moved, it was on column 32,
then it is moved to the first column of the next line by loading
6D00 (column number) with 00 (the jumping to DOWN where
the cursor is moved down). This routine is jumped to when the
'cursor right' key is pressed. Once the cursor has been moved
right a jump is made to ATRSET, the second box described.

LD HL,6D00
	

21 00 6D
INC (HL)
	

34
LDA,20
	

3E 20
CP (HL)
	

BE
JR NZ, ATRSET
	

20 A8
LD (HL),00
	

3600
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MOVE CURSOR UP

The cursor is moved up one square unless it is on the first line of
the screen. A jump is then made to ATRSET.

6D76 CUR UP LD HL,6D01
LD A,00
CP (HL)
JP Z, ATRSET
DEC (HL)
JP ATRSET

21 01 6D
3E 00
BE
CA OB 6D
35
C3 OB 6D

CURSOR LEFT

The cursor is moved left, unless it is on column zero in which
case 6D00 (column number) is loaded with 1F Hex or 31
decimal, the last column and jump made to CUR UP. If the
cursor was moved left successfully then a jump is made to
ATRSET.

LD HL,6D00
	

21 00 6D
DEC (HL)
	

35
LD A,FF
	

3E FF
CP (HL)
	

—	 BE
JP NZ, ATRSET
	

C2 OB 6D
LD (HL) 1F
	

36 1F
JP CUR UP
	

C3 76 6D

PRINT A SPACE

This is the delete routine. Using RST 10 a space is printed at
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LD DE,(6D00)
LD A,16
RST 10
LD A, D
RST 10
LD A, E
RST 10
LD A,20
RST 10
JP LEFT

ED 5B 00 6D
3E 16
D7
7A
D7
7B
D7
3E 20
D7
C3 83 6D

the current co-ordinates, then the cursor is moved back one
square by jumping to LEFT.

6D94 DELETE

RETURN TO BASIC

When shift-9 is pressed (GRAPHICS) then a return to BASIC is
made:

6 DA5 EXIT R ET	 C9

'PUT CURSOR AT LEFT EDGE'

It doesn't even do that in fact. That is left up to the end of
RIGHT called NEXLIN (6D63). This routine is jumped to when
Enter is pressed.

6DA6 ENTER

'KEY TABLE'

This is the last bit of listing before we go about entering it. It is
the table of jump addresses for special keys.

DEFB 07 'EDIT'
DEFB 056D
DEFB 08 'LEFT'
DEFB 836D
DEFB 09 'RIGHT'
DEFB 5A6D
DEFB OA 'DOWN
DEFB 696D
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DEFB OB 'UP'	 OB
DEFB 766D	 76 6D
DEFB OC 'DELETE' 	 OC
DEFB 946D	 94 6D
DEFB OD 'ENTER'	 OD
DEFB A66D	 A6 6D
DEFB OF 'GRAPHICS' OF
DEFB FF 'END'	 FF

Now we have gone through the complete listing, I shall list it in
full so you have a complete reference to look at.

6005
6D ,̂' f̂8p
vD7.1'Y^.'

21
22ç v

00
00sa

00
C+D
0-Z SD

L D
LDL D

HL, 0000
(80001 ,HL

D`E, F	 ^EDO )
500F 45 LD C,E
6010 5#-1 LD E,D
6011
6013

16
2 1 00

00 58
LD
LD

0,00HL , 5800
6016 06 20 LD 5,20
5018 19 RDD HL, DE
6019 10 FD DJNIT 6018
6015 59 LL^ E,C
åP1C 19 RL}D HL, DE
5010 22 02 6D LD (6002{ ,HL
5020 CB FE SET 7, iHL?
6L?22 3E 00 LD R,00
5024. 21 08 SC LD HL, 5C08
6027 36 00 LD tHL) ,00
60,29 BE CPI (HL)
6D2R 28 F0 JR ,-1,6D29
6Ca2C 7E L D R, (HL)
602D
6030

32
2fi

0402 E+D
E+0

LD
LD

16D041 ,RHL , t 6D^.̂ 2 !
60^3 CB BE RES T, (HL )
Lw =5 11 R C

_̂
0 LD DE , 6DAC

6038 21 04. 6D L£r HL , 6Db.̂•#-5035 1A Lî• R , i DE?
603C BE CP (HL)5030 20 07 JR NZ , 6D46
503F
6040

13
ES

INC,
EX

DE
DE,FiL

6Git 1 5E £:D E, (HL)604.2 23 INC HL
6043 56 L D .C} , ( HL )
5D44 ES EX C5 E , HL
6045 E9 ;̀F-` (HL)
6046 13 INC DE
5^,`4? 13 INC DE
6048 13 INC D E
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LD HL,6D00
	

21 00 6D
JP NEXLIN
	

C3 63 6D

6DAC TABLE 07
05 6D
08
83 6D
09
5A 6D
0A
69 6D



Put the Hex codes into data statements in the BASIC Hex
loader. Then immediately following that data add the
following Hex code into data (not the addresses in the first
column though!):

+3DRC 07 05 60 08 83 60 5R
6084 60 OR 59 50 75 5i9?
6I?8G
6ilC4
50CC
6d? D+ß-
600G
60E4

94
FF
00
00

50
00
00
00
00

00
00
00
00
r00
00

R5
ee
00
00
00
00

60
00
00
00
00
0e

OF
00
00
00
00

A5
00 e0
00 00
00 OG]
00 @0
00 00

Now because we started using addresses 6D00 onwards this
time instead of 7000 as we usually do, we shall have to change
line 10 to:

10 LET Address = 27909

Just in case you have made a mistake with the data (like
governments do with statistics) then it is best to SAVE the
loader and its data on tape before RUNning it. Once all that is
done, you can RUN the loader and to start typewriting enter:

PRINT AT 0,0;: RANDOMIZE USR 27909

As we have gone through the program in detail you should
know how to use the program but if not, here are the details.

SHIFT 5 to SHIFT 8
DELETE
EDIT
GRAPHICS

Happy Typing!!

Cursor controls.
Deletes character.
Returns cursor to 0,0.
Exits to BASIC.
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604-9 FE FF z.A FF5048 20 EE JR Ni,6D385D4Cl ED 58 00 5D LD DE . , (6000)6053 3E 16 LD R..155053
5054

07
7R R5T

LO
1Cü^y

, Di055 07 R5T 105055 78 LO fl ,E6057 07 R 5T 106058 7E LD A. (HL)
6059 07 R5T 10
505a 21 00 6D LO HL 5000
5050 34 INC (HL)
505E 3E 20 R .205050 8E CA t HL)
5051 20 R8 JR NZ ,6006
5053 35 00 LD (HL) .00
5055 00 NOR
6055 00 NOR5067 00 NOR
6068 00 NOR
5069 21 01 60 LD !-FL . 6001
5D6C 3E 15 LD R.3.5
G05E BE CA ()IL)606F CR 08 60 JP Z . 6Di}6
6 0 ? 2 .34 I!'4C (HL)
507,3 C3 0B 50 JR 5005
5076 21 01 60 LD HL .600 1
å7.7a 3E 00 L Lti R.00
5078 8E CR (HL f80;'L. CR 0B 50 JP Z , 5rD0â507F 35 DEC (HL)5080 tr3 05 6D JR 6D05
=+083 21 00 60 LD HL.6Da05035 35 DEC (HL)5087 3E FF LD R ,FF5059 BE CR f HL')5Cf8tR C2 05 50 JA N^. 50055030 36 1F LD (HL) . 1F508F 00 NOR
5090 00 NOP5091 L3 76 50 JR 50756094
F-1096

ED 5B
3E 16

0@ 6D LD
LD

0E . . (6000)
R 	 1E,i0=R 07 R5T 105098

509L-
7R
07

LD
R6T

R ,D
10

5090 78 LD R,E609E 07 R5T leCD9F 3E 20 LD R 20,.50R1 D7 RST 10CDR2 C3 83 5D JP 508350R5 C9 RETbDRfi 21 00 50 LD HL.6D00SDR9 C3 53 50 JR 606+3
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Chapter Four
LOGICAL OPERATION

We have learnt about bits and the instructions for
manipulating them individually. In this chapter I shall look at
some instructions that also alter bits, but alter each one at a
time. These instructions are called logical instructions. This is
because they use 'boolean' logic. At the moment you probably
are clueless to what 'boolean' logic is, but it is merely a term
covering logical instructions, just like 'structured language'
describes a language with structure like Pascal or FORTH.

In BASIC we have the words OR, AND and NOT. We use these
in IF — THEN statements for making decisions. These too are
'boolean' logic but in a much more flexible system. We cannot
make up IF — THEN equivalents in machine code, but we can
still produce a similar effect by using what we know about
conditional jumps (such as JP Z, nnnn) along with these
'logical instructions'.

Let us have a look at the principal behind the BASIC
statements OR and AND. These statements, as we know,
work as:

1 . x AND y:

2. xORy:

If condition xis true and condition y is true
then the result is true. For instance, 1 = 1
AND 10 = 1 0 is true and "H" = "H" and
a$ = a$ is true, whereas 2 = 3 and 1 = 1
is false and "H" = "H" and "B" = "C" is
false.
If condition x is true, condition y is true or
if they both are true, then the result is
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true. For instance, 2 = 2 OR 3 = 1 is true
and a$ = a$ OR b$ = c$ is true, whereas
1 = 2 OR 5 = 0 is false and "C" = "D"
OR "B" = "A" is false.

In machine code we do not work in strings or variables, but in
this case 'bits' or'1's and '0's. We can get BASIC to do this as
well. The computer can tell us if something is true or false. Try
typing:

PRINT 1 = 1

This may seem silly but the computer prints up a '1'. Why?
Because by giving us a '1' it is telling us "1 =1 " is true. Now
try:

PRINT 1 = 0

AND	 RESULT

false	 false	 false
true	 true	 true
false	 true	 false
true	 false	 false

Now w6 can convert this to '1 's and '0's remembering '1'
means true and '0' means false:

AND:	 0	 0 0

0	 1	 0

1	 0	 0

1	 1	 1

We know this isn't true and so does the Spectrum. It says so by
printing up a '0'. So we can conclude, when using '1's and '0's
that:

If we went through the same experiments with OR we would
find:

PRINT true AND true

0 = false
1 = true

Now try typing:

LET false = 0: LET true = 1

OR: 0 0 0

0	 1	 1

1	 0	 1

1	 1	 1

Now since true = 1 the computer has printed a '1'. This is
because the variable 'true' is equivalent to a true expression.
Bearing in mind the variable 'false' = '0' and that '0' does mean
'false', see if you can predict what will happen when you type:

PRINT false AND true.

A '0' is printed (meaning 'false') because not both conditions
are 'true'. We can make up a table for the 'AND' instruction:

72

These tables correspond exactly to the operation of the
machine code 'OR' and 'AND' instructions, except that they
don't just work on one set of bits, they work on a set of eight,

or two bytes.

If we 'AND' the Accumulator with another register, the CPU
goes through each bit a time, comparing the two. The result is
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worked out to be a '1' or '0'. The table we have just formed tells
how it decides upon a '1' or a '0'. For instance:

AND: 1 1 0 1 0 1 1 0
0 1 1 0 1 1 0 1

result 0 1 0 0 0 1 0 0

Notice that the only bits in the result that are set to one are the
bits with two corresponding '1 's above. Have a look at another
example and follow it through bit by bit understanding the
result.

AND: 0 0 1 1 1 1 0 1
1 1 1 1 0 1 0 0

result 0 0 1 1 0 1 0 0

Get it? Now see if you can manage one on your own!

AND: 1 0 1 1 0 1 1	 1
result 1 0 1 0 1 1 0 1

Remembering that only '1' and '1' make a '1' you should get
the result:

1 0 1 0 0 1 0 1

Here is the OR table again:

OR:	 0 0
10
01
11

So if we OR:

0 1 0 1 1 0 0
0 1 1 1 0 1 0

74

we get:

0 1 1 1 1 1 0 1

Notice that the only bits in the result that are '0' have two bits
above that are '0'.

The AND instruction take the form 'AND r' (where r is a
register). It logically 'AND's r with the Accumulator and then
stores the result in the Accumulator. Similarly 'OR r' logically
'OR's r with the Accumulator. Here is a list of AND and OR
instructions with their codes.

ANDA	 A7
ANDB	 AO
AND C	 Al
AND D	 A2
AND E	 A3
AND H	 A4
AND L	 A5
AND (HL)	 A6
AND (IX + dis)	 DD A6 dis

AND (IY + dis)	 FD A6 dis

AND nn	 E6 nn

OR A	 B7
ORB	 BO
OR C	 B1
OR D	 B2
ORE	 B3
OR H	 B4
OR L	 B5
OR (HL)	 B6
OR (IX + dis)	 DD B6 dis

OR (IY + dis)	 ED B6 dis
OR nn	 F6 nn

One use for AND is for testing certain bits of a byte. Let us take
the example of an attribute byte as we did in Chapter Three.
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^

FLASH BRIGHT	 PAPER
	

INK

Our task is to change all the squares with INK 0 to INK 2 (i.e.
black to red). Obviously we will need a loop to process each
attribute byte. But the crucial code will lie within the loop.
Firstly, we will want to get hold of the three least significant
bits (that it, bits 0,1 and 2) for testing. This where AND comes
in. Look at this:

ATTRIBUTE 1 1 0 1 0 1 1 1
07(ANDed) 000001 1 1

RESULT	 000001 1 1

You will notice only bits 0,1 and 2 of the attribute appear in the
result. This is because the byte it has ANDed with contained 07
Hex (meaning bits 0,1 and 2 were set). Have a look at another
example:

ATTRIBUTE 1 1 1 1 0 1 1 0
07(ANDed) 000001 1 1

RESULT	 000001 1 0

The result is 06 Hex which is the what bits 0,1 and 2 of the
attribute come to. So as we can see when we AND a number
with a byte, the bits that are zero 'mask' any bits that are one in
the byte. This process is not surprisingly called 'masking',
effectively describing the way we can hide certain bits of a
byte.

Back to our task, if we AND 07 Hex with the attribute, we are
left with only the INK colour, the other bits being reset by the
AND instruction. We can test this 'INK' number using the flags
and see if it is to be changed.

7000 21 00 53	 LD	 HL , 53007003 7E	 L£'	 R, t HL7004 ES 07	 RWD' 07
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700E, 20 02
	 JR	 Nz,70011

	

7008 CE CF
	 5ET 1,R

;Ng 7C
70mF 20 F2

7008 23
7Q0A 77

7011 C9

	

`t^QL? FE 55
	 Lß	 R ,H

CP çP
PET

LD	 ( f-fL ) , A

JR	 UZ, i$+@3

2hlL, HL

If we look at the program step by step first we see HL is loaded
with the address of the beginning of the attribute file. Then the
Accumulator is loaded with the attribute pointed to by HL.
Then we AND 07. This zeros all the bits except those for the
'INK' colour. If the byte is not zero then a Jump Relative is
made to 700A, because if the byte is not zero then the INK
cannot be black. If the INK is black the bit 1 of the Accumulator
is set to one making the INK red.

Let's check the program out :

Make sure the BASIC loader is ready. Then change line 80 for
the codes in the program listing.

Then, type RUN followed by:

INK 2:LIST:RANDOMIZE USR address

You should find (providing PAPER is not red) that your black
listing changes instantly to red!

To prove it only changes black INK, type:

INK 0:LIST;INK 2: LIST:RANDOMIZE USR Address

A common use for OR is setting particular bits to one in a byte.
For instance we have an attribute byte and we want to set bits
six and seven to one to make the character BRIGHT and
FLASH. We can do this by making a byte with only bits six and
seven set then ORing this with our attribute. If we put this
method inside a loop we can make the whole screen flash and
be bright.
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ATTRIBUTE 0 0 1 0 1 0 0 1
E0(ORred) 1 1 000000

1 1 1 0 1 0 0 1

Note that the only bits changed are bits six and seven which is
just what we wanted. So now let us now examine the program
to make the screen flash and be bright

7 000
7003
7004
7006
7007
7003
7t;Wg
7005
7000

21
7E
F5
77
23
7C
FE
20
C9

00
EQ

55
F5

58 LD
LD
OR
LO
INC
LD
CP
UR
RET

HL,5800
R* (HU)
Et)
(HL) ,R

HL
R . H
55

NZ , 7Oir3.3

The operation is quite simple, HL is pointed to the beginning of
the attribute file, then the attribute is collected in A. Bits six
and seven are set (by OR E0) and the attribute is replaced.
Finally, HL is incremented, tested to see if it has reached the
end and if not, processes the next attribute.

Now let's test the program. Use the following line 80 in the
loader:

80 DATA "2100587EF6E077237CFE5B20F6C9"

Next, after typing RUN, type:

LIST:RANDOMIZE USR Address

You will notice the instant change from normal to BRIGHT and
FLASHing.

THINGS TO TRY

1. Try other values than E0 with the OR instruction and work
out the reasons for their effects.

2. Try using AND instead of OR with different values. Work
out the reasons for their effects.
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3. Instead of using OR to set bits six and seven, try
modifying the program to use SET which we looked at in
the last chapter.

EXCLUSIVE!

There is one more logical instruction which we have to look at.
It is called Exclusive-OR and is a close relation of OR. It is used
by the Spectrum when OVER is selected. The following should
make sense to you.

PAPER + PAPER = PAPER
INK	 + PAPER = INK
PAPER + INK	 = INK
INK	 + INK	 = PAPER

That is what the results are when OVER is set. It uses XOR
when plotting or printing on the screen. If we think of INK
being 'one' and PAPER being 'zero' we notice:

00
10
01
1 1

This is the logic table for XOR, the only difference from OR
being at the bottom where two 'ones' make a zero instead of a
one. Here is a list of the op-codes for all the XOR instructions:

XOR A
	

AF
XOR B
	

A8
XOR C
	

A9
XOR D
	

AA
XOR E
	

AB
XOR H
	

AC
XOR L
	

AD
XOR (HL)
	

AE
XOR (IX + dis)
	

DD AE dis
XOR (IY + dis)
	

FD AE dis
XOR nn
	

EE nn
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Try using XOR in the last program and see its effects. Also
make sure you try it when something is already FLASHing or
BRIGHT on the screen. If you do not understand its effects,
work out these 'sums' and see if you then understand. If in
difficulty refer to the table given below:

XOR	 0 0 0

0 1 1

1 0 1

1 1 1

1.

3.
XOR

5.
XOR

1 XOR 0=?

1	 0	 1	 1
0 1	 1	 0

2.

4.

1 XOR 1 =?

1	 1	 0 0
1	 0 1	 0

?

10111011
01	 1	 01	 01	 0

^

LD A, L
C P 00
JR NZ,PROG
R ET

As you should notice H and L are tested separately to check if
they are both zero. The 'CP nn' instruction uses two bytes, but
we can save space here by using AND. If we use 'AND A' the
Accumulator is not altered but the important thing that
happens is that the flags are set to represent A. Let us see why
A is not altered. Remember 'AND A' simply ANDs the
Accumulator with itself so the two numbers will be the same.

1	 1 001 01 0
1	 1 0 0 1 0 1 0

1	 1 0 0 1 0 1 0

Bear in mind the AND table:

000

01 0

100

111

The last principle we look at in this chapter is a method for
'double byte zero testing'. In Chapter Two we looked at
looping using single byte registers. When we wish to do an
operation more than 256 (decimal) times we need to use a
double byte register as our counter. One way we could do that
is by using CP.

LD HL,1000
PROG

LD A,H
C P 00
JR NZ,PROG
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So as we can see, A is left unaltered and the flags are set. This
allows us to make a valid decision, so we can replace the CP00s
with AND A.

LD HL,1000
PROG

INC HL
LD A,H
AND A
JR NZ,PROG
LD A, L
AND A
JR NZ,PROG
R ET
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But as yet we have not made our most significant discovery.
We can compress this zero test even further by using the OR
instruction. If we load A with H and OR L, any bit set to one will
show through and A will not be zero. Whereas if all the bits in
HL are zero, A will also turn out to be zero. Here is the modified
loop:

21 00 10

INC:HL
	

23
LD A,H
	

7C
OR L
	

B5
JR NZ START
	

20?
R ET
	

C9

Let us try it out by using it to print 200( Hex) asterisks on the
screen.

7000
;003
/005
7006
7007
7003
7009
7008

2 1
3E
07
23
7 t;f
55
20
CS

00
2A

FR

02 L i?
LG
R5T
INC
ZD
OR
JR

HL . 0200
a,2R
^0
HL
R , t-3
L

NZ
 

i^t^., 7005

Use the Hex on the right in the DATA statement of the loader
(remember to use quotes). Then type:

RUN and after that:

PRINT AT 0,0;0: RANDOMIZE USR Address

And exactly 200 (Hex) or 512 (Decimal) asterisks are printed.
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Chapter Five
ROTATING

Rotating is what this chapter is all about. What most of these
instructions basically do is move the bits in a register to the left
or right, with various combinations involving the Carry Flag.
They are best represented graphically (see appendix 'D' for
diagrams), but here I have given a written explanation for each
as well as the instruction codes for each type.

Rotate instructions have no obvious uses, but can be used
mainly for applications where we need to build up a byte, bit by
bit, or to test a byte bit by bit. Rotate instructions can also be
used for multiplication by powers of two (2,4,6,8, etc) and
there are a couple of instructions for use with BCD (Binary
Coded Decimal) which I shall explain later on. Most of the
instructions have a variation which operates specifically for the
Accumulator as well as instruction for all the usual eight bit
registers including the Accumulator. The latter are two byte
op-codes and so for the Accumulator there are usually two
duplicate instructions. The only difference being that one is
two bytes long and the other a single byte. It is obvious that in
situations where the Accumulator is to be rotated then the
single byte version will be chosen in the interests of saving
memory.

RLC r (r=A,B,C,D,E,H,L,(HL),(lX + dis),(IY + dis))

This rotates register or byte 'r' (see above) to the left; the most
significant bit (bit 7) is brought round to the least significant
bit. The carry bit or flag is set to register the contents of bit 7 at
the start of the operation. This feature allows the programmer
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PROG	 LD HL,1000
START



to determine what bit seven was prior to the shifting operation
by testing the Carry Flag after the rotate instruction.

RLCA 07 RLC H CB 04
1 RLC L CB 05
RLC A CB 07 RLC (HL) CB 06
RLC B CB 00 RLC (IX+dis) DD CB dis 06
RLC C CB 01 RLC (IY+dis) FD CB dis 06
RLC D CB 02
RLC E CB 03

RL r

This instruction rotates register or byte 'r' to the left through
the carry bit. Bit seven is moved into the carry bit and the old
contents of the carry bit are moved into bit zero.

RLA 17 RL E CB 13
RL H CB 14

RLA CB 17 RL L CB 15
RL B CB 10 RL (HL) CB 16
RL C CB 11 RL (IX+dis) DD CB dis 16
RL D CB 12 RL (1Y+ dis) FD CB dis 16

RRC r

This operation is similar to the RLC r instruction except that
rotation is done to the right. This time bit zero will be placed in
bit seven or 'r' and also into the Carry Flag.

RRCA 0F RRC E CB OB
RRC H CB OC

RRC A CB 0F RRC L CB OD
RRC B CB 08 RRC (HL) CB 0E
RRC C CB 09 RRC (IX+ dis) DD CB dis 0E
RRC D CB 0A RRC (IY+dis) FD CB dis 0E

RR r

This is the reverse operation of RL 'r'. Here bit zero of 'r' is
brought around to the Carry Flag and the initial value of the
Carry Flag is put in bit seven of 'r'.
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RRA 1F RRE CB 1B
RR H CB 1C

RR A CB 1F RR L CB 1D
RR B CB 18 RR (HL) CB 1E
RR C CB 19 RR (IX+dis) DD CB dis 1 E
RR D CB 1A RR (IY+dis) FD CB dis 1 E

Sometimes it is preferable to 'shift' a register rather than
'rotate' it. Instead of 'rotating' bit zero around to bit seven or
vice versa, bit seven can be cleared or left unchanged as its
original value is shifted over to the next bit position. These bit
shifting instructions do not have a duplicate one byte
instruction for the Accumulator. They are all made up of two
byte codes starting with CB (Hex).

SLA r

This instruction simply shifts all one bits to the left. Bit seven is
moved into the Carry Flag and a zero is put into bit zero.

SLAA CB 27 SLA H CB 24
SLA B CB 20 SLA L CB 25
SLA C CB 21 SLA (HL) CB 26
SLA D CB 22 SLA (IX +dis) DD CB dis 26
SLA E CB 23 SLA (IY+dis) FD CB dis 26

SRA r

This instruction shifts all the bits of the register or byte to the
right. Bit zero is moved into the carry bit. Bit seven is copied
into bit six but is left unchanged.

SRA A CB 2F SRA H CB 2C
SRA B CB 28 SRA L CB 2D
SRA C CB 29 SRA (HL) CB 2E
SRA D CB 2A SRA (IX+dis) DD CB dis 2E
SRA E CB 2B SRA (IY+dis) FD CB dis 2E

SRL r

This instruction is a right-shifting operation but unusually does
not have a left shifting equivalent, eg 'SLL'. There is even a gap
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in the codes for rotates where SLL should fit which indicates
that this function is a part of the Z80 chip that Zilog, the
manufacturers, could not get to work. SRL shifts the bits to
the right putting a zero into bit seven and moving bit zero into
the Carry Flag.

SRL A CB 3F SRL H CB 3C
SRL B CB 38 SRL L CB 3D
SRL C CB 39 SRL (HL) CB 3E
SRL D CB 3A SRL (IX +dis) DD CB dis 3E
SRL E CB 3B SRL (IY+dis) FD CB dis 3E

DECIMAL S

Before we look at RLD and RRD, we must understand BCD,
Binary Coded Decimal. BCD is an important part of
computers. It is a sort of 'interface' between humans and
binary, trying to link the two. Most seven-sequent LED
displays take the digits in the form of BCD digits. A single BCD
digit is quite straightforward. It is four bits whose combined
value does not exceed nine (otherwise it wouldn't be decimal).

When we want to store numbers in a decimal form we can use
BCD. For instance, if we wish to store 99 as decimal 99 it
would have to be converted to Hex then converted back if, for
instance, we wished to display it as decimal on the screen. This
is how decimal 56 would be represented:

Higher four bits 0 1 0 1	 0 1 1 0 lower four bits
5	 6

If we were to think of that 56 as Hex and then convert it (look
56 Hex up in the appendix of the manual) we would find it
would be 86 decimal, but we are thinking of it as 56 decimal
not Hex.

If an ordinary Hex number has been loaded into the
Accumulator it can be converted into BCD with a DAA
instruction — Decimal Adjust Accumulator.

DAA 27
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So let us imagine we have just loaded the Accumulator with 43
Hex. Now if we check in the manual we find that 43 Hex is 67 in
decimal. If we now perform a DAA instruction the
Accumulator changes the 43 to 67, a BCD number.

DAA can only change decimals up to 99 because we only have

two digits in a register.

If we add two BCD numbers together, then the result will need
to be adjusted and DAA can be used to correct the result to
BCD. Similarly if two BCD numbers are subtracted then DAA
will correct the result to BCD.

So now let us see how the RLD and RRD instructions work.

RLD

7	 413
Accumulator

The RLD instructions rotates the three blocks of four bits in the
lower half of the Accumulator and both halves of the memory
location pointed to by HL all to the left. These four bit blocks
we imagine are BCD digits but another less well known name
for half a byte is a 'nibble' — no, seriously, that is quite true and
technical buffs will confirm that fact. (While we're on the
subject of strange technical terms do you know that Com-
modore's manuals refer to a 1 /50th of a second technically as
a 'jiffy'?) Back to the subject in question and here is a diagram
of RRD:

RRD
4 3	 0

Accumulator

The RRD instruction operates in the opposite direction to
RLD, moving the most significant BCD digit of (HL) into the
least significant half, moving this lower half into the lower half
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4 3	 0

contents of (HL)

7	 4 3
I	 t
contents of (HL)



of the Accumulator and the lower half of the Accumulator
moves to the upper half of (HL).

So now we draw Chapter Five to an end and in the next chapter
things are going to sound good, ships will be shipping and
ports will be alive with the sound of music. Confused? Read
on...

Chapter Six
PORTS

Computers must be able to communicate with the outside
world. That usually includes you, me, printers, tape recorders,
keyboards and displays in the ZX computers world. Without
the ability to communicate a computer would be useless, a bit
like buying a video recorder without having a TV. We divide
the communication into two separate classes, input and
output. Input being information received by the computer
such as that from the keyboard on which your merry fingers
dance! And conversely, output being information sent by the
computer such as the television display. To help it
communicate with various things the usual computer system,
be it in a programmable washing machine or the ZX Spectrum,
has what are technically named ports. This name follows a sort
of logic — if you can imagine a ship carrying information into
the port for the computer to collect and then taking some
information from the computer and shipping it elsewhere.
Obviously if you look inside your Spectrum you won't see
ships whizzing around inside but the principle is much the
same. If you are a hardware freak (there are tablets available)
then you can use some of the spare ports on the Spectrum —
but you must read Chapter 23 of the Sinclair manual to save
me repeating Steven Vickers' wise and wonderful words.

But ports are not just for electronics buffs. We needn't buy
extra equipment to see what they do since we have some
useful ports on our doorstep — the ports that the Spectrum
uses to communicate with the outside world. Hopefully you
will know how to access ports from BASIC, but we will start
there anyway since it makes a logical introduction to the



2
3
4
5
6
7

machine code side of the business. First let me remind yod
about ports. Normally there can be up to 256 of these ports on
a Z80 system but due to a quirk of the Zilog Z80 it can use up to
65536 ports sometimes, but more about that later in the
chapter.

The Spectrum only uses a few of these ports and the one we
are going to deal with is the port for the BORDER colour and
for making sound.

Type in this little program and RUN it.

10 FOR å =0 TO 7: OUT 254,i: PR
U5E 3: NEXT z : GO TO 10

Now as you can see it changes the BORDER through all the
eight different colours on the Spectrum. The first point to note
is that we are using port 254. This port is associated with the
BORDER and with the speaker, EAR and MIC socket. The
OUT instruction in BASIC takes the form:

OUT port, data

In our example, the port is number 254 and the data is the
BORDER colour. The port itself is split up into various parts.
Each part is controlled by a different bit or bits of our eight bit
data byte. This is what the bits do in port 254:

i
	

BORDER colour

M IC socket

ï
	

Not used

Loudspeaker

So now we know what does what, we should be able to make
some sort of sound. Firstly we must realize that a one at bit four
makes the speaker go out and a zero makes the speaker go in.
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So if we alternate between a one and zero we should get a
noise. Type in the following program which does this.

10 Our 254, 2t4 *1: OUT 254 ; ß-t4 *
: GO TO I@

There are two OUT commands, one to turn the speaker on and
one to turn it off. If you look at the listing you will notice that
the first data is 21 4 * 1 . The two is because we are working in
binary, base two. The four is to show it is the data for bit four,
and the one is to show it that we want the speaker turned on.
Conveniently, in the second OUT command, there is a zero to
show we want the speaker turned off. As the program stands it
is very slow and the sound consists of feeble clicks. To speed
this up we shall save the computer having to work this out each
time by replacing 214 * 1 and 214 * 0 with their actual values,
16 and zero respectively so alter the program so it looks like
this:

30 OUT 254,15: OUT 254,0: GG T
Q 10

But even speeded up, that buzz is still feeble and a long shot
from the zaps, pows and booms of the local 'Pacman' or
'Defender' machine. So to get the pace a little hotter we shall
transfer our efforts to machine code now that we have a
foundation knowledge of ports.

In Z80 machine language we have instructions that relate
directly to the BASIC ones. They even have the same names,
IN and OUT. For instance, if we wish to send the data held in
the Accumulator to port 254, we can simply says:

OUT (FE), A

Unlike BASIC we have brackets round the port number FE (the
Hex equivalent of decimal 254); this is because we are thinking
of the port number as an address and so to follow standard Z80
format, we use brackets to show that the information, in this
case A, is being sent to a location, a port address. So now let us
translate our BASIC program into machine code. Now
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because machine code is so fast we shall have to put delays in
between the OUT instructions, otherwise no sooner than the
speaker manages to start moving one way it is told by the
computer to move back again, and the net result is that it
dithers in between not making a sound at all. For these delays
we shall use the 'B' register as it is the most convenient. We
shall set up C with the number of clicks to be made. The real
name for these clicks is 'cycles'. Here is the program. To use it
put the Hex codes into the BASIC loader and follow the usual
procedure. Those two strange instructions at the beginning
and end are not mistakes, they are two instructions that are
explained in the next chapter. Basically what they do is to
ensure that the computer devotes all its energy to the BEEPing
and not rushing off elsewhere every 1 /50th of a second to look
at things like the keyboard.

7000 F3 DI7n0 1 0E FF LD t; , F F7003 3E 00 LD R, 0Q7005 t?3 FE OUT tFE) , R7007 05 Cc( LD S,tîO?00g 10 FE D.Jtd: 7009700@ 3E 18 LD R,187000 D3 FE OUT tFE) ..R700F 05 C O LD Eè,CQ7011 10 FE Ly 3t3-Z 70 117013 0D DEC C
7014 20 ED J#? 342 . 70037015 F8 E M
7017 C9 RET

In the program we have C set up with FF so it produces 255
(decimal) cycles. This relates to the length of the note. The two
loops using B decide on how long the speaker is left on and
how long it is left off. By adjusting these values for B we can
adjust the pitch. This is how it looks graphically:

4-t1

The length of t1 is decided by the first B loop, and the length of
t2 is decided by the second B loop. The number of cycles is
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decided by C. As you can see the cycles are square and so the
name we give them is 'square waves'. Different sounds have
different shaped waves. A flute, for instance, tends to produce
a fine wave like this:

This has a much rounder, smoother sound. Unfortunately on
the Spectrum, we are totally restricted to square waves unless
we buy a musical add-on so the sound we make is quite harsh
and not very musical. But even with this limitation some good
effects can be generated.

One final point concerning our last program, you will have
noticed that the BORDER turns black. This is because we have
let bits zero, one and 2 remain zero, resulting in a BORDER
colour zero, hence black!

Our program as it stands is fine, but really quite unnecessary as
there is a routine in the ROM that can do all this for us and is
quite convenient to use. It resides at 03 B5 and to use it we
must provide it with the number of cycles in DE and the length
of the cycles, or the pitch in HL. For instance, try this program:

7000
-70i343
7006

21
II
CD

Q0
ta#a
B5

erS
02
03

LD
Lt?
CRLL

3iL : OZ.-100
D€ , 020+0
0385

7009 C9 RET

There we are! A much quicker way of making a simple BEEP!
But we are still looking for something more than a simple BEEP
since we can do this in BASIC, so let's now see how we can
make some more interesting sounds.

The following program uses the ROM routine to produce a

rising BEEP:

7000 21 00 10	 LD	 fL , :Laze
7003 ii 20 00	 LD DE, 20
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7000 F3
7ss* ^i 00 +@i^
7464 4 se ae
70s? 7E
7005 Oa fee700A 66 ^r̀ F

C le Fe
E le

DI
LD HL 0055
LD DE,aese
LO	 A-a tt-å€L3
OUT t€€ï
LA) S,FF
DdiNZ 750C
DM DE
INC 1,-IL
Li?	 R s E
OR:	 D

NZ ! 70e7
E2

82RO F314 FE70d`å C+3	 PE#'

7005 E D 52 zar. HL,L}E
7008 1/ 01 as LC DE, 0001
7005 ES PUSH HL
700C CD B5 03 CALL 0355
700F El POP Ht.
7010 7C L £? P , 1-1
7011 R 7 AND A
7012 20 EF JR NZ , 7003
7014 C9 RET

The program starts by loading HL with 1000 (Hex); this is the
starting value for the BEEP. Next DE is loaded with 0020 (Hex)
which is how much HL will decrease by each time; we'll call
this the 'step'. Next DE is subtracted from HL to reduce HL by
the 'step'. DE is then loaded with a value to determine how
long the computer spends on each tone before moving onto a
higher one. Before we call the ROM routine, HL is pushed on
to the stack to save the value. After the ROM has done its bit
we pop HL then check the H register to see if it is zero. If it is,
then the program finishes otherwise we move onto the next
tone. All these tones together result in a rising tone which
could be used for laser shots. This routine is quite versatile, so
try using other values for the step, initial value of HL and length
of tone. By experimenting a variety of sounds can be obtained,
from short zaps to long rising tones. If we try these effects in a
loop in BASIC they can be very effective.

Now how about ship's engines? Well that sound has a special
name, 'noise'. 'Noise' may not sound very technical but it is the
term for sounds like the hiss on a tape recorder which is high
pitched, compared to the low rumble of 'space ship engines'
which is low pitched. People into synthesizers will know about
the different types of noise pink, white, heavy metal, etc, but
here we shall keep things simple by sticking to a good old
'noise'.

Noise is really a collection of randomly spaced pulses and so
we can simulate this quite easily. We first need a source of
random data and instead of writing some complicated random
number generator, we shall actually use all the codes in the
ROM as random data. This will mean we will repeat ourselves
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when we run out of data but since noise is not the 'catchiest'
of sounds it is unlikely you will notice the repeating. A ships
engine is a low pitched noise so we shall have to space the
pulses out with a B loop. We shall use HL to point to which
byte we are up to in the ROM and DE to count the number of
cycles required. This is what our noise would look like
graphically:

etc.

Here is our rumblin' program:

Try the program out using the BASIC loader. You will notice
that the program also makes all sorts of colours on the
BORDER which can be quite effective. How would you
remove this effect? Clue: use AND.

Now how about explosions? Well, the technique is quite the
same, we use the same noise but we make it go from high to
low pitch. To do this we lengthen the delay between each
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noise to producing noise that decays in pitch. Here is a
program to do this:

1000
7003
7005
7007
7008
70iaR
700C
700D
700F
7010
7+011
7013
7014
7015

21
0E
16
7E
E6
D3
41
10
23
15
20
OC
20
C g

00
00
20

18
FE

FE

F4

EF

00 LD
LD
LD
LD
RND
OUT
L £'+
DJNZ
INC
DEC
JR
INC
JR
RET

i-fL , 0000
C,00 00
0,20
R , ( I-4L ?
18

i FE ) , R
B, Z•
700D
HL
D

NZ , ?007
C

NZ , r005

In this program we use C as a counter which makes the B loop
longer each time. We can slow the whole effect down by
increasing the initial value of D. If you wish to speed it up you
can reduce the initial value of D. With a short length of
explosion, called from a basic loop randomly, it can give the
effect of thunder and lightning. If you change the INC C to a
DEC C (code OD) then you will be making a rising noise sound
which is very effective in a game for when something appears
on the screen. (Arcade aces will know this from the 'Defender'
machine.) In this program is also the solution to my last
question, how to get rid of a multi-coloured BORDER. We
have used AND 18 to ensure only bits three and four are set.

Well that is the end of Chapter Six and I hope that has given
you some ideas for making sound effects and also an idea of
how computers communicate. A full list of the various IN and
OUT instructions are given in Appendix D along with
definitions. If you would like to experiment with ports further
than the existing ZX Spectrum allows, you'll need an add-on
port. There are various ones available and it doesn't really
matter which one you buy as long as you realise that they do
vary in type. Some have separate input and output lines while
others use more complicated chips and are programmable. In
general, for home use, the more I/O lines it has the better it will
be. Also, make sure you can use the IN and OUT instructions in

BASIC because if you can then you will certainly be able to use
machine code equivalents.



Chapter Seven
MAY I INTERRUPT?

In this chapter we shall look at interrupts before we go on to
look at the ROM. Interrupts are of little direct use to you on the
Spectrum but they do help us understand a little about the
machine's workings.

At regular intervals in a computer there are certain jobs the
ROM must do. These jobs vary from machine to machine but a
basic need is to update some sort of timer or counter. A
counter allows for precise timing for things such as a clock.
The way the computer does these is by use of interrupts.

An interrupt is a signal sent to the CPU from an external piece
of equipment such as the logic chip. This tells the CPU to stop
what it is doing and do something else. When it finishes doing
the job or more technically, servicing the interrupt, it carries
on from where it was interrupted.

There are two types of interrupt. A maskable interrupt and a
non-maskable interrupt. A maskable interrupt is one that the
CPU can be set to ignore when desired. In the Sinclair ZX
Spectrum a maskable interrupt is generated every 50th of a
second. This is done by the logic chip sending a pulse to a pin
called INT on the Z80–A CPU.

When this is received the subroutine at 0038 Hex is called. This
is the program:
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1rrt$r't ^.rpt routine;

003A
003o

2A
23

78 5C LC,
INC

Ht., t 5C78 )
Ht.003E 2 7^ 5C LD t 5C78) , HL

0E å- i 70 CLD
0042 85

^,H
0043 20 03 JR NZ ,• 00480045 F[? 34 40 INC ( I`f +40)0048 PUSH BC
00å-9 D5 PUSH DE004R Ct? BF 02 CRL.L. 02ErF0040 Di POP D E00å-E Ci POP BC
004F El POP HL
0050 F i POP RF
0053. FB EI
0052 Cg RET

Firstly the AF and HL registers are put on the stack. This is so
that any values held in them are not corrupted because
remember, a routine has just been interrupted and when we
have finished 'servicing' the interrupt that routine will be
continued as if nothing had happened. The next move is to
load HL with the lower two bytes of FRAMES. This double
byte value is then incremented and a test is made to see if it has
reached zero. This is done by the 'OR' technique described in
Chapter Four. By loading A with H and then ORing L if HL is
zero so will be the Accumulator. If HL is not zero then the
instruction to increment the highest byte of FRAMES is
skipped (INC 1 Y + 40). 'INC(1 Y + 40)' is used because IY
always contains a base address of 5C3A. This is so that when
the ROM has to make references to the system variables it can
use 1Y and displacement rather than the HL register pair. For
instance, if we wanted to use HL instead this would be
necessary:

PUSH HL
LD HL, 5C3A
INC (HL)
POP HL
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Instead of simply:

INC (IY+40)

The next thing to happen is that the other registers are stored
on the stack, before a call to the subroutine which builds up a
keyboard scan in the system variable K–SCAN and then
determines the last key pressed and stores it in LAST K. The
registers are then restored to their original values by POPping
them off the stack.

Finally, an El instruction is encountered before returning.

The El instruction is the partner of DI. We have not yet met
these instructions so let us have a closer look.

Their function is quite simple. I have already mentioned the
fact that there are two types of interrupt: maskable and non-
maskable. The Spectrum uses a maskable interrupt for its
timer up-dating and keyboard scanning. When a maskable
interrupt is made, the CPU automatically disables it, eg ignores
any further maskable interrupts. This is so an interrupt is not
interrupted! If you see what I mean. Almost as if it is hanging a
'Do Not Disturb' sign on the door. Once it has finished
servicing the interrupt it effectively 'takes the sign down' by
using the El instruction. El stands for enable interrupt and
means just what it says. This is used because otherwise
interrupts would be ignored for evermore. And without
interrupts the ZX Spectrum will never know if a key has been
pressed.

There are other times when the ROM will not want to be
disturbed. When it is doing a tape operation, for example. If
the logic chip 'interrupts' in the middle of loading a byte, for
example, by the time the timer has been updated and the
keyboard scanned that byte may have passed by on the tape
recorder.

So, to prevent disturbances we can use the 'DI' instruction
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meaning disable interrupt. As we have described this simply
tells the CPU to ignore maskable interrupts until further notice,
eg by way of El. Incidentally whenever the CPU is reset the
maskable interrupt is always enabled.

INTERRUPT MODES

What I haven't told you is that the CPU doesn't have to go to
the subroutines at 0038 Hex when it is interrupted. It goes
there because it is in 'interrupt mode one'. So what are these
mysterious interrupt modes? The first thing to say is that to a.
Spectrum owner, they are quite irrelevant because the other
modes are unusable unless you are a hardware freak. The
reason that I am mentioning them is because one mode
(namely mode two) uses the 'I' register whose use is probably a
mystery to you.

I am afraid that at this point I am forced to step into the
daunting world of hardware to explain the modes so please try
to bear with me and I will keep everything as simple as possible.

INTERRUPT MODE ZERO

Interrupts are often used as the word 'Hello' when computers
are talking to each other. Obviously they do not actually speak,
they send messages either serially (in the same way a program
is stored on tape) or in parallel, eg a whole byte goes in at once.
Before they talk the message sender needs to draw the other
one's attention. This is done by way of interrupt (unfriendly
computers such as the BBC and Spectrum just ignore each
other by using DI!) But what if we also have an interrupt every
50th of a second for something such as the timer? What we
need to do is have the computer announce itself by saying
'Hello, I'm the other computer, can we talk' so the CPU
doesn't mistake it for the timer interrupt. One way of doing this
is by using interrupt mode zero.

What happens is that once an interrupt has been made, the
interrupting device has enough time to 'speak' one byte to the
CPU. When the CPU gets that byte it will quite simply execute
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it like any other instruction. Bearing in mind RST instructions
are one byte long, the computer can 'say' RST 28, for
instance. So at 0028 Hex there could be a routine to receive the
other computer's message. On the other hand, if the logic chip
interrupts, meaning that it is time to increment the timer, it can
say 'RST 38' so that the CPU goes to 0038 Hex to update the
timer. By using these RST directives in mode zero a 'device'
can tell the CPU what routine to do.

INTERRUPT MODE ONE

This is the interrupt mode that the computer is set to when it is
turned on. When an interrupt is generated, a call is made to the
subroutine at 0038 Hex. The Spectrum uses this interrupt
mode as we have described.

INTERRUPT MODE TWO

This is where the I register becomes involved. Its full title is the
'Interrupt vector' or IV register. 'Vector' is a technical term for
something that points somewhere, in this case, into a table.
For each device that can interrupt there is an appropriate sub-
routine address stored as part of a table in memory.

INTERRUPT TABLE	 8000	 10
	

00
8002	 00
	

70

To find which subroutine to call, a pointer is formed when the
CPU is interrupted. This pointer will point to two data bytes in
the table. This pointer is formed by taking the I register as the
most significant byte and the byte that the 'device' sends to the
CPU as the least significant byte. So if we use the example
table, for instance, if the I register contains 80 and the device
sends a zero the subroutine at 0010 will be called. Let's take it
in stages to make it simpler:

1 . An interrupt is generated.

2. The CPU collects a byte from the device.

103



3. Using the I register as the high byte and the collected byte
as the low byte we have a vector (pointer).

4. At the location pointed to by this vector we have the low
byte followed by the high byte of the subroutine address.

5. These two bytes are used as the subroutine CALL.

To change the interrupt mode we can use the instructions IMO,
IM1 and IM2. When the machine is turned on, the ROM does a
routine to initialise everything and before the interrupt is
enabled, an IM1 instruction is done. Here are the codes for the
'interrupt mode set' instructions:

ED 46
ED 56
ED 5E

NON-MASKABLE INTERRUPTS

As I have mentioned there are two types of interrupt. The NMI
(non-maskable interrupt) is the one we shall now look at. By
being non-maskable the only time the computer will ignore it is
while another interrupt is being serviced. When NMI is
generated the computer goes to the subroutine at 0066 Hex,
no ifs and buts, no modes, just simply to 0066.

Unfortunately the 0066 NMI routine appears to have a bug.
Here is the listing.

0056 F5 PUSH RF
0067 E5 Pi.35t4 t-tL
0056 2R BO 5C LO HL. (5GBL1)
0055 70 LD R, H
0LZ►5C 55 OR L
0O5D 20 01 JR N? , 0070
005F E9 JP 4HL)
0070 El. POP HL
0071 F1 POP RF
0 072 E!? 4S RETN

The first thing to point out is that the routine is ended with
'RETN'. This instruction is used instead of'R ET' to end a NMI-
service routine. The more important point is the apparent bug.
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If we study the program, we notice that first the AF and HL
pairs are stacked. Then the contents of address 5CB0 and
5CB1 are fetched into HL. If you bother to look up these
addresses you will find they are the two free bytes in the
system variables. The plot thickens...an 'OR' zero test is
performed on HL using the method I described in Chapter
Four. The next instruction should have been JR Z, 0070 but
instead is JR NZ. The problem being that if it had been a 'JR Z'
then if those bytes were not zero then a jump to HL would have
been made. In this way one could have a key wired to the NMI
so that providing those bytes were loaded with the address of a
suitable routine, 'an escape from crash' key could be made.

But as it stands it will only make a jump if the bytes are zero
which acts as an almost useless total reset function. If the
'mistake' had not been made the gateway would be open to
programmable function keys and many other applications. Oh
well, better luck next time....
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Appendices

A: Hex, decimal and ASCII code look up table plus Z80
mnemonics.

B: Z80 mnemonics and flags.

C: System variables and explanation.

D: Z80 Mnemonics and brief definitions.
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Appendix A
Hex, decimal Et ASCII
characters.
Z80 mnemonics.

APPENDIX A

This appendix serves as an all-in-one look up table including
the Hex numbers 00 to FF, their decimal equivalents, the ZX
Spectrum ASCII characters, and last, but not least, the Z80
machine language mnemonics. They are listed under three
sections: no prefix; prefixed by CB; prefixed by ED. Those
instructions involving the index registers IX and IY have Hex
codes that are simply the equivalent involving HL prefixed by
DD for IX and FD for IY.

HEX DECIMAL CHARACTER PREFIX ED

00	 0
01	 1
02	 2
03	 3
04	 4

05	 5
06	 6
07	 7
08	 8
09	 9
OA	 10
OB	 11

OC	 12
OD	 13
OE	 14
OF	 15
10	 16

l

Z80-NO PREFIX PREFIX CB

NOP	 RLC B
LD BC,nn	 RLC C
LD (BC),A	 RLC D
INC BC	 RLC E
INC B	 RLC H
DEC B	 RLC L
LD B,n	 RLC (HL)
RLCA	 RLC A
EX AF,AF'	 RRC B
ADD HL,BC	 RRC C
LD A,(BC)	 RRC D
DEC BC	 RRC E
INC C	 RRC H
DEC C	 RRC L
LD C,n	 RRC (HL)
RRCA	 RRC A
DJNZdis	 RLB
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not used

PRINT comma
EDIT
cursor left
cursor right
cursor down
cursor up
DELETE
ENTER
number
not used
INK control



HEX DECIMAL CHARACTER	 Z80-NO PREFIX PREFIX CB PREFIX ED HEX DECIMALCHARACTER Z80-NO PREFIX PREFIX CB PREFIX ED

11 17	 PAPER control 	 LD DE,nn RL C 43 67 C LD B,E BIT 0,E LD Inn),BC
12 18	 FLASH control 	 LD (DE),A RL D 44 68 D LD B,H BITO,H NEG
13 19	 BRIGHT control INC DE RL E 45 69 E LD, B,L BIT 0,1 RETN
14 20	 INVERSE control INC D RL H 46 70 F LD B,(HL) BITO,IHL) IM0
15 21	 OVER control	 DEC D RL L 47 71 G LD B,A BIT 0,A LD I,A
16 22	 AT control	 LD D,n RL (HL) 48 72 H LD C,B BIT 1,B IN CAC)
17 23	 TAB control	 RLA RL A 49 73 I LD C,C BIT 1,C OUT (C),C
18 24 JR dis RR B 4A 74 J LD C,D BIT 1,D ADC HL,BC
19 25 ADD HL,DE RR C 4B 75 K LD C,E BIT 1,E LD BC,(nn)
1A 26 LD A,(DE) RR D 4C 76 L LD C,H BIT 1,H
1B
1C

27
28

not used	 DEC DE
INC E

RR E 
RR H

4D
4E

77
78

M
N

LD C,L
LD C,(HL)

BIT 1,L
BIT 1,(HL)

RETI

1D 29 DEC E RR L 4F 79 0 LD C,A BIT 1,A LD R,A
lE 30 LD E,n RR (HL) 50 80 P LD D,B BIT2,B IN D,(C)
1F 31 RRA RR A 51 81 Q LD D,C BIT2,C OUT(C),D
20 32	 space	 JR NZ,dis SLA B 52 82 R LD D,D BIT2,D SBC HL,DE
21 33	 LD HL,nn SLA C 53 83 S LD D,E BIT 2,E LD (nn),DE
22 34	 LD (nn),HL SLA D 54 84 T LD D,H BIT 2,H
23 35	 INC HL SLA E 55 85 U LD D,L BIT2,L
24 36	 $	 INC H SLA H 56 86 V LD D,(HL) BIT2,(HL) IM 1
25 37	 %	 DECH SLA L 57 87 W LD D,A BIT 2,A LD A,I
26 38	 ff	 LD H,n SLA (HL) 58 88 X LD E,B BIT 3,B IN E,(C)
27 39	 DAA SLA A 59 89 Y LD E,C BIT3,C OUT(C),E
28 40	 JR Z,dis SRA B 5A 90 Z LD E,D BIT3,D ADC HL,DE
29 41	 ADD HL,HL SRA C 5B 91 I LD E,E BIT3,E LD DE,(nn)
2A 42	 LD HL,(nn) SRA D 5C 92 / LD E,H BIT 3,H
2B 43	 +	 DEC HL SRA E 5D 93 1 LD E,L BIT 3,L
2C 44	 INC L SRA H 5E 94 j LD E,(HLI BIT 3,(HL) IM 2
2D 45	 DECL SRAL 5F 95 - LD E,A BIT 3,A LD A,R
2E 46	 LD L,n SRA (HL) 60 96 £ LD H,B BIT4,B IN H,(C)
2F 47	 /	 CPL SRA A 61 97 a LD H,C BIT 4,C OUT (C),H
30 48	 0	 JR NC,dis 62 98 b LD H,D BIT4,D SBC HL,HL
31 49	 1	 LD SP,nn 63 99 c LD H,E BIT4,E LD(nn),HL
32 50	 2	 LD (nn),A 64 100 d LD H,H BIT 4,H
33 51	 3	 INC SP 65 101 e LD H,L BIT 4,L
34 52	 4	 INC (HL) 66 102 f LD H,(HL) BIT 4,(HL)
35 53	 5	 DEC (HL) 67 103 g LD H,A BIT4,A RRD
36 54	 6	 LD (HL),n 68 104 h LD L,B BIT5,B IN L,(C)
37 55	 7	 SCF 69 105 i LD L,C BIT 5,C OUT (C),L
38 56	 8	 JR C,dis SRL B 6A 106 j LD L,D BIT 5,D ADC HL,HL
39 57	 9	 ADD HL,SP SRL C 6B 107 k LD L,E BIT 5,E LD HL,Inn)
3A 58	 LD A,(nn) SRL D 6C 108 I LD L,H BIT 5,H
3B 59	 DEC SP SRL E 6D 109 rn LD, L,L BIT 5,L
3C 60	 INC A SRL H 6E 110 n LD L,(HL) BIT 5,(HL)
3D 61	 =	 DEC A SRL L 6F 111 o LD L,A BIT 5,A RLD
3E 62	 >	 LD A,n SRL (HL) 70 112 p LD (HL),B BIT6,B IN F,(C)
3F 63	 CCF SRL A 71 113 q LD (HU,C BIT 6,C
40 64	 LD B,B BIT 0,13 IN B,(C) 72 114 r LD (HLI,D BIT6,D SBC HL,SP
41 65	 A	 LD B,C BIT 0,C OUT (C),B 73 115 s LD (HL),E BIT 6,E LD (nn),SP
42 66	 B	 LD B,D BIT0,D SBC HL,BC 74 116 t LD (HL),H BIT 6,H

1 10
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HEX DECIMAL CHARACTER Z80-NO PREFIX PREFIX CB	 PREFIX ED

75 117 u LD IHLI,L BIT6,L
76 118 y HALT BIT6,(HL)
77 119 w LD (HL),A BIT6,A
78 120 x LD A,B BIT7,B	 IN A,(C)
79 121 y LD A,C BIT 7,C	 OUT (C),A
7A 122 z LD A,D BIT7,D	 ADC HL,SP
7B 12 { LD A,E BIT 7,E	 LD SP,Inn)
7C 124 I LD A» BIT 7,H
7D 125 } LD A,L BIT7,L
7E 126 - LDA,IHL) BIT7,(H1.)
7F 127 © LD A,A BIT7,A
80 128 q ADD A,B RES 0,B
81 129 ADD A,C RES 0,C
82 130 J ADD A,D RES 0,D
83 131 q ADD A,E RES 0,E
84 132 q ADD, A,H RES 0,H
85 133 0 ADD A,L RES 0,L
86 134 S ADD A,(HL) RES O,IHL)
87 135 S ADD A,A RES 0,A BLOCK
88
89

136
137

iii
0

ADC A,B
ADC A,C

RES 1,B
RES1,C

GRAPHICS

8A 138 Ill ADC A,D RES 1,D
8B 139 e ADC A,E RES 1,E
8C 140 q ADC A,H RES 1,H
8D 141 GI ADC A,L RES 1,L
8E 142 L ADC A,(HL) RES 1,(HL)
8F 143 • ADC A,A RES 1,A
90 144 (a) SUB B RES 2,B
91 145 (b) SUB C RES 2,C
92 146 (c) SUB D RES 2,D
93 147 (d) SUB E RES 2,E
94 148 (e) SUB H RES 2,H
95 149 (f) SUB L RES 2,L
96 150 (g) SUB (HL) RES 2,(HL)
97 151 (h) SUB A RES 2,A
98 152 Ii) SBC A,B RES 3,B
99 153 (l) user SBC A,C RES 3,C
9A 154 (k) graphics SBC A,D RES 3,D
9B 155 (I) SBC A,E RES 3,E
9C 156 (m) SBC A,H RES 3,H
9D 157 (n) SBC A,L RES 3,L
9E 158 (o) SBC A,(HL) RES 3,(HL)
9F 159 (p) SBC A,A RES 3,A
AO 160 (q) AND B RES 4,B	 LDI
Al 161 (r) AND C RES 4,C	 CPI
A2 162 (s) AND D RES 4,D	 INI
A3 163 (t AND E RES 4,E	 OUTI
A4 164 (u) J AND H RES 4,H
A5 165 RND AND L RES 4,L
A6 166 INKEY$ AND (HL) RES 4,11-IL)
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HEX DECIMAL CHARACTER Z80-NO PREFIX PREFIX CB PREFIX ED

A7 167 PL AND A RES 4,A
A8 168 FN XOR B RES 5,B LDD
A9 169 POINT XOR C RES 5,C CPD
AA 170 SCREEN$ XOR D RES 5,D IND
AB 171 ATTR XOR E RES 5,E OUTD
AC 172 AT XOR H RES 5,H
AD 173 TAB XOR L RES 5,L
AE 174 VAL$ XOR (HL) RES 5,(HL)
AF 175 CODE XOR A RES 5,A
BO 176 VAL OR B RES 6,B LDIR
B1 177 LEN OR C RES 6,C CPIR
B2 178 SIN OR D RES 6,D INIR
B3 179 COS OR E RES 6,E OTIR
B4 180 TAN OR H RES 6,H
B5 181 ASN OR L RES 6,L
B6 182 ACS OR (HL) RES 6,(HL)
B7 183 ATN OR A RES 6,A
B8 184 LN CP B RES 7,B LDDR
B9 185 EXP CP C RES 7,C CPDR
BA 186 INT CPD RES 7,D INDR
BB 187 SQR CP E RES 7,E OTDR
BC 188 SGN CP H RES 7,H
BD 189 ABS CPL RES 7,L
BE 190 PEEK CP (HL) RES 7,(HL)
BF 191 IN CPA RES 7,A
CO 192 USR RET NZ SET O,B
Cl 193 STR$ POP BC SET 0,C
C2 194 CHR$ JP NZ,nn SET 0,D
C3 195 NOT JP nn SET 0,E
C4 196 BIN CALL NZ,nn SET 0,h
C5 197 OR PUSH BC SET 0,L
C6 198 AND ADD A,n SET O,(HLI
C7 199 < = RST 0 SET 0,A
C8 200 > = RETZ SET 1,B
C9 201 <> RET SET1,C
CA 202 LINE JPZ,nn SET 1,D
CB 203 THEN SET 1,E
CC 204 TO CALLZ,nn SET1,H
CD 205 STEP CALL nn SET 1,L
CE 206 DEF FN ADC A,n SET 1,(HL)
CF 207 CAT RST8 SET 1,A
DO 208 FORMAT RET NC SET 2,B
D1 209 MOVE POP DE SET2,C
D2 210 ERASE JPNC,nn SET2,D
D3 211 OPEN* OUT (n),A SET 2,E
D4 212 CLOSE% CALLNC,nn SET2,H
D5 213 MERGE PUSH DE SET2,L
D6 214 VERIFY SUB n SET2,(HL)
D7 215 BEEP RST16 SET2,A
D8 216 CIRCLE RET C SET 3,B
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In the mnemonics:	 nn
nnnn

d
c
dis

In the flags:	 0
1

R

2

HEX DECIMAL CHARACTER Z80-NO PREFIX PREFIX CB PREFIX ED

D9 217	 INK EXX	 SET 3,C
DA 218	 PAPER JPC,nn	 SET 3,D
DB 219	 FLASH INA,(n)	 SET3,E
DC 220	 BRIGHT CALLC,nn	 SET3,H
DD 221	 INVERSE PREFIXES	 SET3,L

INSTRUCTIONS
USING IX

DE 222	 OVER SBC A,n	 SET3,(HL)
DF 223	 OUT RST 24	 SET 3,A
E0 224	 LPRINT RET PO	 SET 4,B
El 225	 LLIST POP HL	 SET 4,C
E2 226	 STOP JP PO,nn	 SET 4,D
E3 227	 READ EX (SP),HL	 SET 4,E
E4 228	 DATA CALL PO,nn	 SET 4,H
E5 229	 RESTORE PUSH HL	 SET 4,L
E6 230	 NEW AND n	 SET 4,(HL)
E7 231	 BORDER RST 32	 SET 4,A
E8 232	 CONTINUE RET PE	 SET 5,B
E9 233	 DIM JP (HL)	 SET 5,C
EA 234	 REM JP PE,nn	 SET 5,D
EB 235	 FOR EX DE, HL	 SET 5,E
EC 236	 GO TO CALL PE,nn	 SET 5,H
ED 237	 GO SUB SET 5,L
EE 238	 INPUT XOR n	 SET 5,(HL)
EF 239	 LOAD RST 40	 SET 5,A
F0 240	 LIST RET P	 SET 6,B
F1 241	 LET POP AF	 SET 6,C
F2 242	 PAUSE JP P,nn	 SET 6,D
F3 243	 NEXT DI	 SET 6,E
F4 244	 POKE CALL P,nn	 SET 6,H
F5 245	 PRINT PUSH AF	 SET6,L
F6 246	 PLOT OR n	 SET 6,(HL)
F7 247	 RUN RST48	 SET 6,A
F8 248	 SAVE RET M	 SET 7,B
F9 249	 RANDOMIZE LD SP,HL	 SET 7,C
FA 250	 IF JP M,nn	 SET 7,D
FB 251	 CLS El	 SET 7,E
FC 252	 DRAW CALL M,nn	 SET 7,H
FD 253	 CLEAR PREFIXES	 SET 7,L

INSTRUCTIONS
USING IY

FE 254	 RETURN CP n	 SET 7,(HL)
FF 255	 COPY RST 56	 SET 7,A

Appendix B
FLAGS

How the instructions affect the flags.

APPENDIX B

This appendix lists each Z80 instruction and next to each its
effect on the flags. Only the important flags are shown, the
Carry flag Parity/Overflow flag, Zero flag, Sign flag, the other
flags are of no direct use to the programmer since they do not
play any part in decision making so far as JR, JP, CALL, and
RET are concerned. Throughout the table a number of
symbols are used:

Single byte data
Double byte data
Single byte register
(A, B, C, D, E, H, L)
Double byte register
Condition
Two's complement
displacement data

The flag is reset to zero
The flag is set to one
The flag is unaffected
The flag is changed to reflect
result
The flag is set or reset
randomly
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B
B

117

B	 This flag is set to one if the B
or BC register pair (which-
ever appropriate for given
instruction) is zero at the
end of the operation

INSTRUCTIONS	 FLAGS
mnemonic	 S	 Z	 P	 C

ADC A,r	 R	 R	 R	 R
ADC HL,d	 R	 R	 R	 R
ADD A,r	 R	 R	 R	 R
ADD HL,d	 R
ADD IX,d	 R
ADD IY,d	 R
ANDr	 R	 R	 R	 0
BIT b,r	 ?	 R	 ?
CALL nnnn
CALL c,nnnn
CCF	 R
CPr	 R	 R	 R	 R
CPI	 R	 B	 R
CPD	 R	 B	 R
CPIR	 R	 B	 R
CPDR	 R	 B	 R
CPL
DAA	 R	 R	 R	 R
DEC r	 R	 R	 R
DEC d
DI
DJNZ dis	 B
El
EX AF,AF'
EX DE,HL
EX (SP),HL
EX (SP),IX
EX (SP),IY
EXX
HALT

INSTRUCTIONS
mnemonic

IM 0
IM 1
IM 2
INC r
INC d
IN A,(nn)
IN r,(C)
INI
IND
INIR
INDR
JP nnnn
JP c,nnnn
JP (HL)
JP (IX)
JP (IY)
JR dis
JR c,dis
LD (d),A
LD A,(d)
LD A,R
LD A,I
LD I,A
LD R,A
LD SP,HL
LD SP,IX
LD SP,IY
LD r,r
LD r,nn
LD d,nnnn
LD A,(nnnn)
LD (nnnn),A
LD d,(nnnn)
LD (nnnnl,d
LDI
LDD

FLAGS
S	 Z	 P	 C

R	 R	 R

R	 R	 R
?	 B	 ?
?	 B	 ?
?	 1	 ?
?	 1	 ?

R	 R	 R
R	 R	 R
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INSTRUCTIONS FLAGS INSTRUCTIONS	 FLAGS
mnemonic S Z P C mnemonic	 S	 Z	 P	 C

LDIR 0 RST 38
LDDR . . 0 SBC A,r	 R	 R	 R	 R
NEG R R R R SBC HL,d	 R	 R	 R	 R
NOP SCF	 1
ORr R R R 0	 SET b,r
OUT (nn),A SLAr	 R	 R	 R	 R
OUT (C),r SRA r	 R	 R	 R	 R
OUTI ? B ? SRLr	 R	 R	 R	 R
OUTD ? B ? SUB r	 R	 R	 R	 R
OTIR ? 1 ? XOR r	 R	 R	 R	 0
OTDR ? 1 ?
POP AF
POP d
PUSH AF

R R R R	 n b. in cases where 'r' is shown in the mnemonics it not only
represents single byte registers but also (HL) Et (IX+dis),
(IY + dis) and direct data 'nn' where applicable.

PUSH d
RES b,r
RET
RET c
RETN
R ETI
RLA . R
RLCA R
RRA R
RRCA R
RLr R R R R
RLCr R R R R
RRr R R R R
RRC r R R R R
RRD R R R
RST00
RST 08
RST 10
RST 18
RST 20
RST 28
RST 30
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Appendix C
SYSTEM VARIABLES

APPENDIX C

This appendix lists all the system variables and explains them,
many more fully than the manual. It is best understood by
those who have a knowledge of the ROM's mechanism.

SYSTEM VARIABLES

X — Only adjust this variable if you understand the effect.

Hex
Ad-

Bytes dress Label	 Function

8 5C00

1 5C08

1 5C09

KSTATE This variable consists of eight bytes.
Each byte holds information about
the key pressed, such as when it is
due to repeat, and its code in
extended mode.

LAST K This is set to the last key pressed
depending on the mode. It is only
changed when another key is
pressed. Automatic repeat operates
on this. By resetting it to zero then
testing it one can wait for a keypress.

REPDEL The time (50th of a second or 60th of
a second in N. America) which a key
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Hex
Ad-

Bytes dress	 Label Function

Hex
Ad-

Bytes dress Label
	

Function

must be held down before it repeats.
Initialised with 23 Hex.

1 5COA REPPER The delay (50th of a second or 60th of
a second in N. America) between
successive repeats of a key. Initially
05 Hex. Decrease to a minimum of 01
Hex to speed up repeating.

2 5C0B DEFADD Address of arguments of user-
defined function if one is being
evaluated.

1 5C0D K DATA When a colour control code is entered
direct from the keyboard, eg
extended shift-1 (INK blue) the
second byte, eg the colour, FLASH
etc, is stored here while the INK,
PAPER, BRIGHT, FLASH or
INVERSE code is printed. Once that is
done the ROM recalls the second byte
from here so that can be printed
following the colour control code.

2 5COE TVDATA This is used by the print routine to
store AT,TAB and the colour controls
going to television.

X38 5C10 STRMS This is used as a store for offsets in
CHANS. For each of 16 user files and
three system files, there is an offset.
When this is added to CHANS, it
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points to an address which is the start
of the file handling a routine for that
file.

2 5CB6 CHARS 100 Hex less than the address of
character set (space to copyright).
Normally set to 4C00 Hex (character
set at 4D00 Hex) but can be altered to
point to a user-defined character set.

1 5C38 RASP The computer 'rasps' at you if you
type in colour control coders in such a
way as to make an illegal colour. It
also rasps when the edit line grows
above 23 lines. To change the length
of this, alter this variable.

1 5C39 PIP The length of the keyboard bleep/
click. A larger PIP makes keypresses
more audible.

1 5C3A ERR NR One less than the report code. Starts
off at FF Hex. If POKEd in BASIC
program then program ends at last
line then the error code POKEd is
displayed.

X1 5C3B FLAGS Flags to control the basic system.

X1 5C3C TVFLAG Flags associated with the display and
printing.
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X2 5C3D ERR SP This points to an item on the machine
stack. When an error occurs this item
is the address that is jumped to after
the stacks are reset by RST 08. By
altering this item, new error handling
routines can be written.

2 5CBF LIST SP This points to the return address on
the machine stack which is jumped to
after an automatic listing.

1	 5C41	 MODE Specified a K,L,C,E or G cursor.

2 5C42 NEWPPC Line to be jumped to. Used with
GOTO and GOSUB.

1 5C44 NSPPC Statement number in line to be
jumped to. POKEing first NEWPPC
and then PPC forces a jump to a
specified statement in a line.

2 5C45	 PPC	 Line number of the statement
currently being executed.

1	 5C47 SUBPPC Number of statement currently being
executed.

1 5C48 BORDCR This is the attribute byte for the lower
half of the screen. Bits zero to two are
the INK colour and bits three to five
are the PAPER/BORDER colour. The
FLASH and BRIGHT bits are not
used.
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Hex
Ad-

	

Bytes dress	 Label	 Function

	2 5C49	 E PPC Number of line with program cursor.

X2 5C4B VARS Points to the start of where the
variables are stored.

	

2 5C4D	 DEST Address of variable in assignment.

X2 5C4F CHANS Points to table of file handling
addresses — used by STRMS.

X2 5C51 CURCHL Points to the address (in table of file
handling addresses) that is being
used for the file handling routine.

X2 5C53 PROG Address of BASIC program.

X2 5C55 NXTLIN Address of next line in BASIC
program.

X2 5C57 DATADD Points to terminator of last DATA
item. If no DATA in the program then
it points to the 80 Hex at the end of
the channel data.

X2 5C59 E LINE Address of command being typed in.

2 5C5B K CUR Address of cursor within the
command line.

X2 5C5D CHADD Address of next character to be
interpreted.

2 5C5F X PTR Address of the character after the '?'
marker.
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Hex
Ad-

Bytes dress	 Label	 Function

X2 5C61 WORKSP Address of temporary workspace.

X2 5C63 STKBOT Address of bottom of calculator
stack.

X2 5C65 STKEND Address of start of spare space.

1	 5C67	 BREG Calculator's register used for a variety
of counting purposes.

2 5C68 MEM Address of area used for the
calculator's six memories (usually
MEMBOT but not always).

1 5C6A FLAGS2 More flags.

X1 5C6B DF SZ The number of lines (including one
blank line) in the lower part of the
screen.

2 5C6C STOP The number of the top line in
automatic listing.

2 5C6E OLDPPC Line number to which CONTINUE
jumps.

1

	

	 5C72 STR LEN Length of string type destination in
assignment.

2 5C74 T ADDR Address of next item in the syntax
table. In the ROM there is a large table
which defines where the routine for
each command is and how to collect
the information needed.
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Hex
Ad-

Bytes dress Label	 Function

2 5C76	 SEED The seed for RND. This is the variable
that is set by RANDOMIZE.

3 5C78 FRAMES Three byte frame counter
incremented every 50th of a second
or 60th of a second in N. America.
See Chapter 18 of Sinclair manual.

2 5C7B UDG Address of first user-defined graphic.
Remember that when RAMTOP is
moved down for machine code, UDG
is not. So if you put machine code in
the UDG area then it could corrupt
any graphics that are defined.

1 5C7D CO ORDS Used as a temporary store for the X
co-ordinate while plotting
calculations take place.

1	 5C7E
	

As above but for the y co-ordinate.

1	 5C7E P POSN 33 column number of printer
position.

1 5C80 PR CC Less significant byte of address of
next position for LPRINT AT (in
printer buffer).

1	 5C81
	

Not used.

2 5C82 ECHO E 33 column number and 24 line
number (in lower half) of end of input
buffer.
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Hex Hex
Ad- Ad-

Bytes dress Label Function Bytes dress Label	 Function

2 5C84 DFCC Address of PRINT position for top
slice of character in display file. Can
be redirected.

DFCCL Like DF CC for lower part of screen.

S POSN 33 column number for PRINT
position.

24 line number for PRINT position.

SPOSNL Like SPOSN for lower part.

SCR CT Count scrolls; it is always one more
than the number of scrolls that will be
done before stopping with 'scroll?'. If
this is regularly POKEd with 255 then
it will scroll on and on without
stopping.

1	 5C91 P FLAG More flags.

30 5C92 MEMBOT These are where the calculator can
store six different five byte floating
point numbers in special 'memories'.

2 5CB0 INTERR* Ex-interrupt vector unused due to a
feature of the ROM's programming.

2 5CBZ RAMTOP Address of last byte of BASIC area.

2 5CB4 PRAMT Address of last byte of physical RAM.

See 'May I Interrupt'.

2 5C86

X1 5C88

X1 5C89

X2 5C8A

1 5C8C

1 5C8D ATTR P

1 5C8E MASK P

Permanent attribute (as set up by
global INK, PAPER statements, etc).

Used for transparent attributes. Any
bit that is one shows that the one
corresponding attribute bit is not
taken from ATTR P but from what is
already on the screen.

1 5C8F ATTR T Temporary current attributes (eg set
up in PRINT, PLOT, DRAW
statements, etc).

1 5C90 MASK T Like MASK P, but temporary.
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APPENDIX D
Z80 MNEMONICS AND
EXPLANATION

APPENDIX D

This appendix provides a brief description of each of the Z80
commands. It details the operation and flag adjustment. Hex
codes are not given but can be found in Appendix A where all
the Z80 mnemonics are listed with their op-codes and
associated Spectrum ASCII and standard ASCII codes.

SOME ABBREVIATIONS ARE USED:

r = single byte register:

A,B,C,D,E,H or L

nn = single byte of direct data.

nnnn = double byte of direct data.

dl = double byte of register:

BC,DE,HL, and SP

d2 = double byte register:

BC,DE,HL,IX,IY and SP

x = bit number 0,1,2,3,4,5,6 or 7.

dis = displacement byte, according to two's complement
convention.

131



ADD HL,d1
ADD IX,d1
ADD IY,d1

AND r

AND ( H L)
AND (IX +dis)
AND (IY+dis)
AND nn

BIT x,r
BIT x,(HL)
BIT x,(IX+dis)
BIT x,(IY+dis)

CALL nnnn

ADD A,(HLI
ADD A,(IX+dis)
ADD A,(IY+dis)
ADD A,nn

ADD A,r

ADC HL,d1

ADCA,(HL)
ADC A,(IX+dis)
ADC A,(IY+dis)
ADC A,nn

res = single byte Hex value:

00,08,10,18,20,28,30 or 38.

ADC A,r Adds register r to the Accumulator and
also adds the Carry Flag to the least
specification bit position at the start of
the operation. With the exception of
ADCA,A the contents of the operand
register are left unchanged. The N flag
is reset to zero by ADC, and the re-
maining flags will reflect the final status
of the Accumulator.

Identical to ADC A,r except that data
pointed to by (HL), (IX + dis), (IY + dis)
and direct data nn respectively is added
to the Accumulator.

Performs double byte addition firstly
adding the Carry Flag to the least
significant bit of the L register, then
adding double byte register dl (BC,
DE,HL,SP) to HL. The N flag will beset
to zero and the other flags will reflect
the status of HL.

Performs a simple single byte addition,
adding register r to the Accumulator.
ADD sets the N flag to zero and the
other flags will reflect the status of the
Accumulator.

: Exactly the same as ADD A,r except
that the data pointed to by (HL),
(IX + dis), (IY + dis) and direct data nn
is added instead of register r.
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Perform double byte addition to the
HL, IX and IY registers respectively. A
double byte register dl (HL,BC,DE,SP

is added and remains unchanged at
the end of the operation.

Performs a logical AND operation on
the Accumulator. The bits of register r
are compared with more of the
Accumulator, any corresponding bit
which is both one in the Accumulator
and register r results in the bit being
kept at one in the Accumulator, else it
is set to zero. The operand register r is
unaffected by this instruction. The
flags are set accordingly.

: Logical AND operation is performed
on the Accumulator. The data pointed
to by HL, IX + dis, IY + dis, and direct
data nn is ANDed with the
Accumulator. The results are left in the
Accumulator, but the operand (either
(HL), (IX +dis), (IY+dis) or nn) is left
unchanged. The flags are set to the
status of the Accumulator.

. This instruction text bit x (where x is
between zero and seven) of register r,
(HL), (IX+dis) or (IY+ dis). If the bit is
zero then the Zero Flag is set. If the bit
is one then the Zero Flag is reset. The C
flag is left unchanged, the H flag is set
to one and the N flag is cleared. The
status of the S and P/V Flags cannot
be predicted.

Causes a jump to a subroutine at
address nnnn. The address of the next
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CALL C,nnnn
CALL M,nnnn
CALL NC,nnnn
CALL NZ,nnnn
CALL P,nnnn
CALL PE,nnnn
CALL PO,nnnn
CALL Z,nnnn

CCF

CP r

CP(HL)
CP(IX + dis)
CP(IY + dis)
CP nn

CPD

CPL

DAA

CPDR

CPI

CPIR

instruction is stacked and remains
there until a RET is reached. The flags
are unaffected by CALL.

: These directives operate in exactly the
same way as an unconditional CALL
except that they will be ignored unless
the condition is satisfied. They leave
the flags unaffected.

The condition of the Carry Flag is
reversed from its current state. The N
flag is set to zero, but the other flags
remain unaltered.

This instruction subtracts register r
from the Accumulator but does not
actually change the Accumulator or
register r, but the flags are set in
reflection with the result.

: These instructions behave exactly like
CP r except that the data pointed to by
HL?, IX + dis, IY + dis and direct data
nn are compared as opposed to
register r. The flags reflect the result of
the subtraction.

: The contents of the memory location
pointed to by HL are compared with
the contents of the Accumulator. The
N flag is set to 1, the other flags reflect
the result of the comparison, except
the Carry Flag, which remain
unaltered. The BC register, acting as a
'byte count' is then decremented and
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the HL register pair are also
decremented to poiont the next, lower
memory location. If the BC register pair
becomes zero then the P/V flag is set
to zero otherwise it is set to one.

This performs exactly the same as CPD
except that after HL has been
decremented and BC decremented, if
BC is not zero then the operation is
repeated. It will not be repeated if BC is
zero or the Accumulator value matches
that of the memory location pointed to
by HL, in other words until a match has
been found.

: This operates just like CPD except that
the HL register is incremented instead
of decremented.

: This operates just like CPDR except
that the HL register is incremented on
each completion of the operation,
instead of decremented.

: The contents of the Accumulator are
complemented. That is, the bits equal
to one are set to zero and those equal
to zero are set to one. All CPU flags are
unaffected except H and N which are
set to one.

This instruction alters the value of the
Accumulator from its binary value into
two Binary Coded Decimal digits. The
most significant four bits reflect the
'tens' digit and the last significant four
bits reflect the 'units' digit.
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El

EX AF,AF'

EXX

EX DE,HL

EX (SP),HL

EX (S P), PX

HALT

The enable interrupt command
instructs the CPU to accept maskable
interrupts. After an interrupt is
received no further interrupts will be
accepted until the next El command is
encountered.

This single byte command causes the
values of the AF and AF' register to
exchange places. The flags will reflect
the contents of the new bank zero flags
after the exchange.

The double byte registers, BC, DE and
HL are exchanged with their duplicates
in bank one.

: This instruction causes the values of
double byte registers DE and HL to be
exchanged.

: The top value on the stack is
exchanged with HL by this instruction.
SP and the flags are unaltered by this
instruction.

Similar to the EX(SP), HL instruction
these two exchange the index registers
IX and IY respectively. The flags
remain unaltered.

This causes the CPU to halt all
operations, and it will remain in this
state until an interrupt or reset signal is
received. Refresh of dynamic memory
(such as that used in the Spectrum) is
refreshed because the processor
actually repeatedly processes the NOP
instruction to maintain memory

refreshing. This instruction does not
alter any CPU registers or flags.

IM 0 This instruction sets the interrupt
mode to zero. When an interrupt is
received, the CPU allows a properly
designed and activated external device
to force an instruction onto the data
bus. The CPU will execute that
instruction. The flags are unaltered by
any IM directive.

This instruction sets the interrupt
mode to one. When an interrupt is
received the CPU will execute a
RESTART to location 38 Hex. The
CPU flags are not affected by this
command.

IM 2 This instruction sets the CPU to
interrupt mode two. The CPU, when
'interrupted' will jump to a location
formed by taking the interrupt vector
register (IV or just I) as the most
significant eight bits and the
information places on the Data Bus
and the least significant eight bits.

This directive causes the CPU to read
the value at po rt C and place it into
register r. The CPU flags are unaltered
by this instruction.

Operates in exactly the same manner
as the above but direct data nn is used,
and register A instead of register C and
r respectively.

IM1

IN r,(C)

INA,nn

136 137



DEC r

DEC (H L)
DEC (IX +dis)
DEC (IY+dis)

DEC d2

DI

DJNZ dis

INC r

INC HL
INCIIX + dis)
INCIIY + dis)

: This instruction decrements register r
by one. This directive does not affect
the C flag. The N flag is reset to zero.
The other flags reflect the resulting
value of register r.

: These directive decrement the
contents of the location point to by HL,
IX + dis and IY + dis. The flags are
affected as previously described for
DEC r.

This instruction decrements double
byte register d2 (BC,DE,HL,SP,IXBC,
and IY) by one. This command does
not affect the flags.

This command instructs the CPU not
to accept a maskable interrupt.

: This directive causes register B to be
decremented by one. If B does not
equal zero then a Jump Relative is
made, using dis and two's
complement, dis is added to the
Program Counter.

This instruction increments register r
by one. The Carry Flag is unaffected,
the N flag is reset to zero and the other
flags reflect the resulting value of
register r.

This directive increments the contents
of the location pointed to by
HL, IX + dis and IY + dis. The flags are
affected as previously described for
INC r.
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INC d2

IND

INDR

INI :

INIR :

JPIHL) :

JP(IX) :
JP(IY)

This instruction increments double
byte register d2 (BC,DE,HL,SP,IX or
IY) by one. This command does not
affect the flags.

This directive results in data being
accepted from the input port specified
by register C. The data is transferred to
the location pointed to by HL; HL is
then decremented by one. The B
register, serving as a counter is
decremented and if this results in the B
register becoming zero then the Z flag
is set. The status of the S,M and P/V
cannot be predicted. The N flag is
always set to one by this directive and
the Carry Flag is unaltered.

This instruction behaves exactly like
the previously described IND but if B is
not zero at one end of the operation
then it is repeated. This means that at
the end of the operation, the flags will
be as before but the Z flag will be set to
one.

This directive has exactly the same
effect as IND but the HL register pair is
incremented instead of decremented.

This behaves exactly like INDR except
that again the HL register pair is
incremented.

This causes a jump to the address
specified by double byte register HL.

This directive causes a jump to the
address specified by index register IX
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JP nnnn

JP C,nnnn
JP M,nnnn
JP NC,nnnn
JP NZ,nnnn
JP P,nnnn
JP PE,nnnn
JP PO,nnnn
JP Z,nnnn

JR dis

JR C, dis
JR NC, dis
JR NZ, dis
JR Z, dis

LD(nnnn),A
LD (nnnn),d2
LD (BC),A
LD (DE),A
LD (HL),r
LD (HL),nn
LD (IX + dis),r
LD (IX+dis),nn
LD (IY + dis),r

LDD

LDDR

or IY respectively. The flags are
unaltered by these instructions.

This causes a direct jump to address
nnnn. The flags are unaltered by this
directive.

These directives are ignored by the
CPU unless the condition is satisfied. If
it is satisfied, then a direct jump to
address nnnn is executed. The flags
are unaltered by these directives.

This instruction causes a Jump
Relative to be executed. The
destination address is formed by using
the displacement byte dis and two's
complement convention. The
displacement acts from the address of
the next instruction. JR dis leaves the
flags unaltered.

: These directives act in the same way as
JR dis except that they are ignored by
the CPU unless the condition is
satisfied.

: The LD directive has an incredible
number of combinations. All the
possible syntax are listed. It simply
copies the value from the right-hand
data, which can be the contents of a
location, a single or double byte
register or direct data, into the left-
hand destination, which can be a single
or double byte register, or a memory

location. Not all combinations are
possible so check, when programming,
that the syntax you use is on the list or
look in Appendix A to ensure that you
do not write an impossible program ...

: The contents of the memory location
pointed to by the HL register pair are
transferred to the location pointed by
the DE register pair. DE and HL are
then decremented. BC is decremented
and if that results in BC becoming zero
then the P/V flag will be set to zero;
otherwise it will be set to one. The H
and N flags are reset to zero, but the
other flags are left unaltered.

This directive operates in exactly the
same way as LDD, except that if BC is
not zero at the end of the operation the
whole thing is repeated. This means
that when execution is completed the
P/V flag will be zero and the other flags
will be the same as described above.

LD (IY+dis),nn
LD A,Innnn)
LD A,(BC)
LD A,IDE)
LD r,(HL)
LD r,(IX + dis)
LD r,(IY + dis)
LD r,(r)
LD r,nn
LD d2,(nnn)
LD d2,nnnn
LD A,I
LD I,A
LD A, R
LD R,A
LD SP,HL
LD SP,IX
LD SP,IY
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Accumulator bit is set to one;
otherwise it is set to zero. Register r is
unaffected. The Carry Flag is reset to
zero, so is the N flag. The H flag is
always set to one and the other flags
reflect the result of the operation.

ORIHL)
OR (IX +dis)
OR (IY+dis)
OR nn

OTDR

In the same way as described for OR r,
the contents of the memory location
pointed to by HL,IX+dis, IY+dis and
direct data nn is ORed with the
Accumulator.

In a similar way as described for INDR
data is transferred from the memory
location pointed to by HL to the port
specified by register C, with register B
acting as a 'byte count', and HL being
decremented after each single run of
the operation.

OTIR This directive operates in exactly the
same manner as OTDR except that HL
is incremented.

OUT (C),r
NOP

OUT nn,A

ORr
OUTD

: This outputs the data held in register r
to the I/O port specified by register C.
The flags are unaltered.

This directive is similar to OUT(C),r
except that direct data nn specifies the
port and the data is taken from A.

This is very similar to the previously
described IND directive except that
with OUTD the data is being sent out to
the port from the location specified by
HL.
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: This directive merely causes the CPU
to waste time by doing little but
advance the Program Counter to the
next location! None of the flags are
affected.

Single byte register r is logical ORed
with the Accumulator. What happens
is that bit by bit the Accumulator bits
are compared with the corresponding
ones of register r. If either bit is one or
both bits are one, then the
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T

NEG

LDIR

LDI This behaves just like LDD, except that
both HL and DE are incremented
instead of decremented. The flags
behave in exactly the same way.

This directive behaves just like LDIR
except that, again, both the HL and DE
register pairs are incremented instead
of decremented.

: This	 instruction	 negates	 the
Accumulator in accordance with two's
complement convention. What
happens is that first, all the bits are
inverted, that is those that are zero are
changed to one and vice versa. Then
one is added to the result. The S and Z
flags reflect the result of the operation
and the P/V flag is set to one if the
Accumulator started, and so finished
with 80 Hex. Otherwise it is cleared to
zero. The C flag will be cleared to zero if
the Accumulator started, and so
finished with 00 Hex. Otherwise it is set
to one. The N flag is always set to one.



R ET

R ET C
RET M
RET NC
RET NZ
RET P
RET PE
RET PO
RET Z

R ET I
R ETN

RL r
RL (HL)
RL (IX + dis)
RL (IY+dis)

OUTI : This directive is similar to OUTD, but
after each operation the HL register
pair is incremented instead of
decremented.

The top two byte value from the stack
is removed and put into the AF register
pair. The Stack Pointer, SP, is then
incremented twice so that it points to
the data theoretically below. The flags
are unchanged.

: These directives act in exactly the
same way as POP AF except that
double byte registers BC,DE,HL,IX
and IY respectively receive the value.

This directive has the opposite effect of
POP AF. The value held in the AF
register pair is put on the stack and the
Stack Pointer AP is decremented by
two. The flags are unaffected.

: These instructions act in exactly the
same way as PUSH AF, except that
BC, DE, H L, IX and IY respectively have
their values PUSHed.

: This directive resets bit x of single byte
register r to zero. The CPU flags are
unaffected.

RES x,HL
RES x,(IX + dis)
RES x,(IY + dis)

These instructions reset bit x of the
contents of the memory location
pointed to by HL, IX + dis and IY + dis
respectively.
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POP AF

POP BC
POP DE
POP HL
POP IX
POP IY

PUSH AF

PUSH BC
PUSH DE
PUSH HL
PUSH IX
PUSH IY

RES x,r

: The top value of the stack is removed
and transferred to the Program
Counter, PC. The Stack Pointer is
incremented twice so that it points to
the data theoretically below. Program
execution continues using the new
value held in PC. The CPU flags are
unaffected.

: These directives act in exactly the
same way as RET, but they are ignored
unless the condition is satisfied. The
flags are unaffected.

: These two instructions you will not
need, but they are to do with the Z80
interrupt system. In the Spectrum the
interrupts are used for scanning the
keyboard. This is turned off at certain
times, e.g. when the printer operates
and when the tape interface is
operating. See Chapter Eight.

: The bits of register r or memory
location to by HL, IX + dis or IY + dis,
are rotated through the carry bit as
shown in the diagram below.

7 6 5 4 3 2 1 0C

The H and flags are cleared to zero. The
S, Z and P/V flags reflect the result of
the operation. The P/V flag reflects the
parity status of the rotated register or
memory location.
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RST res

SBCA,r

SBCA,nn
SBC A,(HL)
SBC A,(IX+dis)
SBC AMY +dis)

SBC HL,d1

SCF

SET x,r

7 6 5 4 3 2 1 0C

RLC r
RLC (HL)
RLC (IX +dis)
RLC (IY+dis)

RLD

RRD

Register r or memory location pointed
to by HL, IX+dis or IY+dis
respectively, is rotated as shown in the
diagram below. The flags behave in the
same way as for RL r.

: This instruction allows a Binary Coded
Decimal (BCD) four bit digit in the least
significant half of the Accumulator to
be rotated to the left with two digits in
memory pointed to by HL. This is
shown diagramatically below:

7 6 5 4 3 2 1 0
r i

(HL)

: This directive is quite similar to the
above in that it rotates BCD digits. But
in this case, the digits are rotated to the
right as shown below:

y
7 6 5 4 3 2 1 0

L^
(HL)

These directives operate in a similar
way to RL except that the rotation is
done in the opposite direction as
shown below:

I--. C H 7 6 5 4 3 2 1 0 I—I

These instructions run in a similar way
to RLC except that the rotation is done
in the opposite direction as shown
below:

7 6 5 4 3 2 1 0

This directive is an effectively
shortened version of CALL, which is
restricted to address (res) which is
restricted to 00, 08,10,18,20,28,30
and 38. RST is short for RESTART.
These directives do not affect the
flags.

This directive subtracts register r from
the Accumulator. The content of the
Carry Flag is subtracted from the least
significant bit of the Accumulator. The
N flag is set to one, but the remaining
flags are unaffected.

This instruction operates in the same
way as SBC A,r except that direct data
nn, memory location HL, IX +dis and
IY + dis respectively are subtracted
instead of register r.

This directive performs double byte
subtraction with Carry Flag. Double
byte register dl is subtracted from HL
and also the Carry Flag is subtracted
from the least significant bit of HL. The
N flag is set to one. The remaining flags
reflect the status of H L.

The Carry Flag is simply set to one by
this directive. The H and N flags are
cleared to zero, and the remaining flags
are left unaltered.

: This directive sets bit x of register r to
one. None of the CPU flags are
affected.

3 2 1 0

ACCUMULATOR

3 2 1 0

ACCUMULATOR

RR r
RR(HL)

RRC r
RRC(HL)
RRC (IX +dis)
RRC (IY+dis)

146 147



SUB (HL)
SUB (IX +dis)
SUB (IY +dis)
SUB nn

XOR r

XOR nn
COR (HL)
XOR (IX +dis)
XOR (IY+dis)

L C7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0C 0

SET x,(HL)
SET x,(IX + dis)
SET x,(IY + dis)

SLAr
SLA (HL)
SLA (IX +dis)
SLA (IY+dis)

SRAr
SRA (HL)
SRA (IX +dis)
SRA (IY+dis)

SRLr
SRL (HL)
SRL (IX +dis)
SRL (IY+dis)

SUB r

These instructions set bit x to one, in
the memory location pointed to by HL,
IX + dis or IY + dis respectively. None
of the flags are affected.

These directive shift register r, or the
contents of the memory locations
pointed to by HL, IX + dis or IY + dis
respectively, as shown in the diagram
below. The flags behave as described
for RL r.

These directives are similar to those
described for SLA except that the
shifting is done in the other direction as
shown below:

These instructions shift register r or
memory location pointed to by HL,
IX + dis or IY + dis respectively to the
left as shown below:

0 --i 7654321 0

The flags are affected as described for
R L.

This directive does a simple single byte
subtraction. Register (r) is simply
subtracted from the Accumulator.
Register r is left unaffected, the N flag
is set to one and the remaining flags
represent the final contents of the
Accumulator.

. These instructions operate in exactly
the same way as SUB (r) except that
instead of register r being subtracted,
the contents of the location pointed to
by HL, IX + dis, IY + dis or direct data
nn are used.

Register (r) is exclusively ORed with
the Accumulator. Each bit in turn is
compared. If the Accumulator bit and
the register bit are both zero or they are
both one then the Accumulator bit is
set to zero. Otherwise it is set to one.
The Carry Flag is set to zero, as is the N
flag, the H flag is set to one and the
remaining flags reflect the resulting
value of the Accumulator.

: These directives act in the same way as
above except that direct data nn,
memory location pointed to by HL,
IX + dis or IY + dis respectively are
XORed with the Accumulator.
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