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This book is a collection of ready-made machine language routines that show
how to achieve spectacular effects on the Spectrum.

Most of the routines are aimed at creating visual displays that are at the frontiers
of Spectrum's capabilities. The routines include features that have never been
published before, such as:

• Full Screen Horizon!
Lets you change the colour of the border and screen at any point, and move this
horizon at will!

• Interrupt Driven Sprite Animation!
Animate objects with perfectly flicker-free movement by pixels!

• High Resolution Colour!
Create an area on the Spectrum with eight times the normal Spectrum's Colour
Resolution!

• Full Screen Images!
Create images over all of the screen area, including all regions of the border!

This book is for programmers with some experience in machine language
programming. All the routines are listed in labelled assembly language and the
techniques and principles involved are fully explained.

Other routines included in this book are PRINT, PLOTTING, DRAWING and
KEYBOARD SCAN. The routines are all of professional quality and do not involve
any calls to the ROM. This means that the speed of your machine language
programs can be dramatically increased using these routines.

This book gives a unique insight into the Spectrum and into a professional's
machine language programs. All the routines are designed with maximum
flexibility for inclusion into your own programs, and in addition, the listings
contain exhaustive explanatory comments, so that you can 'learn by example'.
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Preface

Practically the only branch of Spectrum programming not extensively
and comprehensively covered by a plethora of books is that of
advanced Spectrum machine language programming. With this book I
hope to remedy the situation.

By 'advanced' programming I mean the type of top-level machine
language behind many of the most successful Spectrum games.
Indeed, some of the techniques produced in this book are completely
original and beyond anything seen in Spectrum games at the time of
writing. As an example, I cite the high-resolution colour routines, and the
suite of routines which allows you to produce full screen pictures over
the border. Neither of these special effects has ever been seen in public
before.

It is only fair to warn you that this book is not intended for beginners —
there are plenty of good publications already available for newcomers
to Spectrum machine language — and this book assumes a full
understanding of Z-80 instruction code right from the sta rt . This makes it
possible for me to take you to the very frontiers of state-of-the-art
Spectrum programming, extending them as we go. I hope you will enjoy
and benefit from the experience.

I would like to acknowledge the contributions of the following people:

• Mum and Dad, for eighteen years of immeasurable patience.
• My publisher, Fred Milgrom, and all those at Melbourne House

involved in the production work for this book.
• John, Deb, Brian, Dermot and Nobby for their suppo rt and

encouragement.

Finally, I dedicate this book to the six of clubs; and that's known as
dropping a good clanker.

DAVID M. WEBB
Exeter College,
Oxford.
February, 1984.

1



Introduction

Assumptions Made for the Use of This Book
The very title of this book indicates that it does not set out to teach
elementary machine language. I am assuming that the reader at least
has a grasp of the fundamentals of, and preferably a proficiency in, Z-80
Programming. It is not, however, essential to have learnt or practised
machine language on the Spectrum to any great extent; all the peculiari-
ties specific to the Spectrum will be described in detail, without.
assuming any previous knowledge of them.

To write anything but the shortest of machine language programs one
should be using an assembler, and I am therefore presuming that you
either already have one or are prepared to make the very worthwhile
investment in one. All of the listings in this book are in assembly lan-
guage, but I have deliberately restricted the use of 'pseudo-
instructions', (i.e. those not in the standard Z-80 instruction set) to the
ORG, DEFB, DEFW and EQU operations, which any assembler worth its
tape should be capable of handling.

Your assembler should be capable of calculating forward and
backward relative jumps, and of handling labels, which should
preferably be six or more characters in length.

At the head of each listing will be a set of comments informing you of any
parameters that the registers should hold on entry to the routine. Also
listed will be any significant values held in the registers on exit, and a
comment on which registers are preserved in value. Unless stated
otherwise, you can assume that the alternate registers AF', BC', DE',
HL', the stack pointer SP, the index registers IX and IY, and the interrupt
vector register I are all preserved by the routine.

Similarly, unless stated otherwise, you should assume that the registers
A, F, B, C, D, E, H and L are all destroyed by calling the routine. The
program counter is, of course, preserved on the stack by a CALL.

The multitude of explanatory comments that are integrated into all but
the simplest of routines in this book are provided for your own benefit, in
the hope that you might gain the enlightenment of learning by example.
They are, of course, entirely non-functional to the routines, and may be
omitted when you enter the listings into your computer, just as one would
omit BASIC REM statements to conserve memory.

Any numeric values printed herein will, by default, be in decimal, unless
followed by an 'H' or the abbreviation 'Hex.' for hexadecimal, or by the
word 'binary' when using base two.

You are now equipped with the knowledge necessary to use the rest of
this book. One word of advice, though; it is intended that the user read in
the general direction 'front to back', since many of the latter programs
contain references to material printed earlier on in the book.



CHAPTER 1

Screen Addressing

continues down to row 7 of line 6, then row 7 of line 7. At this stage, 2K of
memory has been allocated, and we find that the entire top third of the
screen is mapped.

The pattern described above is then repeated for the middle and bottom
thirds of the screen, each consuming 2K of RAM. A rather happy
consequence of having the three thirds of the screen in separate blocks
of memory is that we can perform pa rt ial SAVE... SCREEN$ commands.
The numbers required for this are as follows:

START ADDRESS
TOP THIRD 16384

MIDDLE 18432
BOTTOM 20480

LENGTHS 
2k=2048 BYTES
4k=4096 BYTES
6k=6144 BYTES

start this chapter by clarifying what is otherwise a frequent source of
confusion. Throughout this book I shall refer to the Spectrum display as
having twenty-four LINES, each line having eight ROWS of pixels, rather
than twenty-four rows of eight pixel lines. Thus we see that the text area
of the screen has 24 x 8 = 192 rows on it.

That technicality out of the way, let me continue with a discussion of how
to calculate the text address of any of the 768 (24 x 32) CELLS on the
screen.

It cannot have escaped your notice that the display file is laid out in a
somewhat unusual way in memory. A quick POKE around with this
program will show you what I mean.

10 REM TO DEMONSTRATE MEMORY LAY-OUT

OF TEXT

20 FOR A=0 TO 6143
30 POKE 16384+A,255

40 NEXT A

5 10 PAUSE 0

In fact, the display file resides at addresses 4000H to 57FFH in the
following manner. Each row has 32 columns in it and each column is 8
pixels wide. Since there are 8 bits in a byte, each column of each row is
represented by one byte. The 32 bytes of each row are, as you would
expect, stored consecutively in memory, reading from left to right. First
to be stored (from address 4000H) is row 0 of line O. Next comes row 0 of
line 1, and soon down to row 0 of line 7. Then, instead of finding row 0 of
line 8, we have row 1 of line 0, down to row 1 of line 7. The pa ttern

A

So to SAVE the bottom two thirds of the screen (of length 4K),

SAVE "(NAME)"CODE 13432,4096

Since the display file is contained within 8K of RAM from 4000H, the
left-most three bits of any address in it are always 010. The complete
pattern is composed as seen in this diagram:

Display File Address

HI-BYTE

(S IC ZK	 IK

0 \̂ ROW NO. IN \^^
1 v ` LINE (0-7) \ \

LINE NUMBER (0 TO 23)

The advantage of this layout is that we can step through the addresses
of the eight rows of any screen cell simply by incrementing the hi-byte of
the original address, rather than adding 32 to the whole address, as
would be required in a 'normal' layout. This allows for that extra touch of
speed in one-cell printing routines.

Now,' hear you ask, 'What's the easiest way to calculate the address of a
cell?' Well, you could do a lot worse than this routine, called DF–LOC for
Display File LOCation. It is worth noting that the routine will produce a

5

LO-BYTE
COLUMN NO. (0 -31)
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logical address for any line number entered in the B register, whether or
not it is in the range of 0-23. This can be useful if, for example, you want
to work down from the logical start of a 2x2 character block, the top line
of which is off the top of the screen. Simply enter B=255 (for –1, the
number of the line above the screen) and call DF–LOC as usual.

;ENTRY :	 B=LINE,C=COLUMN

;PRESERVED : BC,DE
;EXIT: HL=ADDRESS IN DISPLAY FILE, A=L

DF—LOC LD	 A,B
AND	 0F8H

ADD	 A,40H
LD	 H,A

LD	 A,B
AND	 7
RRCA
RRCA
RRCA
ADD
LD
RET

;PRESERVED : A
;EXIT : BC =Q, DE =5800H, HL =57FFH

210040
	

CLS—DF LD	 HL, 4000H	 • .; ` • `	 '
OIFF17
	

LD	 BC,17FFH tvd 1
75
	

LD	 (HL),L
54
	

LD	 D , H	 s °'- ,. 9

IE^1
	

LD	 E , 1	 s	 , L,.

EDBm
	

LDIR	 Cro	 (!-	 ,

C9
	

RET	 1.4L +^ , s3 c.-. s3 t -- 1

5	 C. .

Obviously and in a similar way to the pa rt ial SAVE SCREEN$ command
described earlier in this chapter, you could adapt the routine to clear
only pa rt of the screen. Some useful numbers are these Hex. start
addresses and lengths:

ONE THIRD
TWO THIRDS

WHOLE SCREEN

78
E6F8
C649)

67
78
E607
O F
OF
0F
81
6F
C9

A,C
L,A  

ADDRESS

4000H
4800H
5000H

TOP THIRD
MIDDLE

BOTTOM 

VALUE
FOR BC

O7FFH
OFFFH
17FFH

To turn the routine into a kind of PRINT AT, you could add the line

LD	 (5C84H) ,HL >^ç>`
2 c 

before the RET statement, to load the system variable DF–CC with the
address to be next used by some printing routine.

Before moving on to a discussion of the attribute file, I ought to provide a
routine to clear the display file, DF–CLS. It works by filling the first byte
with a zero, and then using the powerful LDIR instruction to 'copy' the
contents of that byte to the one above it, repeating Hex. 17FF times to fill
the entire display file with zeroes. This technique should always be used
whenever one needs to fill a block of memory with one particular byte.

Notice the use of the instruction

LD (HL) , L (Since L = 0)

which is faster and occupies less memory than
LD	 (HL) ,m	 3sa

So to clear the bottom two thirds of the screen, use the lines

LD
	

HL, 48(nH

LD
	

BC,CpFFFH

The attributes of the Spectrum display file are those bytes which are
responsible for the colours of the INK and PAPER and the state of
BRIGHT and FLASH in each character cell of the screen. Consequently
there are 768 bytes in the attribute file, and they are laid out logically as
24 groups of 32 bytes, one for each column, reading from left to right
across the screen.

The following routine will find the address of the attributes of any cell on
the screen and is called ATTLOC for ATTribute LOCator.

;ENTRY : B=LINE, C=COLUMN
;PRESERVED: BC,DE
;EXIT : HL=ADDRESS IN ATTRIBUTE FILE, A=L
ATTLOC LD	 A,B

SRA	 A
SRA	 A
SRA	 A

5C-4

78
CB2F
CB2F
CB2F
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C658
67
78
E607
O F
OF
OF
81
6F
C9

ADD
LD
LD
AND
RRCA
RRCA
RRCA
ADD
LD
RET

;ENTRY: HL =ATTR. ADDRESS
;PRESERVED: HL, BC
;EXIT: DE =D.F. ADDRESS, A=D

7C	 ATTDF	 LD	 A,H
E603	 AND	 3	 n.-e_	 L56	 "

m7	 RLCA 	 ^^ r

Q 7	 RLCA	 "-å^ ^p: ^^^_ b^_^ .• ç:<^^. .1

Q7	 RLCA	 r^ +yS ^ re 5,,,^	 )^•> - -
1/...3

F640	 OR	 4OH
57	 LD	 D,A
5D	 LD	 E,L
C9	 RET

72E sQh Vo '.^..<:^l....`.
r ^^

-7) = b-ar 4 . E..

.

;ENTRY: HL =D.F. ADDRESS
;PRESERVED: HL,BC
;EXIT: DE =ATTR. ADDRESS, A=D

7C	 DF-ATT LD	 A,H
O F	 RRCA
O F	 RRCA
OF	 RRCA
E603	 AND

F658	 OR

	

b a.s =	 ^ ra	 ^ R
57	 LD	 D,A 

^E 
so

5D	 LD	 E,L 3 ,^a d,,a 
C9	 RET	 a el.d, ar;

r."
	 <.. C_C,.I

The opposite routine is ATT–DF, which finds the address of the first row
of a cell in the display file, given the address of its attributes.

n

5 ^ bl<h ^^
c	 JL.	 ^/.y	 ,Jl s *^.-t_t..-.

2	 )	 2S (, 6l^ck

58H Î ^ '

A ^ B SJl,Prr l=' Y o -..: v r.-.,:.. .l¢

18H	 s sOrr r ,	 %r<: 400
^ ^ `d P 4 \- o r.a_ .,l.Cy,PY L^ ,

H , A J ^ 	 < ^ h<_3 }, 	 P•^ •	 ^

6 , H u f e.%r -. 44 ,
 ^ "r, •

^ f_
	

5 r ,

),:
	

> L;

58H)
D , A T, <<_^-^ a ^^ a

A,B st^< ^ \ o

7	 ) c^ Q 4 s ^^^	 >_^>^,

)

)

)

A,58H
H,A
A,B
7

A,C
L,A

Notice the use of SRA A to sign-extend the value in A as it is shifted
rightwards. This allows the routine to produce, as in DF–LOC, a logical
address given any line number in B (range –128 to +127).

The logical extension of the routine to produce the ATTR (Y, X) function
is to add the instruction

LD	 A, (HL)
before the RET, returning the attribute in the A register.

I have included a couple of routines to convert between display file and
attribute file addresses, which may be useful if you have one but not the
other. The first routine, DF–ATT will find the address of the attribute
covering any byte in the display file, regardless of whether it is on row
zero of a line.

To complete the set of 'Locator' routines, I have included a multi-
purpose piece that returns the address of a cell in the display file, stores
it in a variable labelled DFCC, returns the address of its attributes, and
finally the actual attributes, in the accumulator. I have called the routine
LOCATE.

;ENTRY: B=LINE, C=COLUMN
;PRESERVED: BC
;EXIT: HL=D.F. ADDRESS, DE=ATTR.
ADDRESS, A=ATTR(B,C)

;DF-CC IS ALTERED

78
E618
67
CBF4
OF
OF
OF
F658
57
78
E607
O F
OF
OF
81
6F

DFCC	 EQU	 5C84H

LOCATE LD
AND
LD
SET
RRCA
RRCA
RRCA
OR
LD
LD
AND
RRCA
RRCA
RRCA
ADD	 A, C)	 L

LD L ,A	 . UL '	 Ç.
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210040
010018
75

54
1E01
EDBO
77
m1FF02
EDBß
C9

;PRESERVED: A
;EXIT: BC-0, DE =5B0ßH, HL =5AFFH

CLS LD
LD
LD
LD
LD
LDIR
LD
LD
LDIR
RET

My final point about screen addressing is the control of the border
colour. The current border colour on the Spectrum screen is usually held
as bits 3, 4 and 5 of the system variable BORDCR, address 5C48H.

-.

However, altering this address from machine language has no effect on
the border colour, it simply changes the value held at 5C48H. To change
the border, we must reset bit 0 of the address bus and then output the
new colour number on the data bus. In order not to affect any other
devices attached to the user port, we SET the other seven bits of the
lo-byte of the data bus, giving us the pattern 1111 1110 in binary, or FE in
Hex.

Hence to change the border colour to red (value 2) we use the sequence

LD A,2
OUT (OFEH),A

I should point out that the border colour only consumes bits 0, 1 and 2 of
the data bus. In fact, bit 3 controls the MIC and EAR outputs, and bit 4
the loudspeaker. Altering the state of these (COMPLEMENTING them)
causes a 'click' to be sent to the MIC and EAR sockets or heard on the
speaker.

It is good programming practice to 'mask off' those bits not needed to
alter the border colour, so that their state is maintained and no
extraneous clicks are heard on the loudspeaker. If we store the last
value sent to port OFEH in the variable BORD, then to change the border
colour, this program segment is applicable:

HL, 4ß00H
BC,180ßH
(HL)51.
D,H
E,1

(HL)

.-a ^ 	c ^ , ., ^ •. ^,.^, ^

210058
01FF02
77
54
1E01
EDB0
C9

^

CLSATT LD
LD
LD
LD
LD
LDIR
RET

Hence to reset the attributes to their initial
0, PAPER 7, INK 0),

LD	 A, 38H	 -3E 3 °6

CALL	 CLSATT	 cZs –

5F
lA

LD
LD

E,A	 C--

A(DE) ^^,

"I-"r r ti,

Fk^r^^kae
I have also included a combination of CLS—DF and CLSATT which
clears the display file and sets the attributes to a given value. The routine

22845C LD (DFCC ) , HL 13 is called CLS, for obvious reasons.

C9 RET T^l
;ENTRY: A = SCREEN ATTRIBUTE

As I mentioned, the attributes of each cell tell you its INK and PAPER
colours and its state of BRIGHT and FLASH. The bit pattern associated
with this is shown in the diagram.

BIT	 7	 6	 5	 4	 3	 2	 1	 0  

II 
INK

COLOUR
(0-7)

FLASH
(0/1) PAPER

COLOUR
(0-7)

BR GHT
(0/1)

Hence the pattern for FLASH 1, BRIGHT 0, INK 3, PAPER 6 would be
10110011 , or Hex B3.

We can `clear' the attribute file by filling it with any bit-pattern using the
following routine, CLSATT, which works in a very similar way to
CLS–DF.

;ENTRY: A=SCREEN ATTRIBUTE
;PRESERVED: A

;EXIT: BC=0, DE=5BÇOH, HL,5AFFH

HL, 5800H	 `..,.k;.
BC,m2FFH	 a 	 `.-LA.,^....,

V'°-‘,(HL) ,A cG,_G.^v
D, ^^^ ^, r r ^'. 41 k.A

^

E, 1	 15	 u

( ii G ) 	 (L.4 L .1	 -DE E	 4-1,

LlL _ 4;L }:  ^ C. •, 'C'S C •_ I.
4-7,1 , ^ ^^_ r3 C _: ¢} .

condition (FLASH 0, BRIGHT

1() 11



A, (BORD)	 t ^,\: G	 1_^

q)F8H	 r^^. <t 	 2^.^ ^

<NEW BORDER VALUE) `^`^^ ^`' ,
t3 ,a	 .	 ^.. .

(©FEH),A
(BORD) ,A

If you have a spare register pair such as HL then it is slightly faster and
more economical to use

LD
	

HL,(BORD)
LD
	

A,(HL)
AND
	

(F8H
OR
	

(NEW BORDER VALUE)
OUT
	

(OFEH),A
LD
	

(HL),A

While on the subject, an interesting quirk of Z-80 machine language is
that, unlike most other instructions, it is actually quicker to use
immediate data rather than a register as the po rt number when
outputting from the accumulator. That is to say.

OUT
	

(OFEH),A
	

TAKES 11 T-STATES , while
OUT
	

(C),A
	

TAKES 12 T-STATES

This can make quite a difference when very high speed output is
required, as will be seen later in this book.

CHAPTER 2
Developing a PRINT Routine

The printing routines in the Spectrum ROM are decidedly slow and
tedious to use. This is a consequence of the RST 10H instruction being
used for so many different printing functions. Once called, the routine
has to decide, amongst other things, whether you are printing in the
INPUT area, the top pa rt of the screen or on the printer, whether you are
trying to change the INK or PAPER colour or to execute some other
control such as a TAB or AT function; and whether you are printing a
'normal' character, a 'chunky graphic' character or a user-defined
graphic character. On top of all this, by the nature of BASIC, the routine
also spends time carrying out a series of error-checks that we can do
without in a machine-code program.

LD
AND
OR
OUT
LD d.r, 

It is thus imperative that we develop our own, customised printing
routine, and that is what I shall be doing in this chapter.

The process of printing a character can be broken down into three
stages. First we locate the address of the character data (the eight bytes
whose bit patterns define the character), then we copy this data to the
required screen cell, and finally we change the attributes of that cell as
required.

You are no doubt familiar with the concept of leaving ce rtain attributes of
a cell as they are by the use of INK 8, PAPER 8, FLASH 8 and BRIGHT 8
when printing a new character in that cell. These BASIC functions are
easily performed in machine language by what is known as MASKING
off individual bits of the 'old' attribute byte when printing a 'new'
character.

1 7 12



We shall use a one-byte variable, ATT, to hold the new attributes for the
character to be printed, and a second byte, MASK, to hold the mask for
the old attributes. For each bit of the old attributes that we want
preserved, we set the corresponding bit of MASK to 1. Suppose that we
just want the BRIGHT bit to be masked (i.e. BRIGHT 8). Then referring to
the attribute bit-pattern in chapter one, we see that BRIGHT occupies bit
6. So we set bit 6 of our mask, and have the pattern 0100 0000, or Hex. 40
so we equate the variable MASK to Hex. 40.

If we examine the 8 values that represent the set of INK and PAPER
colours more closely, we find that they are allocated to the colours in an
extremely logical way. All colours are combinations of the three primary
colours, blue, red and green, and each of these colours has been
allocated one of the three bits in each of the INK and PAPER pa tterns.
This makes life easier for the celebrated ULA chip, which crudely
speaking has to forward these bits to the blue, red and green electron
guns which then fire pixels onto your colour telly screen.

Blue is allocated to the lower of the three bits (value 1), then red (value 2)
then green (value 4). Thus the INK and PAPER bit patterns look like this:

HI-BIT
	

LO-BIT

GREEN RED
	

BLUE

and the complete attribute (and mask) pa ttern is as given:

Flash Bright.	 Paper	 Inky.-.

7 6 5 4 3 2 1 0

G	 R	 B	 G	 R	 B

Whenever a primary colour is required to make up another colour, then
its bit is set. Thus cyan, which is a mixture of green and blue, has the
binary pattern

R B

1
	

or decimal 5.

14

White is the combination of all three primary colours, and so has the
pattern

G R B

	

1
	

1
	

1
	 = decimal 7.

while black is a total absence of colour, and is thus represented by:

G R B

	

0
	

0
	 = decimal 0.

Incidentally, there is no difference between bright black (with BRIGHT
1) and dark black (BRIGHT 0). You can check that this is the case by
doing

BORDER 0: PAPER 0: BRIGHT 1: CLS

On entering this line the border and text area will become indistinguish-
able in colour.

An advantage of having the colour values allocated so logically is that
you can mask off individual primary colours or combinations of them,
rather than being restricted to masking all three bits, which is all that INK
8 and PAPER 8 offer from BASIC.

Having obtained values for ATT and MASK, we are ready to create the
new attribute byte for a cell. Loading the old attributes into the
accumulator, the quickest way to perform the operation is:

	

XOR
	

ATT

	

AND
	

MASK

	

XOR
	

ATT

The new attribute byte is now ready to be placed in the attribute file. You
will see such a program fragment appearing in the following print
routine.

We shall store the base address of the character data to be used in the
two-byte variable BASE. This should point at row zero of the first
character in your set. I have made provision for up to 256 characters,
and since each requires 8 bytes, a full set will need 2K of memory. In the
unlikely event that more than 256 characters are required, you will need
two bytes to represent each character, and you could use the hi-byte to
indicate which value of BASE is required, then call the same print
routine.

The Spectrum has the bit-patterns for 96 of its characters in ROM,
ranging from SPACE to the copyright symbol. This data occupies the
last 768 bytes of the ROM, from address 3D00H.

15



;ENTRY: A=CHAR. CODE
C
DE=ATTRIBUTE ADDRESS

3COOH
	 Cu r RZ S - %?

4000H
38H
0

;PRESERVED:

0O3C

;EXIT:

BASE

B =0,

DEFW

0040 DFCC DEFW

38 ATT DE FB

00 MASK DEFB

;CONSTRUCT CHARACTER DATA ADDRESS
PRINT1 LD	 L,A

LD
	

H,0
ADD
	

HL, HL
ADD
	

HL , HL
ADD
	

HL,HL
LD	 DE,(BASE) ^^^ ^ 	 ra0rt.

ADD	 HL,DE	 )
;TAKE DISPLAY FILE ADDRESS

LD	 DE,(DFCC) ^E
LD	 B,8 J s^ 

^.^n ,E

;PRINT CHARACTER ROW BY R0674 "
NXTROti,i	LD	 A, (HL) 10-	 r o

" 
-`r._.	 -

LD	 (DE) , A

INC
INC
	

HL	 `:.I^. R o r^ ^ l^l^c r

D	 ^ $_	 ^k c .a ^ 	 2 s (4 ,

,r•.,c^-.cr.,- ^_. ^F^..F^ ,	 L7 . i f ;c  	 -4".LQ__

DJNZ	 NXTROW 	 	 ),,...f
;CONSTRUCT ATTRIBUTE ADDRESS	 ceS

LD	 A, D	
.^ L^ ^_^ ^1 tL•rgt^. ,.e,. •. .

RRCA	 r> «s t.<._1^ s^., ^	 t,_^ ^ ^s

r ;: ..- ^- T ^ ^,1,1 Q_ ^`7S

s

6F
2600
29
29
29

ED5B0Q00
19

ED5B0200
0608

7E.
12
23
14
10FA

7A
O F

^ a	.

.2 
^1

6'( '.. "r^ t Y:. Ç_.	Q..+Åb^..yr^ ^k t^,..

A	 ,	 r,

AND	 3

OR
LD
LD	 HL,(ATT)

;H=MASK, L=ATTRIBUTE
;TAKE OLD ATTRIBUTE

LD	 A,(DE)
;CONSTRUCT NEW ONE

XOR	 L
AND	 H

XOR	 L

;REPLACE ATTRIBUTE
LD	 (DE),A

;FINALLY SET DFCC TO NEXT PRINT POSITION
LD	 HL,DFCC

INC	 (HL)
RET	 NZ
INC	 HL	 -

LD	 A,(HL)
ADD
	 A , 8	 _._ 

LD	 (HL),A
RET
	

s, . _1.^,.	 *	 <,	 5 „^ t .

0F

0F

3D
E603
F658
57
24400

lA

AD
A4
AD

12

210200
34
CO

23
7E
C608
77
C9

RRCA
RRCA
DEC

D , A

The system variable CHARS on page 173 ,of the Spectrum manual is
quoted as holding '256 less than address of character set'. This may
seem a little odd, until you realize that the first character, a space, is
represented numerically by 20H, or 32 decimal. Now 32 x 8 = 256, so
by setting CHARS TO 256 less than the address of the character set, the
Spectrum can find the address of a character just by multiplying its code
by 8 (rows) and adding it to CHARS.

In the PRINT 1 routine you will notice that I have initialized our variable
BASE to 3000H, so normal CODE values for the Spectrum character set
are applicable. I have also placed An immediately before MASK, so
that the two can be accessed with one LD instruction.
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I made the assumption in the above routine that DF–CC had already
been set to the correct address in the display file, by use of the LOCATE
routine in Chapter 1 or otherwise. You will notice that it is updated to the
next print position every time a character is printed.

As an example to show PRINT 1 in action, here is a routine to print out the
character set from the ROM (codes 20H to 7FH). You will need the
LOCATE routine of Chapter One.

;PRINT1 DEMO
;SET DFCC TO (0,0)

LD	 BC , 0	 0	 ..,

CALL	 LOCATE 	 'u_a
tF -_ ÇS 4f.

;SET BASE TO POINT AT ROM CHARACTER SET

LD	 HL,3COOH
LD	 (BASE),HL

;NOW PRINT FROM CODE 20H TO 7FH

17

010000
CDmP0ß

210fd3C
220000



;REMEMBER PRINT1 PRESERVES THE C REGISTER

0E20	 LD	 C, 26H
79	 LOOP	 LD	 A,C

CD0000	 CALL	 PRINT1
OC	 INC	 C

;WHEN C BECOMES NEGATIVE ()7FH) THEN
;ALL IS DONE

F2OE00	 JP	 P,LOOP

C9	 RET

CHAPTER 3

Plotting and Drawing

Many are the times when you may need to plot stars and positions on
maps or draw laser rays. Here I shall develop a routine to let you plot
anywhere on the screen, and one to draw, using absolute coordinates, a
line between any two points on the screen. The routines are slightly
faster than those in the BASIC ROM, since I have removed a lot of
cumbersome error-checks.

The procedure needed to plot a point on the screen can be broken down
into four stages. First, we find the address of the byte in the display file
which holds the bit representing our 'target' pixel on the screen. Then we
find the address of the attributes of the cell which the target pixel is in.
We then change the attributes according to our standard variables ATT
and MASK, and finally we make the actual plot, taking careful note of
whether INVERSE 1 or OVER 1 is required.

I should remark at this point that given a byte in the display file, which
represents one row of a cell, the left-most bit (BIT 7) represents the
left-most pixel, while the right-most bit (BIT 0) represents the right-most
pixel. A frequent programming error is to think that bit (6 represents the
first (left-most) pixel. The easiest way to remember this is by visualizing
this diagram:

BIT	 7 6 5 4 3 2 1 0

LEFT Most RIGHT Most

1a i 4



You will see that in the PLOT routine I find the attribute address by 	 07	 RLCA 	 &A.

converting the display file address. This is much easier and quicker than 	 07	 RLCA	 ,,.,•,

going back to our original coordinates and calculating the address from 	 AD	 XOR	 L
them.	 E6C7	 AND	 0C7H

AD	 XOR	 L

BASIC system variable of the same name at address 23697 (5C91 Hex.)
1We signify 1 by setting bit 1 of PFLAG, and INVERSE by settingOVER

3.
D5	 PUSH	 DE	 ,

G L
Notice that I am employing a new coordinate system on the screen, 	 ;FIND ATTRIBUTE ADDRESS

which makes it easier and faster to calculate addresses. The top left- 	 7A	 LD	 A, D

hand corner is (0, 0) while the bottom right-hand corner (including the 	 OF	 RRCA

INPUT lines) is (255, 191). Here, then, is the routine. 	 OF	 RRCA

OF	 RRCA
AND	 3
OR	 58H
LD	 D,A	 ,i ;.,_,,.
LD	 BC, (ATT) '7•-40-k» r,.,

;CHANGE ATTRIBUTE

LD	 A,(DE)
XOR	 C	 ....,7„L.,_.-,
AND	 B	 ,...:.:1
XOR	 C
LD	 (DE),A

;RETRIEVE D.F. ADDRESS
POP	 DE
LD	 A,H
AND	 7

LD	 B,A
INC	 B	 ;

;B HOLDS (TARGET BIT NUMBER )+1
LD	 A, OFEH

;ROTATE A WINDOW TO THE TARGET BIT
PLOOP	 RRCA	 +),

DJNZ	 PLOOP	 'ry	 ,.,-,,Ï:	 k 	 - :f

LD	 B,A	 7,

LD	 C , A
LD	 A, (PFLAG) rs^E2 i	 wv,:

j 4,F.-..J;^c^'n,	 ,k.'Y a	 C-

;TAKE BYTE FROM D.F.
LD	 A , DE	 + .

07	 -RLCA	 o ,av	 "^	 _	 ;CHECK FOR OVER 1

	

_	 s 

;ADDRESSbit

The routine decides whether to use OVER or INVERSE by referring to 	
07
	 RLCA

two flags in a one-byte variable called PFLAG. This is equivalent to the 	
07	 RLCA.

,5F LD	 E A
IS STORED IN DE

;ENTRY:	 H=X,	 L=Y	 E603
;PRESERVED:	 HL	 F658
;EXIT:	 DE=ADDRESS OF PIXEL IN DISPLAY FILE 	 57

;A=(DE) ,	 C=(PFLAG)	 ED4B0000
;TOP LEFT—HAND CORNER =	 (0,0)

lA
;BIT 1	 (PFLAG)=OVER	 A9
; BIT 3	 (PFLAG)=INVERSE	 AO
;	 A9

12
38	 ATT	 DEFB	 38H	 -'°

00	 MASK	 DEFB	 0	 D1

00	 PFLAG	 DEFB	 0	 7C

;	 E607
;FIND ADDRESS OF REQUIRED BYTE IN D.F. 	 "	 47

7D	 PLOT	 LD	 A,L	 j	 04
E6C0	 AND	 OCOH	 "
1F	 ,— RRA ,_L .	 3EFE
37	 SCF	 M	 as,.	 4
1F	 RRA	 OF

OF	 _.	 RRCA	 +,^.?.e-	 rs ,	 '	 .s	 ,:..r.-,-Y,.	 10FD
AD	 XOR	 L	 tip,....	 a-	 -	 -	 .n,._ ,.c \ .:...^	 47
E6F8	 AND	 OFBH	 7	 3A020ffl

e_	 ..
XOR	 L	

c
AD	 r ,s,	 4Fv_	 , r^.'

57	 LD	 D , A	 ^	 +	 ;_',.._.^.\	 ,.)
ti_.c ._.c.	 c,_	 -".-	 lA



CB49	 BIT	 1,C
2001	 JR	 NZ,OVER1
AO	 AND	 B

;CHECK FOR INVERSE 1
CB59	 OVER1	 BIT	 3,C
2002	 JR	 NZ,INV1

A8	 XOR	 B
2F	 CPL
12	 INV1	 LD	 (DE),A
C9	 RET

The final po rt ion of the routine, that does the actual 'plotting', merits a
more detailed explanation. Ignoring what happens to the other seven
bits in our byte, since they are always unchanged in the end, let us
examine the behaviour of the 'target' bit.

AND	 B

makes the target zero if OVER Q is selected. OVER 1 causes the
instruction to be skipped.

BIT	 3,C
JR	 NZ,INV1

causes a jump to the end if INVERSE 1 was selected, leaving the bit as it
was if OVER 1 was selected, or zero (PAPER) if OVER 0 was selected.

Finally, having 'narrowed down' our selections to INVERSE 0,
XOR	 B
CPL

which may be thought of more clearly as
XOR	 B
XOR	 OFFH

leaves the bit complemented in the case of OVER 1, or set in the case of
OVER 0. The byte is now replaced in the display file.

****

Following on from the PLOT routine, I decided it would be a worthwhile
exercise to develop our own machine-code DRAW routine. Although it
uses the same algorithm as that in the Spectrum ROM, the routine will
run somewhat faster due to the use of 'optimized' code and fewer error
traps.

I shall be using absolute coordinates as the parameters for the routine,
rather than the relative ones used in Spectrum BASIC. This is largely a
matter of personal preference, and the routine is easily altered to
provide relative drawing. As for the PLOT routine, the coordinates are
assigned thus:

2?

(255.0)

(255,191)

In order to discuss the drawing algorithm, let us assume that the line is
from (X1, Y1) to (X2, Y2), both inclusive. Before going any further, the
routine plots the first point on the line. Now some preparation is needed
to decide which direction to draw in.

If (X2–X1) is positive, we will be drawing to the right. If it is negative, then
to the left. Similarly, if (Y2–Y1) is positive, we will be drawing down-
wards, otherwise the direction will be upwards.

The routine loads the D and E registers with the unit changes in X and Y
(respectively) related to the direction along each axis. For example, if
we were drawing upwards and to the right, then the change in X would
be positive (D = 1) and that in Y would be negative (E = –1). So the
routine produces:

DE=951FFH

We now need to consider exactly how a line can be formed by making
unit steps either horizontally, vertically or diagonally between points on
a grid. A moment's thought reveals that, unless the two points at either
end of the line are on a diagonal of pixels, we will need to combine a
mixture of 'straight' steps and diagonal steps to draw the line. The
routine allocates the BC pair as follows:

B=ABS(X2—X1)	 C=ABS (Y2—Y1)
If B is greater than C, then we will need a mixture of horizontal and
diagonal steps, thus:

While if B is less than C, a mixture of VERTICAL and diagonal steps is
required, such as this:

2:1

(0191)

(00)



The routine decides whether we need vertical or horizontal steps, and
stores the required value of DE, as explained earlier, in the variable
VHSTP. The direction of the diagonal steps is stored in DIASTP.

The values in B and C are stored so that B is greater than or equal to C.
We are now just about ready to begin plotting the line, which will have
(B–C) straight steps, and C diagonal steps. In order to ensure that the
straight and diagonal steps are evenly distributed, the following pro-
cedure is used.

B is copied to H, and then halved and copied to L. Now, entering the
loop, C is added to L, and if the result equals or exceeds B, then it is
reduced by B and a diagonal step is taken. Otherwise, a straight step is
taken. A point is plotted, the counter in H is decremented and the loop is
repeated until the line is complete.

What this loop can be thought of as, is continually adding C to itself and
taking a diagonal step every time the result passes a new multiple of B.
The reason L is initialized to 1/2 B is simply to ensure that the line is
straight at the beginning.

Here at last is the DRAW routine; the most useful exit values are the
coordinates of the last point plotted, in HL. Since HL also holds the
coordinates of the first point of a line on entry to the routine, we see that it
can be used without alteration between calls to the DRAW routine, to
draw lines to, and then from, the same point. This facility will be heavily
utilized in the demonstration program following the routine.

;ENTRY: H=X1, L=Y1, B=X2, C=Y2
;SO DRAWS FROM (H,L) TO (B,C) INCLUSIVE
;PRESERVED: NONE
;EXIT: DE IS THE ADDRESS OF THE LAST

PIXEL PLOTTED WHICH IS AT (H,L).
B IS THE GREATER, AND C IS THE
LESSER OF ABS(X2—X1) AND ABS(Y2—Y1).

•

0 100
	

DIASTP DEFW	 1
0 100
	

VHSTP	 DEFW	 1

24

C5

CD0000
Cl
110101

78

94
3004
15
15
ED44
47

79
95

3004
1D
1D
ED44
4F

BO
C8
79
B8
E5

62
6B
220000

2E00

3804
65

DRAW	 PUSH	 BC
;PLOT (X1,Y1)
DRAW	 CALL	 PLOT

POP	 BC
LD	 DE,0101H

;DE HOLDS THE DIRECTION OF THE
;X AND Y STEPS

	

LD	 A,B
;GOING LEFT (-1), OR RIGHT (+1)?

	

SUB	 H

	

JR	 NC,X2X1 °

	

DEC	 D

	

DEC	 D
NEG

X2X1	 LD	 B;Â
;B HOLDS NO. OF STEPS IN X

	

LD	 A,C

	

SUB	 L

;GOING UP (-1), OR DOWN (+1)?

	

JR	 NC,Y2Y1

	

DEC	 E

	

DEC	 E	 <.

	

NEG	 i
Est 

Y2Y1	 LD	 C,Ar	 <`+
;C HOLDS NO. OF STEPS IN Y '° N	 c„

;CHECK THAT LINE ISN'T A POINT
OR
RET

	

LD	 A , C ^ s 't-w	 cà
cLA

	

CP	 B b- 
PUSH	 HL	 ^^ y r>

	 a,_r.

;STORE THE DIRECTION OF A"DIAGONAL STEP

LD	 L,E
LD	 (DIASTP),HL

;DECIDE BETWEEN VERTICAL AND
;HORIZONTAL STEPS DEPENDING ON
;WHICH IS THE BIGGER OF B AND C

LD	 L, 0 .	 -	 •,le ,.  ^ yr.	 -	 °	 . .ry r> v ,. .t	
`

JR	 C , B B C
LD	 H , L	 y+.r • . s , 1 1	 444_

LD	 H , D 
A •, — ^ ^ h. -

,- lß s

sAN

,4L,...."r

25	 r ^. ^.^, . .. ^ u ^, m--



6B	 LD	 L,E	 r,

20DC
El

r¢,^a.^. Rt
JR	 NZ,NXTSTP	 ,.^4	 ;Lr..,
POP	 HL	 \A L

48	 LD	 C,B	 ,

47	 LD	 B,A
C9 RET

;STORE THE V/H STEP

220200	 BBC	 LD	 (VHSTP),HL
,'rc-> zc

In the following machine language demonstration program,
combined the use of CLS (see Chapter one) with PLOT and
produce a 24-line interference pattern, which I am reliably

I have
DRAW to
informed

;
;B IS NOW )=C. THE ROUTINE TAKES B—C

;STRAIGHT STEPS AND C DIAGONAL ONES

	

LD	 H, B

	

LD	 A,B	 ,
SRL	 A	 -	 '

	

LD	 L,A
7D	 NXTSTP LD	 A,L

ADD	 A,C
;DECIDE ON A DIAGONAL OR A STRAIGHT STEP

	

;THIS TIME	 ^1 t^ ..	 !.,.	 -.y

3803	 JR	 C,DIAG 	 v ^c..

B8	
r. 

	G P	 B	 T .^	 ß 77 r '^ i;, + C . . .-1--Q-',

3808 ^'^.,. ^ ^ ^	 - , î 3', -,JR	 C,VERHOR	 ^' "	 er
90	 DIAG	 SUB	 B	 •, - - ,>	 = 5:';_° t

6F	 LD	 LA	
,2r ^	 .,•.,

,

ED5B0000	 LD	 DE,(DIASTP)
1805 t 	ti.."' ^	JR	 STEP
6 F = .^ ^

	

VERHOR LD	 L,A	 ,^,	 ,	
.tED5B02^1Q	 LD	 DE, (VHSTP) .; 

P	 ::^ .^
k^

v-{,	 <r.^

60
78
CB3F
6F

81

E3	 STEP	 EX	 (SP),HL
;MAKE THE STEP ALONG X

7C	 LD	 A,H	
^ 

rF ,

8 2 ^^	 ,-	 ,^,	 y  .

67	
ADD	 A, D	 ,- ^ ^..- ^̂.... ,^ • -'...0.1...,,,,,6,......j
L D	 H ^ A 	

• • 4.. !^ ., ,	 : ^^ ,.^..- A.,

;MAKE THE STEP ALONG Y
7D	 LD	 A, L ".V-4" .	 ' .	 , r , ö.. ,

C5
CDIDk700)

Cl

E3

83
6F

25

ADD	 A,E 
ctt.,u,

LD	 L, A
;THE ACTUAL PLOT!!!;!!

Y.^4sn.wz._a s 	(`,,^,,,	 < •,PUSH	 BC	 1.. 	 ce- . ,a.^. ,, .t,_^F _ r}^ t—	 4' 
c.

CALL	 PLOT OLA-Vs
POP	 BC

;RETRIEVE COUNTER
EX	 (SP),HL
DEC	 H	 fa, , ^^.^_ ^; s r41 ti.c_c.r .xn_T^ ^^ v ^	 r

,. ^. 
tr4-1.0X c aA , ,i^ ^ v e r^_c V	 I.t

^. _1ra 3 ^^- 4r_Lc;hv c ^c "' C r 1 `
26

looks like a heavy paperweight on a soft cushion, from above.

If you are calling the routine with USR under direct command from
BASIC, then it would be a good idea to follow the USR function with a
PAUSE p statement, so that the bottom two lines of the pattern are not
destroyed on return. The comments in the listing should provide
adequate explanation of the program's operation.

;DEMO ROUTINE FOR CLS, PLOT AND DRAW

3E0E	 MOIRE	 LD	 A,0EH
;BLUE PAPER, YELLOW INK

CD000P	 CALL	 CLS
;OVER 1

3E02	 LD	 A,2
320000	 LD	 (PFLAG),A

;BORDER 6
3E06	 LD	 A,6
D3FE	 OUT	 (OFEH),A

;SET ATTRIBUTES & MASK
210E00	 LD	 HL,QQOEH
220000	 LD	 (ATT),HL

;DRAW TOP BORDER (BC=O)
210OFF	 LD	 HL,0FFOQH
CDoQQm	 CALL	 DRAW

;DRAW LEFT BORDER
2C	 INC	 L
01BF00	 LD	 BC,00BFH
CD000(1)	 CALL	 DRAW
24	 INC	 H

;NOW CREATE PATTERN IN THE REMAINING
;(255-191) PIXELS

E5	 NXTDR1 PUSH	 HL
;DRAW FROM LEFT SIDE TO CENTRE

$16080	 LD	 BC,806QH
CD0Q00	 CALL	 DRAW

27



;NOW FROM CENTRE TO RIGHT
POP	 BC
PUSH	 BC
LD	 B4OFFH
CALL	 DRAW

;DECREASE COUNTER TO NEXT ROW
;UP THE SCREEN

POP	 HL
DEC	 L
JR	 NZ,NXTDR1
INC	 L

NXTDR2 PUSH	 HL
;DRAW FROM TOP EDGE TO CENTRE

LD	 BC,8060H
CALL	 DRAW

;NOW FROM THE CENTRE TO THE
;BOTTOM EDGE

POP	 BC
PUSH	 BC
LD	 C ,' iBFH
CALL	 DRAW

;INCREMENT COUNTER TO THE NEXT PIXEL
;COLUMN (RIGHTWARDS)

POP	 HL
INC	 H
JR	 NZ,NXTDR2
RET

C1
C5
06FF

CD0m0m

E1
2D
20EE

2C
E5

016cb8m

CDmOOO

Cl
C5
(pEBF

CD00q0

El
24
20EE

C9

If speed is of the essence then I should warn you that the DRAW routine
should only be used if 'general' lines from non-specific points are
required. It is almost always quicker to use a customized routine,
perhaps employing a look-up table of plotting coordinates, if specific
lines are being drawn.

For example, if you frequently needed to draw a line right across row 0 of
the screen, then it is far quicker to load the first 32 bytes of the display file
with FFH than it is to DRAW from (0, 0) to (255, 0).
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CHAPTER 4
Producing Animated Loading
Screens

It cannot have escaped your notice that almost every self-respecting
games program for the Spectrum presents you with a pretty picture to
look at, to help you pass the time while the machine code makes its slow
and ponderous way along the black lead between your tape player and
your computer. The aesthetic appeal of this 'loading screen' is usually
proportional to the amount of hard graft and graph paper that went into
designing and coding the picture, both of which can be considerable,
even with the use of a good 'screen graphics designer' utility program.

In this chapter I will provide you with a pair of sho rt utilty routines to
produce a spectacularly eye-catching but easily implemented
alternative style of loading screen.

Ask yourself the question 'What does the ULA do while the Z-80 is busy
loading a program from tape to RAM?' The answer is the same as
always; it copes with all input, output and generation of the screen
display. The last function includes FLASHing the INK and PAPER
colours of any cell whose attribute has bit 7 set. We can use this property
to produce a screen which flashes between two images, perhaps
showing a figure in two different positions thus 'animating' it whilst
loading, or as an alternative, showing two separate words of the title of
the game.

The concepts involved with this technique are very simple. We will take a
blank screen, and then print different coloured spaces on it, controlling
the colour of these spaces with PAPER commands. The resulting
coloured cells will form our first image, and hence we have a 32 column
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HL, 5800H
DE,I MACE 1' 	 <.
BC, 300H	

..,
.

ATTSTR LD
LD
LD
LDIR
RET

IMAGE1 DEFS	 768

;MASK OFF ITS PAPER AND BRIGHT VALUES

^	 f 3 ^{ k i.

E678	 AND	 78H

;STORE IT AGAIN

LD	 (HL),A

;TAKE CURRENT ATTRIBUTES

LD	 A, (DE) .t.

;SHIFT THE PAPER BITS INTO THE INK BITS
;AND MASK THEM

77

1A

x 24 line grid to design the image in, each cell being one of eight
colours. When the first image is complete, we will use a sho rt machine
language routine to copy the attributes into 768 bytes of reserved
memory for later use.

We then use another BASIC sequence to print a second image of
coloured, blank cells on the screen, and we 'pair off' the attributes of the
second image with those of the first one. The PAPER attributes of the
second image are shifted three bit to the right (into the INK position) and
are then blended with the PAPER and BRIGHT bits of the first image.

The FLASH bit is then set, and the completed byte is replaced in the
attribute file, whereupon the cell concerned starts FLASHing between
the two colours provided by the images (these may, of course, be the
same).

A composition diagram of the new attribute byte may be of assistance:

The routine to 'blend' the stored image with that in the attribute file is
almost as simple. BLEND places the new image back in the attribute file,
and that's abut all the explanation this listing needs!

;MIX IMAGE 1 FROM STORAGE WITH CURRENT
;ATTRIBUTES

;EXIT: DE=5B 0H, BC=4, A =0

BLEND	 LD	 DE,580,0H
LD	 HL,IMAGE1
LD	 BC , 30.OH

210058
11000O
O'10.ßs3

EDB0
C9

F
L

B
R

I
G

Ate— X	 PAPER	 X INK 110058
210000

0 1,0003

S
--^

H H
6 T 5 4 3 1

;TAKE BYTE OF IMAGE 1
Set for	 From	 From
Flash 1	 Image 1	 Image 2

This technique has the advantage over conventional loading screens
that only the attribute file of 768 bytes is required, as against the 6.75K
(6912 bytes) of memory occupied by the standard loading screen. Thus
the screen may be loaded in one ninth of the time normally required, or
about five seconds, before moving swiftly on to load the game itself.

An 'animated' loading screen was first used commercially in Bug Byte's
highly successful Manic Miner, now published by Software Projects.
The two images used were colourful manifestations of the words 'Manic'
and 'Miner'.

Well that's about all the theory, so how about some machine language?
First we need a mega-simple block shift routine to copy the attribute file
into 'safe' memory, which I have reserved as the 768 bytes from the label
I MAGEZ .

;MOVE IMAGE 1 FROM ATTRIBUTE FILE TO
;STORAGE AREA

;PRESERVED: A
;EXIT:HL=5BOOH,BC=0
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7E	 NXTATT LD A, (HL)

OF

0F

OF

RRCA
RRCA
RRCA



E607 AND 7 c-._rr s C <.

;BLEND THESE BITS WITH THE PAPER AND BRIGHT BIT
;OF IMAGE 1

B6 (HL) CHAPTER 5

Scanning the Keyboard
F680

OR

;SET FLASH 1

OR

.Q..Qa.^I i 2 E..c.

s

;STORE COMPLETED BYTE IN ATTRIBUTE FILE

12

13
	

INC
	

DE
23	 INC

	
HL
	 L ^1rz.-...Y+ ^ oa[.A.r'. ••- 	 .

78
	

LD
	

A,B

VJ B
	

DEC
	

BC
^.)	

c_%. v. ^ 	 r < Z<+^. ,^

N4...,r..hsx.. [_t)

-. V R.c^ .l . ^-CJ}._e. . l [ .1

B1
	

MR
	

C
20EB	 JR
C9
	

RET

Once the final image has been created in the attribute file, you can either
SAVE the bytes direct to tape, using:

SAVE (NAME) CODE 22528,768

or, if you have been using the bottom two lines and don't want them to be
corrupted by the tape messages, then use ATTSTR again to shift the
attributes to 'safe' memory unaffected by the screen, and SAVE them
from there.
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In this chapter I shall explain how the keyboard is mapped and how to
read keys or groups of keys in machine language.

The more numerate among you will have noticed that the Spectrum has
in fact got 40 keys. These appear as four rows of 10, but the computer
finds it easier to consider them as eight half-rows of five keys, on
account of there being less than 10 bits in a byte.

If you have ever dared to remove the lid from your Spectrum (not an
option to be recommended, as this technically invalidates your guar-
antee), you will have found that the keyboard is connected to the printed
circuit board with two rather flimsy-looking ribbon cables. Closer exami-
nation reveals that one of these has eight tracks, and the other has five.
In fact, each of the tracks on the larger cable is connected to one of bits
8 to 15 (the HI-byte) of the address bus, while the smaller cable is
connected to the lowest five bits (0 to 4) of the data bus.

When the Spectrum makes a complete scan of the keyboard (every
fiftieth of a second), the procedure it adopts is as follows. To each of the
address lines in turn, it applies a 'current'. Now each of the five keys in
the corresponding half-row can be considered as a switch, connected
between one of the five data lines and the address line, and allowing a
current to flow when depressed. The computer reads the five data lines,
and if a current comes through on a line then it knows that the corre-
sponding key is depressed, and acts accordingly.

We label the address lines (by convention) A8 to A15, and the data lines
DO to D4. The address lines are allocated to the half-rows in the following
way:
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;REPEAT FOR THE NEXT CELL

LD (DE),A

" 
T 2

NZ , NXTATT ;.i„1.,.,
„- .,	 ,. ^.,^ 4;• 	, . _ ^^  .



1	 A11 5 6 Al2	 0

Q	 A10 T Y A13	 P

A9 G H A14	 ENTER

Caps	 A8 V B A15 Space

Whenever we want to read a particular half-row, we send its address line
low (zero). Similarly, whenever a key on that half-row is depressed, its
data line goes low (zero). Otherwise it is high (one).

The data lines are attached to any half-row with the lowest bit (DO) on the
outside, counting inwards. Hence the mapping for the second row (for
example) is as follows:

DO D1
	

D2 D3 D4 D4 D3 D2 D1 DO

Q W E R T Y U
	

O P

V	 V'

A10	 A13
Well that's the theory out of the way, so now down to the actual practice.
The keyboard itself is selected (rather than some other peripheral such
as a microdrive or printer) by sending address line AO low. Hence the
low byte of our input po rt address is FEH, and we either use the
instruction

IN	 A, (0FEH)	 Ff.

or we load the C register with FEH and use
IN	 r, (C)

where r is a single register. First, however, we must load the hi-byte of
the address into A or B (depending on which instruction we are using).
For example, suppose we want to read the half-row A to G. This has line
A9 (bit 1 of the hi-byte), so we load our register with the binary pattern
1111 1101 =OFDH

Hence a suitable fragment to read the half-row would be
A, (pFi)H	 r••

	 (	 „ c^

A, OFEH)	 s-	 4	 ;^.-,..^	 5 ^.«2ssad ,t5
^ (

Ÿ' Q ^!
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For your convenience, here is a table of hi-bytes to read each half-row.

HALF-ROW	 LINE	 BIT HI-BYTE BIT-PATTERN

CAPS SHIFT— V A8 0 FE = 1 1 1 1 1 1 1 0
A— G A9 1 FD = 1 1 1 1 1 1 0 1
Q—T A10 2 FB = 1 1 1 1 1 0 1 1

1 -5 A11 3 F7 =1 1 1 1 0 1 1 1
6— 0 Al2 4 EF = 1 1 1 0 1 1 1 1
Y— P A13 5 DF = 1 1 0 1 1 1 1 1

H— ENTER A14 6 BF = 1 0 1 1 1 1 1 1
B— SPACE A15 7 7F = 0 1 1 1 1 1 1 1

We are now able to produce a program fragment to test the BREAK key
(SPACE). To test it on its own, rather than with CAPS SHIFT, we use

LD	 A,7FH	 •
	 '`

IN	 A, (OFEH)	
a-,.x	 r

RRA	 ;MOVE DO INTO CARRY
JP	 NC, BREAK	 ;BREAK IF D0=0

Whilst on the subject of BREAK, it may interest you to know that due to a
fluke of hardware design on the Spectrum, it is possible to BREAK a
Spectrum in BASIC without actually pressing the BREAK key. For some
reason, pressing CAPS SHIFT with any of the following pairs of keys
causes DO to go low whenever Al 5 is sent low, making the Spectrum
think that BREAK is being pressed.

Here are the four magic combinations:
CAPS SHIFT with Z and SYMBOL SHIFT
CAPS SHIFT with X and M
CAPS SHIFT with C and N
CAPS SHIFT with V and B

So you know what to do next time your BREAK key breaks! In fact, you
will find that if you take any whole row of keys, then press any pair of
them attached to the same data line, then press any other key on that
row, it will appear to the Spectrum that the other key of that row on the
same data line is also being pressed. That may sound a little
complicated, so let me give you an example. Press T and Y together
(both on data line D4 on the second row). Now press W (on D1). The
computer will think that O is also being pressed, since this is also on line
Dl. This is of little practical use, but fascinating none-the-less.

It is possible to read more than one half-row in one go, simply by
resetting more than one bit in the hi-byte of the input address. For
example, to read the entire bottom row (lines A8 and A15), the value
would be binary

0111 1110 = 7EH
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The value returned is determined as follows. If any of the keys attached
to one particular data line are depressed, then the corresponding bit is
zero. Otherwise it is set. Hence if we are scanning the bottom two rows of
the keyboard, then D1 will be reset if any of the keys Z, S, L and SYMBOL
SHIFT are depressed.

The routine will return a 'control code' which will depend on which of the
control keys are pressed. Allocating one bit of the code to each of the
four main directions up, down, left and right, and one bit to our 'fire bar',
we can denote all other directions by setting combinations of these five
bits. I have allocated the bits as follows:

This leads us to an easy way of testing to see if any key on the entire
keyboard is pressed, as might be required before the start of a new
game.

XOR

WAIT IN
CPL
AND 1 FH
JP	 NZ,GO
JR	 WAIT 

If a key is being pressed, then the zero flag will be reset, and a jump
made to start the game, or whatever you were waiting for. Otherwise the
routine will jump back to WAIT with the A register holding zero again.

We now have all the information necessary to design a complete
keyboard-scanning routine. As an example, I shall describe the
development of a games routine, providing 8-directional control and a
'fire' bar

I shall be using the keys 1 for up, A for down, I for left, P for right, and any
key on the entire bottom row for 'fire', thus:

A

CAPS SHIFT	 * FIRE*	 SPACE

A
A, ((ßFEH)

;A=j,SO SCAN ALL HALF ROWS
;READ BOARD
;MASK OFF 1REQUIRED BITS AND
;CHECK FOR ALL l'S
;JUMP IF KEY PRESSED

P

BIT	 CONTROL

0 RIGHT
1 LEFT
2 DOWN
3 UP
4 FIRE

Thus the values returned will be as illustrated:

8

2 1

4

+16 WHEN 'FIRE' IS PRESSED l

The three spare bits in the code will, of course, be zeros. Note that since
'North-East' is a combination of upwards and to the right, the
corresponding control code is 8+1 =9. Similarly for the other three

diagonal directions.

Now obviously there are some control values that just wouldn't make
sense, for example the value 3 (= 1 +2) would indicate a desire to go
both right and left. The user has pressed too many keys, and instead of

z a, 1 c..,	 ,
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being 'biased', by always choosing one of the two directions in favour of
the other, it would be fairer if our routine were to ignore both key presses.
This it does, by calling the sub-routine CHECK twice in succession;
once for left–right, and once for up–down. On entry to CHECK, the B
register holds a 'mask' for the two bits we wish to examine. We are
testing for the 'illegal' binary code of 11, and for this we use the fragment

	CHECK	 LD	 A,C	 ;C HOLDS THE CONTROL CODE
CPL
AND	 B
RET	 NZ

which returns if the code is found to be legal. Otherwise we have found
the illegal code 11 in C, and the routine completes its task by resetting
the offendina bits. with

	LD	 A,B

	

XOR	 C

	

LD	 C,A
RET

The rest of the routine listing is self-explanatory and highly demonstra-
tive, so here it is!

;ENTRY: NONE
;PRESERVED: DE,HL
;EXIT:C=CONTROL CODE, B=12

;READ HALF—ROW Y—P

n¢.

2F	 CPL	 r.

AND	 5

;PUT I IN BIT 1, AND P IN THE CARRY

1F	 RRA ^._ ems,	 hr°1

;MOVE P FROM THE CARRY TO BIT 0

; } ,4c) + c. ,.c:,_••Pr,

....	 (.,..^.+^ r"^	 i1.r . :^-,_^,

s, 	Y	 \-Z:k ¢ ^

;STORE THE LEFT—RIGHT CONTROL IN C

LD	 C,A

•

;READ THE A KEY

3EFD	 LD	 A, (dFDH

DBFE	 IN	 A,(k1FEH)

1F	 RRA

;JUMP IF A NOT PRESSED
r

JR	 C, NDOWN

CBD1
	

SET	 2,C
rr

•
;READ THE 1 KEY

3EF7	 NDOWN	 LD	 A,0F7H
DBFE	 IN	 A,(OFEH)
1F	 RRA

;JUMP IF 1 NOT PRESSED

3802	 JR	 C,NUP
CBD9	 SET	 3,C

;	 c	 ,	 ,, 	 i,
;CHECK FOR LEFT AND RIGHT BOTH
;BEING PRESSED

0603	 NUP	 LD	 B,3
CD3200	 CALL	 CHECK	 , ,fi_.

;CHECK FOR UP AND DOWN BOTH
;BEING PRESSED

060C	 LD	 B,12
CD3200	 CALL	 CHECK

;READ THE BOTTOM ROW

3E7E
	

LD	 A, 0 7E H

DBFE
	

IN	 A, (PIFEH) ^,re.

2F
	

C PL	 or, r<r <.'r,::
E61F
	

AND	 1FH	 ta ._a
C-^^.i. o--A p ^ Y 	 I.

5	 r. •J

3EDF	 SCAN1	 LD	 A,ODFH	 `'( T°
DBFE	 IN	 A, (OFEH)

;MASK I AND P KEYS

E605

Ct.

CE00 ADC	 A,0

4F

3802

38 39



;RETURN UNLESS "FIRE"

C8	 RET	 Z
CBE1	 SET	 4,C
C9	 RET

;CHECK FOR "IMPOSSIBLE" DIRECTIONS
•

79	 CHECK	 LD	 A,C
2F	 CPL
AO	 AND	 B
CO	 RET	 NZ
78	 LD	 A,B
A9	 XOR	 C
4F	 LD	 C,A
C9	 RET	 ..^•	 ^4

r-:

CHAPTER 6

Player-Selectable
Control Keys

ei,A.kw.4-1 a .

r: .r... 'v-. t..•1	 .a,-;^ca_¢ r7.-G^

p o o 0 1 O G G I

4.,
^f•-^. W ... . . xa G 1 et C d^ lz c .

In the last chapter I concluded with an example of how to develop a
typical games keyboard control routine, using a predetermined choice
of keys. It can often be an advantage in terms of user-friendliness,
however, if the user is allowed to select her or his choice of control keys,
to suit personal preference and number or shape and size of fingers,
thumbs and hands. I shall provide the fundamental routines to allow you
to do this in this chapter.

Picture, if you will, our typical player, poised over the keyboard and
awaiting our every command, as the game finishes its long and tortuous
journey from tape to memory. He is told to press any key (as is invariably
the case). He is now asked to select a key to control (say) the upwards
movement of his spaceship. Now first we must wait for him to stop
pressing 'any key'. The following fragment will do, and is equivalent to
the BASIC line.

10 IF INKEY$< >" " THEN GO TO 10
S_z-r.

WAIT — XOR	 A
IN	 A,(OFEH) ;READ ENTIRE KEYBOARD
CPL	 ;IF ANY KEY PRESSED
AND	 1FH	 ;THEN WAIT •
JR	 NZ ,WAIT	 ^`; ,...

Now we are ready to select the 'upwards' control. What is required is a
routine that will return a unique value for each key pressed, and that tells
us when no key or more than one key is being pressed. The key value will
then be stored away for use during the game, when a separate routine
will tell us if the key associated with that value is depressed.
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;TEST THE OTHER 7 HALF—ROWS

1D	 NPRESS	  DEC_S
CB00	 __,mal RLC	 B 
38E8	 JR	 C, NXHALF .,.

!j
The following routine, KFIND1, returns a key value in the D register with
the zero flag set, if exactly one key is depressed. If no key is held, then D
will hold FFH, while if more than one key is held, then the zero flag will be
reset, indicating an error. The key values, ranging from 0 to 27H, are
allocated as follows (all values in hexadecimal).

;TEST FOR MULTI—KEYPRESS

14	 INC

24 1 c 14  1 C 4 3I B 13 11B 23
;RETURN WITH Z !RESET IF SO

1251 C 7J RET	 NZ
15 11D 1A 22D A2 12 1

26 1E 16 9 11 19 1 21 ;CALCULATE KEY VALUE -

27
	

1F
	

17

To the human eye that layout may seem somewhat crazy, until you
realize that it will make life easier for the later game control routine.
Looking at the hex values closely, we see that the lowest three bits tell us
which half-row the key is in (and so which po rt to address) while bits 3, 4
and 5 tell us what position in that half-row the key holds. Here is KFIND1.

67	 LD	 H, A
7B	 LD	 A,E
D608	 KLOOP	 SUB	 8
CB3C 	 —_ ^ ' SRL	 H
30FA	 JR	 NC, KLOOP

;TEST FOR MULTI—KEY PRESS'

F 7 0 8 10 18 20

;ENTRY: NONE
;PRESERVED: L
;EXIT: D=KEY CODE, D=FFH IF NO KEY PRESSED.
;ZERO FLAG RESET IF MORE THAN ONE KEY PRESSED.
;OTHERWISE, ZERO SET AND A=D

112FFF KFINID1 LD	 DE,OFF2FH
01FEFE	 LD	 BC,CdFEFELt

CO	 RET	 NZ
;STORE KEY VALUE IN

57 LD	 D,A

;D STARTS AT "NO—KEY" E HOLDS INITIAL KEY VALUE
;FOR EACH HALF—ROW
;BC HOLDS PORT ADDRESS

;READ A HALF—ROW
s

;SET ZERO FLAG

BF	 CP
C8	 RET

z ,.n ^.^

.	 ^. ^.

7	 ^. ]	 4 ^

ED78	 NXHALF IN	 A, (G^;ç^-Pr -,	 ) ' s

2F	 CPL
E61F	 AND	 1FH

;JUMP IF NO KEY PRESSED

280C	 JR	 Z,NPRESS

r. A U
•

A typical fragment to wait for a legal keypress in response to our 'please
choose a key for upwards' prompt, would be:

REPT CALL KFIND1 ;SCAN KEYBOARD

JR NZ,REPT ;REPEAT IF ILLEGAL ENTRY

INC D ;REPEAT IF NO KEY WAS

JR NZ,REPT ;PRESSED T,	 2.7

DEC D
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KTEST1 LD

;LET B=16-(ADDRESS LINE N0.)

	

5...A-, f`>	 r o	 1b'.

AND
INC	 A <
	 z	 ^•^

%	 .

LD	 B,A

C	
^n k s

C
C
A,5

I have named the complementary routine to KFIND1, KTEST1. Every
time the Spectrum needs keyboard control during a game, we must call
KTEST1 once for each selected control key. The routine will read that
key, and return with the car ry flag reset if it is depressed, and set
otherwise. The only parameter required by KTEST1 is the value of the
key we are testing, entered in the accumulator. Here is the listing,
followed by a worked example.

;ENTRY: A=KEY TEST VALUE
;PRESERVED: HL, DE
;EXIT: CARRY RESET IF KEY DEPRESSED, SET
;OTHERWISE BC =O

4F

E607

3C
47

;LET C=(DATA LINE N0.)+1
;I.E. LET C=5-INT(C/8)

SUB	 C
LD	 C,A

;CALCULATE HI-BYTE OF PORT ADDRESS

z - F^^ . ^.	 i :	 , 
n .

LD	 A,(DFEH .L 	 ca,t, E U rai^, ,,,.;..

RRCA	 4 « a r, (4.^ GJra, r^s

DJNZ	 HIFIND c...'..Yc.M.L 
'1,  C''' ."k.r,-), V -5-r`

.:la..._•. c..r.....,.h ,	 t.) Y » 	 ci,)	 Y o	 5 '. v p- 1.4..*--
<.., f,p, a jir c.<,.1rç. J-,.,.S 1._ _ }ayN-c r.-) r t..- ‘.2.,,,,..'y G..4-'14ß r s

DBFE	 IN

^

;PUT

44

NXKEY
C	 ..

NZ,NXKEY

As an example, let's suppose our game involves movement in eight
compass directions and a fire button. For this our user will have chosen
five control keys, for up, down, left, right and fire. Let the associated five
key values be stored in a table pointed at by HL, in the order fire, up,
down, left, right. We will use the same 'control values' as in the previous
chapter, namely:

8	 uC

1	 +16 FOR FIRE

4

A suitable routine to build up the control value in the E register is as
follows.

;E IS ALSO A COUNTER
;TAKE KEY VALUE

;LOOK FOR A KEY-PRESS
;1=PRESS, O=NOT
;MOVE KEY-BIT INTO E
;REPEAT FOR THE OTHER
;4 KEYS

Note that I have made the E register 'double' as a counter for the loop
The initial bit 3 is the highest set bit, and this is shifted to the left once in
every pass around the loop, until after five passes it falls into the carry,
causing the routine to return with the completed control value in the E
register. The usual checks for 'impossible' directions such as left AND
right may then be performed.
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CB39
CB39
CB39
3E05
91
4F

SRL

SRL
SRL
LD

3EFE
OF
1 0FD

HIFIND

; READ HALF-ROW ),•• >U`• 	 eO P:hQ 	 1`°

A, (OFEH) w^-v^^ F^ ^., W ,,
.a s ek r V "...1(	 V, t r ^^1^ t-:

, . „-A.;

REQUIRED KEY BIT INTO CARRY

1F
OD

20FC

C9

RRA
DEC

JR
RET

2

LD
NXTKEY LD

T TTC,
1 L `I li

CALL
CCF
RL
JR
RE T

E,8

A, (HL)

ItL

KTE ST1

E
NC,NXTKEY



CHAPTER 7
Everything You Should Know
About Interrupts

As you are probably aware, the Z-80 microprocessor offers us a choice
of three maskable interrupt modes, named by the instructions which
select them, IMO, IM1 and IM2.

The instruction IM0 on the Spectrum is pretty much redundant. In this
mode, the Z-80 expects an instruction from some peripheral to begin
making its way along the data bus during the interrupt acknowledge
cycle. In the case of the Spectrum, however, the data bus usually holds
FFH during an interrupt, and this is the one-byte Hex. code for RST 38H,
which the Z-80 duly executes. The reason I said IMO is redundant is that
IM1 performs exactly the same function of RST 38H when an interrupt
occurs, whatever the data bus holds at the time.

The Spectrum normally operates in interrupt mode one, and whenever
an interrupt occurs the routine at 0038H proceeds to increment the
television frame counter and scan the keyboard, updating all the various
system variables associated with it. The number of interrupts accepted
since the computer was turned on is held in the three-byte system
variable FRAMES, at 5C78H, 23672 decimal. The use of this counter is
well documented both in the Spectrum manual and other books such as
'Super Charge Your Spectrum', also published by Melbourne House.
For this reason I shall not comment further on it.

Unless you particularly wish to use the frame counter or keyboard scan
while running your machine language program, you should use the
instruction Dl to disable the interrupts, which would otherwise slow you
down. This is especially relevant when you are producing sound or are

46

involved in some other piece of programming that requires precision
timing; otherwise you will hear a 50 Hz 'hum' caused by gaps in the
sound while interrupts are being processed.

The final maskable interrupt mode, IM2, is the most complex and
powerful. When an interrupt occurs, the Z-80 takes the byte currently on
the data bus as the low order of an address, and the contents of the I
register, or 'interrupt vector register' as the hi-byte.

This address points to a second address stored (lo-byte first) in
memory, which is then loaded into the program counter. Execution of
the subroutine at that address then commences. As an example,
suppose the I register held FEH, the data bus had 40H, and the address
stored at FE40H was 0038H. Then the Z-80 would construct the address
FE4OH from the interrupt vector register and the data bus. It would take
the address stored at FE40H and jump to 0038H, which just happens to
be the normal interrupt routine.

In actual fact, since the data bus usually holds FFH during an interrupt,
all our 'vector addresses' will end in FFH. A little experimentation will
show you that to avoid picture 'break-up' or 'snow' on the Spectrum
display, the I register must either form the hi-byte of an address in ROM
or in the top 32K of RAM.

This restricts us to the ranges 00 to 3FH and 80H to FFH for I. Now if you
have a 48K machine, it should not be too difficult to find an unoccupied
vector address amongst the 127 possible options in the top 32K of RAM
(note that we cannot practically use l=FFH, since the address stored
from FFFFH would have its hi-byte in location 0, which is in ROM). If,
however you only have a 16K machine, or there is no room in the top 32K
of RAM, then we must resort to vector addresses in the ROM.

Of the 63 such vector addresses (again 3FH is not really usable.
since the hi-byte of the address would be the first byte of screen RAM),
only thirteen point at addresses in the bottom 16K of RAM. Four of these
thirteen are in the screen memory, leaving a choice of the following nine
addresses.

I= (Hex) Vector Address (Hex) Holding
(Hex)

Address
(Decimal)

(i) 2B 2BFF 5C65 23653
(ii) 29 29FF 5C76 23670
(iii) 2E 2EFF 5CA1 23713
(iv) 19 19FF 5D22 23842

14 14FF 6469 25705
1E 1EFF 67CD 26573
0F OFFF 6D18 27928
06 06FF 71 DD 29149
28 28FF 7E5C 32348

47



Notes:
(i) The three bytes necessary for a jump instruction to be stored at

5C65H are normally occupied by the system variables STKEND
and BREG, and as such should not be altered if you plan on using
the calculator stack or returning to BASIC after your machine
language program.

(ii) If your program is a hybrid BASIC/machine language one. then
note that the first two bytes from address 5C76H hold the variable
SEED for the BASIC pseudo-random number generator, and will be
altered by RANDOMIZE or the use of the RND function. The third
byte after 5C76H is the low order of FRAMES, so you must ensure
that no IM1 interrupts are allowed to occur once the interrupt inter-
cept from 5C76H onwards has been set up. Otherwise the address
in any jump instruction inserted at 5C76H would increase by 256
every 20 ms!

(iii) The fourth five-byte register in the calculator's memory area starts at
5CA1 H, so again, do not use this address if you are planning to use
any of the calculator routines in the ROM from your machine
language program.

(iv) If you wish to return to and use BASIC, then address 5D22H is out,
too. It is simply too low: try the command CLEAR 23841 and you'll
see what I mean!

The other type of interrupt not implemented on the ZX Spectrum is the
NMI, or Non-Maskable Interrupt. If a Z-80 receives an NMI, then it
completes the instruction it is dealing with and calls the routine at
0066H.

On the Spectrum this routine (in ROM) is the source of rather a sore point
among manufacturers of hardware add-ons. The routine is as follows:

m066H PUSH	 AF
PUSH	 HL
LD	 HL,(5CBOH)
LD	 A,H
OR	 L
JR	 NZ, ß070H
JP	 (HL)

007011 POP	 HL
POP	 AF
RETN
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The instruction labelled * should have been
JR	 Z,0O70H

... and would then have caused a jump to the address held in 5CB0H
(which, incidentally, is quoted in the Spectrum manual as 'unused')
unless the address was zero, in which case a return would have been
made. Instead, as it stands, the only possible use of an NMI on the
Spectrum is to cause a complete system reset if the address at SCBOH is
zero, which it usually is.

Inside the Z-80 are two special bits called interrupt flip-flops, and named
IFF1 and IFF2. They are normally handled together under the collective
name IFF, except during an NMI, when IFF2 stores the previous value of
IFF1, while IFF1 is reset for the duration of the NMI. The function of IFF is
to tell the Z-80 whether maskable interrupts are currently permitted. If
they are set (value 1), then interrupts are authorized. If they are reset
(masked) then the maskable interrupts will not be detected. So
obviously EI sets them while DI resets them. To be absolutely accurate,
the flip-flops are always reset while DI or EI is being processed, and the
interrupts are not enabled until the instruction AFTER the El has been
executed. The reason for this is worth mentioning.

Whenever an interrupt is accepted, the IFF are reset automatically. It is,
however, the programmer's responsibility to re-enable the interrupts
before returning from the interrupt routine with RETI. It could cause
untold problems if an interrupt were to occur between enabling them
and returning from the last one, and hence the 'delayed action' of El to
allow a safe return to be made, as in

EI
RETI

the standard end to an interrupt routine.

An instruction often overlooked in books on Spectrum machine
language is

LD	 A,R

This may not at first sight appear to serve any useful purpose, but ani
examination of its effect on the flags will prove otherwise. When the
instruction is executed, the parity/overflow (P/V) flag is set to the con-
tents of IFF2. Hence we can use the instruction to tell us whether or not
the maskable interrupts have been enabled. When the P/V flag is set it
normally indicates even parity (PE), while when it is reset we have odd
parity (PO).

Suppose that we want to preserve the contents of the IFF while we
disable the interrupts to produce some 'pure' sound, and then restore
the IFF. A suitable method would be:
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Note that the table is 257 bytes long, not 256, since we must account for
the vector address ending in FFH, causing an entry to 'spill over' into the
next page of memory.

Probably the most convenient value to set the I register to is FEH, using
the highest possible page of RAM for the vector table. If we then fill the
table with FDH, an interrupt will cause a jump to FDFDH, which is just
three bytes before the start of the table. Now three bytes, as it happens,
are just enough to place a jump instruction to our 'real' interrupt routine.
This way, we have confined the memory needed for a fool-proof IM2
interrupt to a continuous block of 250 bytes, without affecting the
versatility of the interrupt in any way (except to add on the 10T— states
of the JP instruction to the processing time!).

Here is a suitable routine to initialise the IM2 system described above.

INT LD	 HL,OFEOOH
LD	 BC,OOFDH

LP1 LD	 (HL),C
INC	 HL
DJNZ	 LP1
LD	 (HL),C
LD	 A,OFEH
LD	 I,A
IM	 2
RET

ORG	 OFDFDH
JP	 0038H

;LOAD TABLE AT OFE00H
;WITH 256 OF FDH

;THE 257TH ENTRY
;LET I=FEH

;SELECT IM2

;INSERT YOUR OWN ADDRESS

The above technique is all very well if you have 48K of RAM, but will not
work on a 16K machine. As I mentioned before, pointing the interrupt
vector register at any page of the lower 16K of RAM will cause 'snow' on
the screen. All is not lost, however, for in the case of at least one 'rogue'
peripheral, the Kempston joystick, there is a way, although somewhat
messy and restrictive, of using interrupt mode 2.

The joystick is normally 'read' in BASIC by a command of the form
LET A= IN 31

... but in fact all that is required for the interface to deposit a value on the
data bus is to send address line A5 low (holding zero), so that the
command

LET A= IN (31+64+128+256+512+1024)

for example, would do just as well. When A5 is high, however, the
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LD	 A,R	 ;SET P/V TO 1FF
PUSH	 AF
	 ;STORE P/V

DI	 ;DISABLE INTERRUPTS
(PRODUCE SOUND)

POP	 AF	 ;RETRIEVE P/V
JP	 PO,NOT-ON	 ;IF PE THEN P/V=1, SO
EI	 ;SET 1FF

NOT-ON

This way, if we enter the routine with the interrupts masked, then they will
not be enabled at the end of it. The instruction LD A, I affects the P/V flag
in the same way as LD A, R.

I stated earlier that the data bus 'usually' holds FFH during an interrupt.
For an isolated Spectrum I have never known this not to be the case.
There are, however, ce rtain hardware 'add-ons' that do not decode
signals on the IOREQ and READ lines of the Z-80 correctly, and as a
result cause variable numbers to be on the data bus during the interrupt
acknowledge cycle. These add-ons do not, incidentally, include the ZX
printer or the ZX Inte rface 1.

Now obviously if the value on the data bus changes then we will have to
set up a whole table of interrupt vectors in memory for IM2, so that any of
the possible values on the bus will still cause a jump to the correct
address.

If we know that the value will be even, then we simply require a table of
128 vector addresses ending in 00,02, ..., FEH, each entry containing
the address of our interrupt routine. Similarly, if the data bus will hold an
odd value, then we have a table one byte higher in memory, so that the
vector addresses end in 01, 03, ... FFH.

If, however, the data bus holds any of the 256 possible values, as, for
example, is the case when a Kempston Microelectronics joystick is
attached to the user po rt , then we have to use a slightly different
technique. Each of the 257 bytes in the vector table must hold the same
value, so that whether the vector address is odd or even, the interrupt
address will still be the same. Thus the high and low order address bytes
of the interrupt routine must be the same. In case this is not clear, let us
suppose for contradiction that the interrupt address is 89ABH. If we
build up a table by inserting this address 128 times from (say) FE00H,
then an even value on the data bus would cause a correct jump, but an
odd value would cause a jump to AB89H; obviously not what we want!
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joystick will not a ffect the contents of the data bus, and the normal value
of FFH should result during interrupt acknowledge.

Well that's the theory done. Now how do we ensure that A5 is high
whenever an interrupt occurs under IM2? This can be done by ensuring
that the program counter holds an address containing bit 5 set before an
interrupt, and this is why I called the technique 'somewhat messy and
restrictive.'

We principally have two options once the program counter is in a
32-byte block that has bit 5 set for its addresses; we can either come to a
HALT instruction while we wait for an interrupt, or we can spend the time
doing something useful like generating sound. If the latter option is
chosen, there are two main points to remember.

Firstly, we must not allow bit 5 of PC to go low, so the routine must either
exist in a 32-byte block, or call other subroutines that are also in
locations where A5 is high. Secondly (and assuming that we do not wish
to waste time in this routine once an interrupt has been taken), we must
continually test some kind of flag that is set by the interrupt routine, so
that we know when an interrupt has been taken.

After the interrupt has been dealt with we have up to about 2Oms, which
is an awfully long time in machine language, to do as much 'normal'
processing as we want before getting back to wait for the next interrupt.

At first sight all the effo rt required to use IM2 interrupts on the Spectrum
may not seem worthwhile, but they do in fact have a wide range of uses.
They are the fundamental concept behind many of the commercially
available utilities such as real-time clocks, TRACE routines, extensions
to BASIC, user-definable function keys and so on.

In addition to this, interrupts have the special property that they are
generated at precisely the same frequency as the frames which go to
make up your TV display. They always occur when the beam is at the
high-point of its 'fly-back' from the bottom to the top line of the display;
and consequently we can use interrupts to produce full-screen
(BORDER included) horizons, flickeress pixel-by-pixel animation of
sprites, and higher resolution colour, to name but a few of the
possibilities afforded by TV-Synchronized processing.
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CHAPTER 8
A Discussion of
Pixel-Animation
Techniques

Since the launch of the ZX Spectrum, the quality of games software for it
has steadily increased, and with it the technical quality of animation. The
emphasis has shifted away from movement by one character at a time,
and towards movement by a few pixels at a time. At the same time, the
spectrum has been pushed closer and closer to its design limits, with
programmers squeezing every last gramme of speed out of the Z-80
microprocessor in an effort to achieve more spectacular special effects
than the last game.

In the next few chapters I shall be developing a very powerful set of
routines that will let you achieve totally flickerless animation and special
effects never before seen on the Spectrum.

Before we go any further, let us remind ourselves how the television
display is generated. Although when we watch TV, we see a continuous
picture, it is in fact only one (in the case of black and white) or three (in
the case of most colour sets) electron beams scanning across and
down the screen at great speed. If it were not for the human
phenomenon of persistence of vision, which 'preserves' on the retina of
the eye the image generated by the beam long enough for it to complete
one 'frame' of the TV (20 milliseconds), then all we would see is a brightly
coloured dot moving at high speed, and television displays as we know
them would not exist.
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In the U.K., televisions are quoted as having a'625-line' display. That is
to say that the television pictures are transmitted as signals for 625
scan-lines of the TV. An average TV set only displays about 540 of these
scan-lines:— the rest are off the top and bottom of your screen, and
some of the resulting 'spare' time is consumed by a period known as
`flyback', when the electron beams are being moved back from the
bottom of the screen to the top, ready to produce the next frame.

Some of the spare scan-lines, incidentally, are used to transmit the data
for the BBC's 'Ceefax' and ITV's 'Oracle' teletext services. A decoder in
your teletext TV then converts the binary data into a full-screen TV
picture and displays it. It is the number of scan-lines available for this
feature that limits the resolution and choice of colours on teletext
graphics: 	  there just isn't enough room to transmit high-resolution
teletext at an acceptable baud-rate.

Well before I digress any further, back to our discussion of picture-
generation. The chip that is responsible for TV handling in the Spectrum
is called the ULA (Uncommitted Logic Array) and what it does is to use
two scan-lines for each row of the Spectrum display. Hence the text area
occupies 2x192=384 scan lines; about 70% of the screen height and
takes about 61 % of each frame-time, or 12.288 ms, to generate.

Now why, I hear you ask, am I going into so much detail about the TV
display? Well, in the course of 'normal' animation by one cell at a time,
none of this would be necessary. The characters are moved fairly
'rarely', typically about five times a second, or once in every ten frames
or so. Consequently no significant interference by the TV display
generation is noticed.

However, every time we move a character, we must in some way 'blank
out' its old image and 'print in' the new one in the display file. If the
television happens to be producing the scan lines on which we are
printing and deleting, then it will take the image from memory, whatever
state it is in, and display it on the screen. The consequence is that for the
current frame an incomplete image will be displayed.

As I said, this interference is not noticeable for low-frequency
movement. However, animation by pixels requires up to eight times the
frequency of movement to move a character at the same speed as by
cells, and this results in unacceptable ghosting and flickering using
standard techniques.

on that row, and print in any part of the new image on that same row. This
produces reasonably smooth animation, since we will never have
completely blank cells on the screen where there shouldn't be. A similar
technique to this has been used by Ashby Computers and Graphics
Limited in their highly successful `Ultimate, Play The Game' series for the
Spectrum.

There is, however, a drawback to the technique described above. All
interference has not been eliminated, and we are left with two principle
effects. Firstly, there is a reduced form of flickering, where a blank row is
displayed while we are switching between deleting the old image and
printing the new one on that row. The result is that the character is
continually `dissected' in different places as it moves. This effect can be
minimised by moving our character from its bottom row upwards, rather
than in the traditional top-downwards manner. This way we ensure that
the printing routine can only 'clash' with the TV once during each frame,
when the two processes 'cross over', working in opposite directions. I
still find the remaining interference frequent enough to be annoying,
however.

The second effect of interference between the display generation and
printing routine is that the character becomes either 'stretched' or
'shrunken' vertically, or disjointed horizontally, depending on the direc-
tion of movement.

Imagine that the character is being moved (from the bottom row
upwards) in the North-East direction, that is upwards and to the right.
For the sake of argument we will assume it to be a 10x 10 pixel square
moving two pixels at a time along each axis. In the usual case, when
there is no interference, the images observed would be as shown.

10

12-

10

2-

0	 10

BEFORE

10 12

AFTER
One pa rt ial solution to the problem is to deal with the movement in terms
of TV scan-lines. You take each row that would be occupied by either the
'new' or the 'old' image in turn. Then blank out any pa rt of the 'old' image
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AFTER

However, if the TV scan passes over the area in which we are printing
whilst we are doing so, then we will end up with a disjointed figure, now
shrunken to an overall eight pixels in length. If the clash' occurs after the
fourth row up has been moved, for example, then we will have the
following images:

10

10

BEFORE

CHAPTER 9

An Interrupt-Driven
Print-Processor with
Full-Screen Horizon
Generator

As you see, we would have lost rows 5 and 6 of our mutilated character
for one frame.

The only sure-fire way to obtain totally flickerless animation is to ensure
that the TV scan NEVER passes over the area which is currently being
printed in. There are a variety of different ways in which to do this, and
they all involve keeping track of the interrupts that the Spectrum
receives every fiftieth of a second. This is the same frequency as your TV
display, and consequently the electron beam is always in the same
place, during flyback, when an interrupt signal is sent.

As long as we can confine our printing to times when the TV is not
generating the 384 scan-lines of the text area, we can be sure that there
will be no flickering during animation, no matter where on the screen our
shape is being printed. Hence the 'safe' times are while the bottom and
top borders are being generated, and during flyback.

Now unfortunately, unless all our games routines are 'time-constant',
that is they always take the same time to execute, we will have no way of
knowing when the text area has been just generated, and are thus
unable to use the 'bottom border' time for printing. This leaves us with
the time between an interrupt and the TV scan reaching the text area,
which is about 14,200 T-states, or 4.06 ms. Now incredible as it may
seem, this is, in fact, enough time to print forty characters on the screen,
using a special 'print processing' interrupt handler, which I shall be
developing in the next chapter.
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I shall now begin development of the interrupt-driven 'print processor'
routine mentioned at the end of the last chapter. This, together with a
comprehensive suite of routines in the following chapters, will enable
you to produce the much-sought-after flickerless pixel animation of any
'sprite' (a shape consisting of a block of characters) up to 5x5 or 7x4
cells in area.

In addition to its main function as a print-processor, the interrupt
handler, together with a complementary set of routines, will also be
capable of generating a full-screen (border included) horizon. At the
time of writing, the first and only game to have a full-screen horizon was
Quicksilva's 'Aquaplane', by John Hollis. Unlike the stationary horizon of
'Aquaplane', the horizon generated by my routines will be movable at
between one and eight 'pixels' per frame within a region bounded by the
top of the text area and the very bottom of the screen.

This is only made possible by a special technique that 'fools' the com-
puter into producing three or four colours in the attributes covering the
horizon, so that we have something left to print with after two colours
have been used up by the background.
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I should state now that these routines have been designed to run in the
top 32K of RAM on a 48K machine, based on the assumption that if you
are a serious machine language programmer, working with an
assembler, then you probably have 48K of RAM in order to have room
for anything but a small text file once the assembler has loaded.

At the risk of repetition, let me explain that machine code placed in the
lowest 16K of RAM will run about 20% slower whenever the TV is
generating the text area, as the ULA and Z-80 will both be trying to
access the same eight memory chips, and the ULA takes priority. As a
consequence, the 'print-processor' pa rt of the interrupt handler would
not need modification to run in the lower 16K (it only runs while the top
border is being generated), but the horizon generator would require
extensive modification in order to compensate for the loss of speed and
general changes in timing.

In this case it would probably be better for you to settle for a stationary
horizon on a boundary between two of the twenty-four lines. That way,
no special work is required on the attributes, and the border horizon is
generated simply be going through a suitable delay loop and then
changing the colour from that above the horizon to that below it, using an
OUT instruction.

The print-processor system works in the following manner. Every time
some animation routine feels the urge to print something on the screen,
instead of doing so directly, it does as much preparation as possible
and then deposits the resulting data for each character to be printed in
an area of memory which shall be called the 'print buffer'. Then, on every
interrupt, the print-processor 'empties' the buffer, one entry at a time,
and puts the corresponding character and its attributes in the correct
place in the display and attribute files respectively.

We shall label the start of the buffer as BUFFER. Each entry in the buffer
is six bytes long; and the data is formatted as follows.

1) ATTRIBUTE BYTE
2) ATTRIBUTE ADDRESS (LO)
3) ATTRIBUTE ADDRESS (HI)
4) DISPLAY FILE ADDRESS (HI)
5) CHARACTER DATA ADDRESS (LO)
6) CHARACTER DATA ADDRESS (HI)

Note that we do not need to store the low order of the display file
address, since it is identical to that of the attribute file (byte 2).

I have never known it to be useful or necessary to use FLASH 1 when
animating sprites by pixels, and thus decided to sacrifice its attribute
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bit, leaving us with room for a flag. The attribute is stored in a form shifted
one bit to the left in the buffer, leaving bit 0 as a flag. It is often useful
when two sprites overlap to be able to 'merge' one on top of the other
using an OR operation, rather than the usual 'blotting out' of the first
image by the second. I have named these two types of printing
operation 'OR-print' and 'OVER-print' respectively. When bit 0 of the
attribute byte is set, it will tell the print-processor to merge this particular
character with the current contents of the cell, by OR-printing.

The routine may be easily modified if you wish to use it for your own
purposes to print using the XOR (exclusive OR) operation, simply by
changing all the relevant OR instructions to XOR ones. Setting the flag
would then, of course, indicate 'XOR-printing required.'

In order to generate a stable horizon, it is imperative that any routine
executed between the interrupt and the horizon generation is time-
constant. Thus I have carefully balanced the print-processor routine so
that whatever is in the buffer, it still takes the same time to execute.

Various tricks have been used to make the routine as fast as is
practically possible. It emerged that there was time to print exactly 40
characters, and hence our buffer needs to be 40x6=240 bytes long. If
we ensure that the low order of BUFFER is 10 Hex, then we can use
single-register increment instructions such as

	

INC	 L

	as opposed to INC	 HL

to step through the buffer. This saves two T-states every time we use it,
and has the added advantage that we can tell after processing an entry
whether the end of the buffer has been reached, simply by using

INC	 L

and then testing the zero flag.

If you are not using the top few lines of the text area for animation, or if
you don't mind flickering in that area, then you may at some stage in your
life find it desirable to increase the number of characters that the
print-processor can handle. Up to a limit of 42 characters (the hitch-
hikers answer to everything) this poses no problems, as the buffer would
still be contained within one 'page' (256 bytes with the same high order
address) of memory. However, beyond this limit, some alteration will be
required so that the routine steps across the page-boundary correctly.
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Since each buffer entry is six bytes long, there are six INC L instructions
in each loop of the routine, as you will see when I eventually produce the
listing. The first one is after the attribute byte has been fetched, the
second after its low-order address has been fetched, and soon. A quick
bit of maths shows us that a buffer ending at FCFFH and 43 entries long,
would start at FBFEH. Hence for buffers over 42 entries, change the
second INC L to INC HL.

Similarly, for an 86-entry buffer the start address would be FAFCH, so for
buffers longer than 85 entries, change the fourth INC L to INC HL. The
maximum buffer length by this method is a more-than adequate 128
entries (768 bytes) at which point it would start on a page boundary,
FAWN. As a guide to the extra processing time for a longer buffer, each
entry takes about 1.6 rows or 3.2 scan-lines to be printed.

Now obviously there will be times when we do not actually use all forty
entries in the buffer. However, we must ensure that the print-processor
still takes the same time to execute for a null entry, and probably the
easiest way to do this is to make the routine THINK it is printing a
character, without actually affecting the screen.

To signify a null entry in the buffer we will set the attribute byte to zero.
The following fragment will be executed at the start of each loop, with HL
pointing at the start of a buffer entry.

NXTCH	 LD
	

A, (HL)
AND
	

A
JR
	

Z, FAKE

At FAKE we will update the buffer pointer in HL and set up the registers
necessary to OR-print a space (no net effect) in the bottom right-hand
corner of the screen. There will then be a sho rt pause in order to
perfectly equalise the timing with the normal printing routine path,
followed by a jump into the main section of the OR-printing procedure.
The attributes will not be affected, and the fragment at FAKE goes like
this:

$+3	 ;NOTE: $=PROGRAM COUNTER
OR	 ;JUMP INTO MAIN ROUTINE

The main substance of the instructions from label OR is the fragment

;TAKE DATA
;'OR' WITH DISPLAY ROW
;INSERT IN DISPLAY FILE
;NEXT BYTE OF DATA
;NEXT ROW OF DISPLAY FILE

... which is repeated six times, followed by

LD
	

A, (BC)
OR
	

(HL)
LD
	

(HL),A

EX
	

DE ,HL
INC
	

L
JP
	

NZ ,NXTCH

On first sight the listing for this may appear clumsy, but we must
remember that time is of the essence, and a conventional loop repeated
seven times would take a lot longer to execute. For the same reason, an
absolute JP instruction (10 T-states) has been employed rather than a
relative jump (12 T-states, the extra time being used to add the
displacement to the program counter).

While all this is fresh in your mind, and before proceeding to develop the
horizon-generating part of the interrupt handler, I shall list the first pa rt of
the routine for your contemplation. A word or two of explanation for the
first few lines of the routine is required. The first priority in any interrupt
handler should be to preserve any registers used by the handler.
Having done that, we must output the border colour for the 'sky' above
the horizon. This also provides an opportunity to send a 'click' to the
loudspeaker, by adding 10 hex. to the argument of the XOR instruction
at label TOPBRD. We shall always store the last value sent OUT to po rt

FEH in the variable BORD, so preserving the speaker status (bit 4).

t  i

X

JP
JR

LD
OR
LD
INC
INC

A, (BC)
(HL)
(HL),A
BC
H

;PRINT LAST ROW OF CHAR

;TEST FOR END OF BUFFER

FAKE LD	 A,5
ADD	 A,L
LD	 L,A
LD	 DE,5OFFH
LD	 A, (DE)
LD	 BC ,3D00H
EX	 DE,HL
NOP

;ADJUST BUFFER POINTER
s 11 L \' o ^soctV

;D.F. ADDRESS OF (23,31)
;TIMING EQUALIZER
;ADDRESS OF 'SPACE' DATA
;IN ROM
;WAIT 14 T-STATES

The variables CHSTRE and BUFFPT store the number of 'real' entries
and the address of the next free entry in the buffer respectively. These
variables will be greatly utilised later on. Now for the first pa rt of the
interrupt handler; please read at least to the end of this chapter before
attempting to use it, as running it on its own would cause an almighty
crash. Note also that the $ sign in jump instructions means 'program
counter', so
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JR	 $+2 and

JP	 $+3

simply mean 'advance to the next instruction' and are used as timing
delays.

BUFFER EQU OFF10H
TOFF BUFFPT DEFW BUFFER
00 CHSTRE DEFB 0
00 BORD DEFB 0

;INTERRUPT HANDLER •• -• -• - -• -•
;SAVE REGISTERS

F5	 INTERP PUSH	 AF
C5	 PUSH	 BC
D5	 PUSH	 DE
E5	 PUSH	 HL

;SET TOP BORDER

210300	 LD	 HL,BORD
7E	 LD	 A,(HL)
E610	 AND	 16
EE05	 TOPBRD XOR	 5
D3FE	 OUT	 (OFEH),A
77	 LD	 (HL),A

^ ,.• rr^; .... .

;START WORKING THROUGH BUFFER ENTRIES
;	 .

2110FF	 LD	 HL,BUFFER

;A ZERO ATTRIBUTE="NO ENTRY" SO PRINT A FAKE
;CHARACTER

7E	 NXTCH	 LD	 A,(HL)

A7	 AND	 A
2871	 JR	 Z,FAKE
2C	 INC	 L

e s :

;TAKE ATTRIBUTE ADDRESS •
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^.^ ^c :

.	 i..^

-\.s:• 

..Wt..r

1^... !T Q.,

5E	 LD	 E,(HL)
2C	 INC	 L
56	 LD	 D,(HL)
2C	 INC	 L
1F	 RRA

;STORE NEW ATTRIBUTE

12	 LD	 (DE),A

;FORM D.F. ADDRESS

56	 LD	 D,(HL)
2C	 INC	 L

;TAKE CHARACTER DATA ADDRESS

4E	 LD	 C,(HL)
2C	 INC	 L	 rJc

46	 LD	 B, (HL) `'''

;DECIDE WHETHER TO MERGE OLD CHARACTER

	

;	 .
;	 :-3.,

302F	 JR	 NC,NTOR	 P}o.5'e

EB	 EX	 DE,HL

;PRINT NEW CHARACTER USING "OR"

,
OA	 OR	 LD	 A,(BC)
B6	 OR	 (HL)
77	 LD	 (HL),A

03	 INC	 BC
24	 INC	 H
OA	 LD	 A,(BC)

B6	 OR	 (HL)
77	 LD	 (HL),A

03	 INC	 BC
24	 INC	 H
OA	 LD	 A,(BC)

B6	 OR	 (HL)
77	 LD	 (HL),A
03	 INC	 BC
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24 INC H	 OA LD	 A,(BC)

OA LD A,(BC)	 12 LD	 (DE),A

B6 OR (HL)	 12 LD	 (DE),A

77 LD (HL),A	 03 INC	 BC

03 INC BC	 14 INC	 D

24 INC H	 VA LD	 A,(BC)

OA LD A,(BC)	 12 LD	 (DE),A

B6 OR (HL)	 12 LD	 (DE),A

77 LD (HL),A 03 INC	 BC

03 INC BC 14 INC	 D

24 INC H OA LD	 A,(BC)

0A LD A,(BC) 12 LD	 (DE),A

B6 OR (HL) 12 LD	 (DE),A

77 LD (HL),A 03 INC	 BC

03 INC BC 14 INC	 D
24 INC H OA LD	 A,(BC)

OA LD A,(BC) 12 LD	 (DE),A

B6 OR (HL) 12 LD	 (DE),A

77 LD (HL),A 03 INC	 BC

03 INC BC 14 INC	 D
24 INC H 0A LD	 A,(BC)

OA LD A,(BC) 12 LD	 (DE),A

B6 OR (HL) 12 LD	 (DE),A

77 LD (HL),A 03 INC	 BC

EB EX DE,HL 14 INC	 D

OA LD	 A,(BC)

;LOOP BACK UNTIL END OF BUFFER 12 LD	 (DE),A

12 LD	 (DE),A

2C INC L 03 INC	 BC

C21600 JP NZ,NXTCH 14 INC	 D
0A LD	 A,(BC)

;JUMP FORWARD 12 LD	 (DE),A

C38400 JP	 $+3

C3m000 JP ROWS
;LOOP BACK UNTIL END OF BUFFER

;PRINT ON TOP OF OLD CHARACTER 2C INC	 L
C21600 JP	 NZ,NXTCH

OA NTOR	 LD .A,(BC)
12 LD (DE),A ;THEN JUMP TO GENERATE HORIZON
12 LD ( DE ) , A
03 INC BC C30000 JP	 ROWS
14 INC D ;TO BALANCE THE TIMING PRINT

64 65



3E05
85
6F
11FF5Q
lA
01403D
EB

00
C39BP10
188C

;A SPACE WITH "OR" IN THE BOTTOM-RIGHT
;CORNER

FAKE	 LD	 A,5
ADD	 A,L
LD	 L,A
LD	 DE,5OFFH
LD	 A,(DE)
LD	 BC, 3D0011
EX	 DE ,HL
NOP
JP	 $+3
JR	 OR

Incidentally, the label ROWS will be on the first line of the next pa rt of the
routine.

I shall now begin a discussion of the principles involved in generating a
moving full-screen horizon. For the sake of convenience, I shall refer to
the area of the screen above the horizon as 'sky', and that below it as
'sea'. The routines will produce a cyan sky and blue sea initially, but
these colours are very easily changed and I shall indeed be including a
routine to do this at a later stage.

You may well be asking yourself 'What use is a full-screen horizon' or 'is
it worth all the effort and careful timing involved?'

The answer is that it IS worth the effo rt , because although extending the
horizon doesn't allow you to print in any greater area of the screen, it
does increase the effective 'playing area' of a game and is far more
aesthetically pleasing. Suppose, for example, that your game involved
controlling an aircraft as it flew along above the sea, and that the current
position of the 'plane was as far to the left in the text area as is possible,
without 'spilling' off the screen. With a conventional text-only horizon, we
would see something like this:
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As you see, our aircraft looks extremely 'out of place' since it is cramped
right up against the left border. Compare this with the 'spacious' look of
a full-screen horizon, where the 'plane does not look at all unnatural,
even though it is being printed in exactly the same place on the screen:

The principle behind all programming 'tricks' with the border is very
simple. The ULA continually reads po rt 254 and sends the

corresponding colour to the TV, which is building up the display line by
line. Hence to obtain a steady boundary between two border colours,
we just wait an exact time after each interrupt signal before sending out

the 'sea' colour to po rt 254.
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Now the Z-80 in the Spectrum runs at a clock speed of 3.5 MHz, that is to
say there are 3,500,000 T-states per second. Television frames are
generated at 50 Hz, and each with 625 scan lines. Hence we have

Time taken for one scan-line = 3 500 000 

625 x50

= 112 T-states

Not forgetting that the Spectrum uses two scan-lines for each row of the
display, we have that each row takes 2 x 112=224 T-states to generate,
and this is how long we have to wait for each row of the display above the
horizon, before changing the border colour. A suitable delay loop,
where the number of rows is in the accumulator, would be as follows:

SCAN1 LD B,15 ;7 T-STATES
LN DJNZ LN ;14*13+8=190

AND OFFH ;7 T-STATES
INC HL ;6 T-STATES
DEC A ;4 T-STATES
JP NZ,SCAN1 ;10 T- STATES,

;FOR NEXT ROW
LOOP BACK

You will find the above fragment in the second pa rt of the interrupt
handler.

Well that's the border control taken care of. Now what about the
attributes? If the horizon is on a boundary between two lines of the
display, then we have no problem. We simply use cyan paper in the line
above the horizon and blue paper in the line below it. If, however, the
number of text rows above the horizon is not divisible by eight, then we
will need to produce both cyan and blue paper in one line of attributes. It
is not sufficient just to use cyan INK and blue PAPER, since this would
leave us with no colours to print our sprites in over the horizon.

To produce these 'two-paper' attributes, we need to fill the line
containing the horizon with cyan paper (and whatever coloured ink we
happen to be using) then wait for the TV-scan to reach the horizon level,
then hurriedly refill the line with blue-papered attributes. The ULA tests
the attributes every time it generates one row of the text area, so the
result should be cyan paper above the horizon and blue paper below it,
together with our choice of ink and brightness for each region.

Unfortunately, due to the great speed at which the electron beam
hurtles from left to right across the screen, we simply do not have
enough time to replace a whole line of attributes before the ULA needs

them again. A quick calculation shows that to change 32 attributes in
224 T-states would require an average rate of one attribute in 7 T-states,
which is only enough time to do a basic LD (HL), A, without
incrementing any pointers.

There are two other factors to consider. On the plus side, we do in fact
have slightly longer than 224 T-states. Suppose, for example, that we

had managed to refill half of one TV-row, starting at the left-hand edge of
the text area. The time we have had to do this would be that taken for 1.5
rows (336 T-states), since we would have started the moment the beam
had left the first attribute, and finished when it 'lapped us' half way
across the screen.

On the minus side, we must remember that changing the attributes will
require access to the lowest 16K of RAM, and the resulting interruptions
by the ULA will mean a slight overall speed decrease.

After experimentation, I found that the best we could hope for is a
continuous level 'horizon' of 22 attributes. In most arcade games the
action always tends towards the centre of the playing area, so I have
positioned these 22 bytes in the centre of the text area, leaving 'steps' of
5 columns in width on either side. As it stands, the resulting malformed
horizon would appear as follows:

Desired
Horizon

Now this jagged appearance is, unless you want a rectangular 'hill' and
'valley' on your screen, quite intolerable. The best solution to the
problem is to fill the five columns on the left wih one row of ink
immediately above the horizon, and the five columns on the right with
one row of ink just below the horizon. We will then use cyan ink on the left
and blue ink on the right to create a continuous, level horizon.
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At the beginning of each interrupt, all the attributes concerned will be
cyan paper and (say) white ink. The sequence in which we will change
the attributes is as follows (after an exact delay).
1) Fill rightmost 5 attributes with cyan paper, blue ink.
2) Fill leftmost 5 attributes with blue paper, cyan ink.
3) Fill middle 22 attributes with blue paper, white ink.
4) Fill leftmost 5 attributes with blue paper, white ink.
5) Fill rightmost 5 attributes with blue paper, white ink.
6) We must now wait 'till the TV has completely finished generating this

line of the display. Pa rt of this time will be spent preparing the print
buffer for the next interrupt.

7) Fill all 32 attributes with cyan paper, white ink, ready for the next
interrupt.

At a ce rtain critical point during Stage (3), the beam will reach the
right-hand side of the screen having generated the cyan row
immediately above the horizon. While the beam is in 'flyback' to the
left-hand side of the screen, we must take a break from filling attributes
and output the new border value. We store the new value at
(BOTBRD+1), and add 16 to it if a click is to be sent to the speaker. This
combined with the value in (TOPBRD+ 1) allows us a choice between no
sound, a 50 Hz or 100 Hz sound. In the last case, you will find that when
we move the horizon up and down in the next chapter, the waveform of
the sound changes due to the varying time between the 'top' click and
the 'bottom' click.

Going back to our procedure for changing the attributes, the only slight
side effect of using this technique will be that up to 2 rows of any sprite
printed on the horizon in the left or right five columns will be cyan and
blue respectively. This is hardly noticeable and a small price to pay for
the overall effect of a full-screen display.

The technique will work for anything down to 2 text rows above the
horizon, and the number of these rows is stored in (ROWS+1). Zero text
rows poses no problem, as the whole screen will be sea, and we just
jump straight to label NOWAIT where the border colour is changed.
However, in the very unlikely event that you require just one text row
above the horizon, then you will have to revert to the old technique of
filling it with ink and using cyan ink and blue paper. This is because there
is not enough time to manipulate the attributes in the manner required by
the new technique. In this case, the interrupt handler jumps to label WT1
I _N and waits for the TV to reach row one before changing the border.

Scattered through the listing you will find labels HCOL1 to HCOL4; these
will be used in the next chapter to change the sky and sea colours.
HRZN3 will be used by the horizon movement routines. It holds the
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address of the 28th horizon attribute, and will be set to point at 001 BH (in
the ROM) whenever no attribute work is required. This is indeed the
case in the routine as it stands, as I have set (ROWS+1) to 96, or
half-way down the screen.

After the horizon has been generated, the interrupt handler has two
more tasks. Firstly, it must 'tidy up' the print buffer by deleting all the
entries just printed, inserting zero attribute bytes to signify forty null
entries. It resets BUFFPT to the first free entry, which is now at BUFFER,
and sets the number of entries, CHSTRE, to zero. Finally it retrieves all
the registers stored at the beginning of the interrupt, and terminates.

Here then is the second pa rt of the interrupt handler, followed by an

initialization routine.
3E60	 ROWS	 LD	 A,96

;A HOLDS NO. OF ROWS ABOVE HORIZON
;IF A=0 THEN DON'T WAIT TO CHANGE BORDER

D601
DAC800

;IF A=1 THEN WAIT FOR ONE SCAN LINE

JP
DEC

;IF A=2 THEN SKIP THIS DELAY
JP	 Z,G04IT

060F
10FE
E6FF
23
3D
C20E00

;TIMING BALANCER

060A	 GO4IT	 LD	 B,10

10FE
	 SELFS	 DJNZ	 SELFS
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SUB
JP

1
C,NOWAIT

CABE00
3D

CA1900

Z,WT1LN
A

;THIS LOOP TAKES 224 T-STATES OR ONE
;SCAN-LINE PER PASS

SCAN1	 LD	 B,15

LN	 DJNZ	 LN
AND	 OFFH
INC	 HL
DEC	 A
JP	 NZ,SCAN1



E6FF AND	 OFFH 71	 LD	 (HL),C

2C	 INC	 L

211B00	 HRZN3	 LD	 HL,1BH
;HL=ADDRESS OF 26TH ATTRIBUTE IN THE LINE

7D	 LD	 A,L
E6E0	 AND	 OEOH
47	 LD	 B,A

;FIND BOTTOM BORDER COLOUR

110000	 LD	 DE,BORD
lA	 LD	 A,(DE)
E610	 AND	 16
EE01	 BOTBRD XOR	 1
12	 LD	 (DE),A
1E29	 HCOL1	 LD	 E,41
0E0D	 HCOL2	 LD	 C,13

;FILL RIGHT 5 ATTS WITH CYAN PAPER,BLUE INK
73	 LD	 (HL),E
2C	 INC	 L
73	 LD	 (HL),E

2C	 INC	 L
73	 LD	 (HL),E
2C	 INC	 L
73	 LD	 (HL),E
2C	 INC	 L
73	 LD	 (HL),E
68	 LD	 L,B
1EOF	 HCOL3	 LD	 E,15

;FILL LEFT 5 ATTS WITH BLUE PAPER, CYAN INK

71	 LD	 (HL),C
2C	 INC	 L
71	 LD	 (HL),C
2C	 INC	 L
71	 LD	 (HL),C
2C	 INC	 L
71	 LD	 (HL),C
2C	 INC	 L

72

;FILL MIDDLE 22 ATTS WITH BLUE PAPER,WHITE INK

73	 LD	 (HL),E
2C	 INC	 L
73	 LD	 (HL),E

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L
73	 LD	 (HL),E

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L
;MEANWHILE THE TV SCAN HAS REACHED THE RIGHT-HAND
;EDGE, SO CHANGE BORDER COLOUR NOW.

D3FE	 OUT	 (OFEH),A

73	 LD	 (HL),E

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L
73	 LD	 (HL),E
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2C INC L
73 LD (HL),E
2C INC L
73 LD (HL),E
2C INC L
73 LD (HL),E
2C INC L
73 LD (HL),E
2C INC L
73 LD (HL),E
7D LD A,L
68 LD L,B

;NOW FILL LEFT 5 ATTS WITH BLUE PAPER, WHITE INK

73	 LD	 (HL),E
2C	 INC	 L
73	 LD	 (HL),E
2C	 INC	 L
73	 LD	 (HL),E
2C	 INC	 L
73
	

LD	 (HL),E
2C	 INC	 L
73	 LD	 (HL),E
6F	 LD	 L,A
2C	 INC	 L

;FINALLY FILL RIGHT 5 ATTS WITH BLUE PAPER,
;WHITE INK

73 LD (HL),E
2C INC L
73 LD (HL),E
2C INC L
73 LD (HL),E
2C INC L
73 LD (HL),E
2C INC L
73 LD (HL),E
68 LD L,B

;STORE START OF ATT LINE
E5	 INIT3	 PUSH	 HL

74

;ENSURE THAT THE BUFFER IS FILLED WITH FAKE
;CHARACTERS

210000 LD HL,CHSTRE

7E LD A,(HL)

A7 AND A
280F JR Z,END

110600 INIT2 LD DE,6

;NOTE D=0
72 LD (HL),D

210000 LD HL,BUFFER

220000 LD (BUFFPT),HL
47 LD B,A
72 NXTFL LD (HL),D

19 ADD HL,DE

10FC DJNZ NXTFL

;RETRIEVE ATT ADDRESS

El END POP HL

;H=0 MEANS NO ATTS TO FILL

7C LD A,H

A7 AND A

CAB700 JP Z,NOPLG

;WAIT TILL TV HAS FINISHED WITH THIS
;ATTRIBUTE LINE
;N.B. IF FLICKERING OCCURS THEN
;INCREASE THIS DELAY

064D	 LD	 B,4DH

10FE	 SELF4	 DJNZ	 SELF4

;FILL THE LINE WITH CYAN PAPER, WHITE INK

LD	 C,31
LD	 D,H
LD	 E,L
INC	 E
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362F	 HCOL4	 LD	 (HL),47
EDBO	 LDIR

;RETRIEVE REGISTERS

E1	 NOPLG	 POP	 HL
DI	 POP	 DE
CI	 POP	 BC
F 	 POP	 AF

;END INTERRUPT

FB	 EI

ED4D	 RETI

;DELAY FOR HORIZON AT ROW1

060F	 WT1LN	 LD	 B,15
10FE	 SELF11 DJNZ	 SEL1;11
E6FF	 AND	 OFFH
23	 INC	 HL
3D	 DEC	 A
2B	 DEC	 HL
3C	 INC	 A

;ENTERS HERE FOR ROW ZERO HORIZON

;FIND NEW BORDER COLOUR

2A2C00
	

NOWAIT LD	 HL,(BOTBRD)

E610

110000
lA

AND	 16

LD	 DE,BORD
LD	 A,(DE)

AC	 XOR	 H

;STORE IT AND OUTPUT IT

LD	 (DE),A
OUT	 (0FEH) ,A

;SET FLAG FOR NO ATTS TO FILL

2600
	

LD	 H,0

;JUMP BACK TO MAIN ROUTINE

JP	 INIT3

We will, of course, be using interrupt mode 2, and as you will see, I have
elected to use a 257 byte vector table pointing to a jump instruction at
FDFDH to the interrupt handler. This technique was described more
fully in Chapter 7. By putting the table at FE00H and the buffer at FF10H
(remember, the low byte must be 10H) I have neatly used up the last 1/2K
of RAM, wasting only fifteen bytes. The following initialization routine
sets up the vector table, selects IM2 and then jumps into the interrupt
handler in order to ensure that the buffer is clear. I have called the
routine INT1, and its counterpart for reselecting IM1 (should you wish to
return to BASIC) DISINT.

The last three lines of the listing set up the all-important JP at FDFDH.

;INITIALIZE INTERRUPT PROCESSOR
;PRESERVE REGISTERS AS WE EXIT VIA THE
;INTERRUPT HANDLER

F3	 INT1	 DI

F5	 PUSH	 AF

C5	 PUSH	 BC

D5	 PUSH	 DE

E5	 PUSH	 HL

3EFE	 LD	 A,OFEH

ED47	 LD	 I,A

;SET UP VECTOR TABLE FOR IM 2 BY FILLING
;257 BYTES FROM OFEOOH WITH OFDH

2100FE	 LD	 HL,OFEOOH

45	 LD	 B,L

3D	 DEC	 A
77	 TBLP	 LD	 (HL),A
23	 INC	 HL

10FC	 DJNZ	 TBLP
77	 LD	 (HL),A

ED5E	 SELECT IM 2 AND PREPARE FOR....

12
D3FE

C38D00
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3E28
ED5E
2600

E5
210000

LD
IM
LD
PUSH
LD

A,4m
2
H,0
HL
HL,CHSTRE

;A JUMP INTO THE INTERRUPT HANDLER TO CLEAR
;THE PRINT BUFFER

C30000	 JP	 INIT2

;USE THIS ROUTINE TO RESELECT IM 1
3E3E	 DISINT LD	 A,3EH
ED56	 IM	 1
ED47	 LD	 I,A
C9	 RET

;POSITION THE JUMP INSTRUCTIONS TO THE
;INTERRUPT HANDLER

LABEL ORG	 OFDFDH
JP
	

INTERP
ORG
	

LABEL

In the next chapter I shall produce a suite of routines to deal with every
aspect of horizon generation and movement. Following that will be a
powerful set of sprite animation routines to make full use of the (as yet
unused) print-processor.

If you do not wish to use the full-screen horizon generator in the interrupt
handler, then you can 'turn it o ff' with the following sequence.

LD
	

A,<BORDER COLOUR>
LD
	

(TOPBRD+1),A
LD
	

(BOTBRD+1),A
XOR
	

A
LD
	

(ROWS+1),A

This sets the horizon to its maximum level with the same coloured sea
and sky, and causes the routine to skip any work on the attributes. You
may then safely ignore the next chapter!

78

CHAPTER 10
Moving the Full-Screen
Horizon by Pixels

Before I supply the horizon control routines, a word or two of caution
about the use of the interrupt processor is required.

Although the Z-80 always receives an interrupt signal at exactly the
same stage of the TV frame, it will never react to it until it has finished
processing the current instruction. This can lead to a variation of as
much as 23 T-states (as in the case of one of the longest instructions,
EX(SP),IX) in the time at which the interrupt is processed.

In human terms this does not seem very long, but it is long enough for the
TV to progress about one tenth of the way through a row, thereby
affecting our 'artificial' horizon, shifting the central, level po rt ion
momentarily to the left or right. In fact, the horizon generator can tolerate
a time displacement of about ± 4 T-states with no ill effect, so as long as
we get back to a HALT instruction (which makes the processor
continuously execute NOPs at 4 T-states each) before an interrupt
occurs then there will be no problem.

If, however, you wish to execute some other routine while expecting an
interrupt, then you will probably find that flickering occurs. In this case
the solution is to extend our 'ink rows', which as you recall are normally
five columns in width, either side of the central horizon, until they
completely cover the flickering area. You should not need to make them
wider than seven columns on each side, leaving eighteen untouched
columns in the centre of the screen. Naturally you will then need to make
slight modifications to all of the horizon routines so that they calculate
the correct addresses for, and correctly manipulate, the new attributes
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LD	 (HL),A
INC	 L
LD	 (HL),A

77
2C
77

;NOW THE RIGHT FIVE

LD	 HL,(HRZN2)
LD	 (HL),A
INC	 L
LD	 (HL),A
INC	 L
LD	 (HL),A
INC	 L
LD	 (HL),A
INC	 L
LD	 (HL),A

HRZST2 LD	 A,C

LD	 (ROWS+1),A
;IS THE HORIZON STILL IN THE TEXT AREA?

CP	 0C1H

2A0000
77

2C
77
2C
77
2C
77
2C
77

79
320000

FEC1

;IF NOT THEN NO INK ROWS ARE NEEDED
3031	 JR	 NC,NOWRK

;LOCATE ATTRIBUTE LINE

07	 RLCA
07	 RLCA
E603	 AND	 3
F658	 OR	 58H
67	 LD	 H,A
79	 LD	 A,C
87	 ADD	 A,A
87	 ADD	 A,A
E6E0	 AND	 0E0H

6F	 LD	 L,A
;STORE IT

2200600	 LD	 (HRZN4),HL
79	 LD	 A,C

;IF HORIZON IS BETWEEN TWO LINES THEN NO
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and ink rows. The same goes for the horizon generator in the interrupt
handler.

I shall now begin development of the first horizon routine, HRZST1. Its
function will be to delete the last ink rows inserted on the screen, and
calculate the addresses of the new ones, after we have moved the
horizon. We will store the address of the left five ink rows in HRZN1, and
that of the right five in HRZN2. When no ink rows are required (if the
horizon is not in the text or is between two lines) then we will set the high
order of HRZN1 and HRZN2 to zero, as flags.

The address of the current attribute line will always be stored ih HRZN4,
and also inserted in the interrupt handler itself at (HRZN3+1). The high
order of the latter will be set to zero when no attribute manipulation is
necessary, thereby pointing the horizon generator in the interrupt
handler at the ROM. This is the easiest way to ensure that the generator
still gets the timing right for the border change.

We will thus need to define the variables at the start of the program:

ORG	 (YOUR ADDRESS)
HRZN1	 DEFW	 0
HRZN2	 DEFW
HRZN4	 DEFW	 m

Now for the listing of HRZST1, followed by notes on its use.

;DELETE OLD INK ROWS AND SET UP
;NEW VALUES FOR LOCATIONS OF INK ROWS
;AND ATTRIBUTES
;ENTRY: C=NO. OF TEXT ROWS ABOVE THE
;HORIZON
;PRESERVED: DE,C

2A0000	 HRZST1 LD	 HL,(HRZN1)

;CLEAR THE LEFT FIVE INK ROWS

AF	 XOR	 A
77	 LD	 (HL),A
2C	 INC	 L
77	 LD	 (HL),A
2C	 INC	 L
77	 LD	 (HL),A
2C	 INC	 L

80



;INK ROWS NEEDED

AND	 7
JR	 Z,NOWRK

E607

HRZST1 will be called by the next routine, HRZMV1, whenever it moves
the horizon (ST for SeT, MV for MoVe). You may also call it directly to
move the horizon to any level on the screen in one go, from any 'old'
level. Just

7D	 LD	 A,L
F61B	 OR	 1BH
45	 LD	 B,L
6F	 LD	 L,A

;INSERT IT IN INTERRUPT HANDLER
220000	 LD	 (HRZN3+1),HL

;LOCATE 28TH BYTE OF D.F. ROW BELOW HORIZON

;LOCATE 28TH ATTRIBUTE

79	 LD	 A,C
1F	 RRA
37	 SCF
1F	 RRA
A7	 AND	 A
1F	 RRA
A9	 XOR	 C
E6F8	 AND	 0F8H
A9	 XOR	 C
67	 LD	 H,A
220000	 LD	 (HRZN2),HL

{	 ;NOW FIRST BYTE OF ROW ABOVE HORIZON

25	 DEC	 H
68	 LD	 L,B
220006	 LD	 (HRZN1) , HL
C9	 RET
AF	 NOWRK XOR	 A

;WHEN NO INK ROWS ARE NEEDED,POINT
THE VARIABLES ;AT THE ROM

320000	 LD	 (HRZN1+1),A
320000	 LD	 (HRZN2+1),A
320000	 LD	 (HRZN3+2),A
C9	 RET
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LD	 C,(NO. OF ROWS ABOVE HORIZON)
CALL	 HRZST1

... then fill in the ink rows and attributes as required. If the horizon level
is being set for the first time, then you should skip the section that 'blanks
out' the old ink rows by entering at HRZST2.

To develop a routine to move the horizon, HRZMV1, we shall first define
two variables. HRZSPD will hold the number of rows moved by the
horizon every time the routine is called. This will vary between one and
eight. The direction of the horizon will be stored in CNTRL, which may be
set (for example) by a keyboard scanning routine. Bit 2 of CNTRL will be
set (value 4) for downwards movement, and bit 3 (value 8) for upwards.
So we start with the lines

ORG	 (YOUR ADDRESS)
HRZSPD DEFB	 0
CNTRL	 DEFB	 0

Due to the problem of a horizon on row one, described in the previous
chapter, I have limited movement to levels below this. On my TV there
are about 236 rows from the top of the text area to the bottom of the
screen, so I have set the lower limit at (ROWS+1)=236. You will
probably want to alter this for your own TV, and in any case you must
remember that the lower the horizon, the longer it takes to generate it
and thus the less time you have to do anything else before the next
interrupt (like animating sprites, for example!).

The main function of HRZMV1 is to take care of the attributes as the
horizon moves. If, for example, we have just moved the horizon up to row
O of the current line, or into the line above it, then we will need to change
a line of attributes from sky to sea. Similarly, if we have just moved down
onto a new line then we must fill its attributes with sky, ready for the next
interrupt. HRZMV1 will be called by the forthcoming master horizon
routine, HRZNMK. When the routine HRZMV1 is completely satisfied
with the attributes, it makes a jump to HRZST1 in order to set up the new
values for HRZN1 to HRZN4 and blank out any old ink rows.

You may notice two unused labels in the listing, HCOL5 and HCOL6.
These will be used by a later routine which will set up new sky and sea
colours. Here comes the listing .. .
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3A0000
47
3A0040

110000

CB5F
C23CO0

CB57
C8

3A0000
80

FEEC
DO

FEC1
4F
D20000

E607
2008

;ROUTINE TO CHANGE HORIZON LEVEL
;BY AMOUNT (HRZSPD)	 IN DIRECTION
;(CNTRL). NOTE 4=DOWN, 	 8=UP

^

HRZMV1	 LD	 A,(HRZSPD)
LD	 B,A
LD	 A,(CNTRL)
LD	 DE,0

;TEST FOR UPWARDS

BIT	 3,A
JP	 NZ,UP2

;TEST FOR DOWNWARDS

BIT	 2,A
RET	 Z

;

;INCREASE ROWS ABOVE HORIZON BY HRZSPD

LD	 A,(ROWS+1)
ADD	 A,B

;SAFETY CHECK FOR MINIMUM HORIZON LEVEL 1

CP	 236
RET	 NC

;

;IF ROWS>192 THEN SKIP TO HRZST1

CP	 0C1H
LD	 C,A
JP	 NC,HRZST1

;ARE WE ON ROW ZERO OF A LINE?

AND	 7
JR	 NZ,NROWZ1

;IF SO,THEN IS HRZSPD AT 8 ROWS PER MOVE?

CB58

CA0000

1808
B8

2805

D20000
1E20

064D
10FE

062F
C36000

3A01000

90

D8

FE0 2

BIT	 3,B

;IF NO,	 THEN SKIP TO HRZSTI

JP	 Z,HRZST1

JR	 ROWZ1

NROWZ1	 CP	 B

;ARE WE MOVING FROM ROW OI OF A LINE?

JR	 Z,ROWZ1

;OTHERWISE,	 IF WE ARE STILL ON THE SAME
;LINE THEN JUMP

JP	 NC,HRZST1
LD	 E,20H

,
;DELAY TO ENSURE TV HAS FINISHED THE NEW LINE

ROWZ1	 LD	 B,77
SELF42	 DJNZ	 SELF42

;
;FILL THE NEW LINE WITH CYAN PAPER, WHITE INK

;
HCOL5	 LD	 B,47

JP	 UPINIT

;
UP2	 LD	 A,(ROWS+1)

;DECREASE ROWS ABOVE HORIZON BY HRZSPD

SUB	 B

;RETURN IF NEGATIVE

RET	 C

;RETURN IF LESS THAN 2

CP	 2
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LD	 A,OFFH3EFF

CB58	 BIT	 3,B
2807	 JR	 Z,HCOL6
11EfdFF	 LD	 DE , O'FFEDH

B8	 NROWZ2 CP	 B

;IF WE ARE STILL ON THE SAME LINE THEN JUMP

D2Q1000 JP	 NC,HRZST1

;OTHERWISE FILL THE OLD ONE WITH BLUE PAPER
;WHITE INK

060F	 HCOL6	 LD	 B,15
2A0000	 UPINIT LD	 HL,(HRZN4)
19	 ADD	 HL ,DE

;THE ALL—PURPOSE FILLER

54
	

LD	 D,H
5D
	

LD	 E,L
1C
	

INC	 E
70
	

LD	 (HL),B
79
	

LD	 A,C
011F00
	

LD	 BC,31
EDBO
	

LDIR
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D8 RET	 C 4F LD	 C,A

;IF ROWS>184 THEN SKIP TO HRZST1 	 ;FINALLY JUMP TO HRZST1

FEB9	 CP	 OB9H	 C30000	 JP	 HRZST1

4F	 LD	 C,A

D20000	 JP	 NC , HRZST1	 We now have all the code necessary to set and move the horizon level.

ED44	 NEG	 HRZMV1 copes with all work on the attributes as the horizon moves,

E607	 AND	 7	 while HRZST1 makes sure that we know where those attributes are,

110000	 LD	 DE , 0	 deletes the old ink rows and calculates the addresses of the new ones.
All that remains is to actually inse rt those ink rows into the display file

; JUMP IF NOT ON ROW 0 OF A LINE	 before every interrupt (they may have been overprinted by sprites since
the last one). The master routine HRZNMK (MK for MaKe) will do this

2007	 JR	 NZ , NROWZ2	
after having called HRZMV1, which makes any necessary changes to

200 the attributes and variables. Thus HRZNMK is the only routine that we
have to call directly after each interrupt, as will be seen in the

;OTHERWISE FILL IN THE CURRENT LINE	 demonstration routine following its listing.
;WITH BLUE PAPER, WHITE INK

;THE MAIN HORIZON ROUTINE
;JUST CALL THIS AFTER EACH
;INTERRUPT, HAVING SET THE VARIABLES
;CNTRL AND HRZSPD

CD0000	 HRZNMK CALL	 HRZMV1

;RETURN IF NO INK ROWS ARE NEEDED

2A0000 LD HL,(HRZN1)
24 INC H
25 DEC H
C8 RET Z

;INSERT THE INK ROWS FOR THE HORIZON

;FIRST THE LEFT FIVE

77 LD (HL),A
2C INC L
77 LD (HL),A
2C INC L
77 LD (HL),A
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2C	 INC	 L
77	 LD	 (HL),A
2C	 INC	 L
77	 LD	 (HL),A

0E 00 LD	 C,0

;TEST BOTTOM-LEFT HALF-ROW

;NOW THE RIGHT FIVE

2A0000	 LD	 HL,(HRZN2)
77	 LD	 (HL),A
2C	 INC	 L
77	 LD	 (HL),A
2C	 INC	 L
77	 LD	 (HL),A
2C	 INC	 L
77	 LD	 (HL),A
2C	 INC	 L
77	 LD	 (HL),A
C9	 RET

To illustrate your new-found power over the Spectrum, here is a
demonstration routine that employs INT1, HRZST2, HRZNMK, DISINT
and indirectly, HRZST1, HRZMV1 and the interrupt handler.

The routine gives you direct control over the horizon. Pressing any of
keys 1 to 5 moves it upwards, while keys CAPS SHIFT to V move it
downwards. Keys 8,9 and 0 are used to control the speed of the horizon.
Think of them as a three bit number, each bit being set when its key is
depressed, then add one to obtain HRZSPD. Thus presing keys 8 and 0
(101 binary=5 decimal) gives a speed of 6 rows per TV frame. Here then
is the routine, DEMO.

CD0000	 DEMO	 CALL	 INT1

;SET INITIAL HORIZON

3EFE
DBFE
2F
E61F
2892

LD	 A,OFEH
IN	 A,(OFEH)
CPL
AND	 1FH
JR	 Z,ND1

;IF PRESSED, THEN SET BIT 2 FOR "DOWN"

CBD1 SET	 2,C

;TEST TOP-LEFT HALF-ROW

3EF7	 ND1	 LD	 A,OF7H

DBFE	 IN	 A,(OFEH)

2F	 CPL

E61F	 AND	 1FH
2802	 JR	 Z,NU1

;IF PRESSED, THEN SET BIT 3 FOR "UP"

CBD9 SET	 3,C

79
320000

;STORE DIRECTION

N^ U1	 LD	 A,C
LD	 (CNTRL),A

;TEST TOP-RIGHT HALF-ROW

0E54
CDr6000

LD	 C,84
CALL	 HRZST2

3EEF
DBFE

LD	 A,OEFH
IN	 A,(OFEH)

76

;WAIT FOR INTERRUPT

DMLP	 HALT

;C WILL HOLD DIRECTION

2F
E697
3C

;USE RIGHT 3 KEY-BITS FOR HORIZON SPEED

CPL
AND	 7
INC	 A
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320000	 LD	 (HRZSPD),A

;CALL THE MASTER HORIZON ROUTINE

;ROUTINE TO SET COLOURS OF SEA AND SKY
;ENTRY: H=SEA PAPER, L=SKY PAPER
;B=SEA INK, C=SKY INK
;ADD 16 TO H OR L OR BOTH FOR SOUND

C D0 O 00 CALL	 HRZNMK

;TEST BREAK KEY

3E7F	 LD	 A,7FH
DBFE	 IN	 A,(OFEH)
1F	 RRA
38CE	 JR	 C,DMLP

;IF PRESSED, THEN BACK TO BASIC

CD0000	 CALL	 DISINT
C9	 RET

For the final routine in this 'horizon suite' I have produced HRZCOL,
which allows you to set up the other routines for any combination of sea
and sky colours. It also sets the ink colours for above and below the
horizon (if you are moving shapes over the horizon, then you will
probably want these two to be the same). You have the option of causing
the interrupt handler to generate a background 'motor' sound, either at
50 Hz or 100 Hz, by adding 16 to one or both of the paper values
respectively. The registers should then be prepared as follows:

H = sea paper value (+16 for sound)
L = sky paper value (+16 for 100 Hz sound)

B = sea ink value
C = sky ink value.

For example, to produce green ground and a white sky, with black ink in
both,

LD	 HL,0407H
LD	 BC,0000H
CALL	 HRZCOL

The routine simply inse rts the correct attributes at the labels HCOL1 to
HCOL6, which are to be found in the interrupt handler (HCOL1 to
HCOL4) and HRZMV1 (HCOL5 and HCOL6).

7C	 HRZCOL LD	 A,H

320000	 LD	 (BOTBRD+1),A

;LEAVE SEA PAPER IN H

E607	 AND	 7

67	 LD	 H,A

7D	 LD	 A,L

320000	 LD	 (TOPBRD+1),A

;LEAVE SKY PAPER IN L

E607	 AND	 7

6F	 LD	 L,A

;HCOL1 NEEDS SKY-PAPER PAPER AND SEA PAPER INK

07	 RLCA
07	 RLCA
07	 RLCA
5F	 LD	 E,A

B4	 OR	 H

320000	 LD	 (HCOL1+1),A

;HCOL2 NEEDS SEA-PAPER PAPER AND SKY-PAPER INK

7C	 LD	 A,H

07	 RLCA
07	 RLCA
07	 RLCA
57	 LD	 D,A

B5	 OR	 L

320000	 LD	 (HCOL2+1),A
;HCOL3 NEEDS SEA-PAPER PAPER AND SEA-INK INK

7A	 LD	 A,D
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B p 	OR	 B
320000	 LD	 (HCOL3+1),A

;...AS DOES HCOL6

LD	 (HCOL6+1),A

;HCOL4 NEEDS SKY-PAPER PAPER AND SKY-INK INK

7B	 LD	 A,E
B1	 OR	 C
320000	 LD	 (HCOL4+1),A

;....AS DOES HCOL5

320000	 LD	 (HCOL5+1),A
C9	 RET

320000 CHAPTER 11

A Suite of Routines to
Complement the Print-
Processor

In this chapter I shall be developing a complete set of printing routines,
to take full advantage of the interrupt-driven print-procesor produced in
Chapter 9. In the following chapter will come the sprite animation
routines.

To start with, it would be useful to have a simple routine with which to
send any character to the buffer. Rather than using the address of the
current cell in the display file, as does Spectrum BASIC with the system
variable DF-CC, I find it more convenient to keep track of the print
position using the attributes file. Thus we will define a variable ATCC to
hold the attribute address of the current cell, and start with the lines

ORG	 (YOUR ADDRESS)
ATCC	 DEFW	 5800H

... thereby initialising our marker to the top-left corner of the text area.
The base of the table holding the character data will be stored in
CHARS, and we may as well start by pointing it at the Spectrum BASIC
character set, using the line

CHARS	 DEFW	 3COMH

Remember that CHSTRE holds the number of used entries in the print
buffer, and BUFFPT points at the next free entry. Both variables are
altered accordingly. The rest of the routine is self-explanatory, so
without further ado, I hereby present HIPRINT to you.
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;SEND A CHARACTER TO THE BUFFER
;ENTRY: A=CHARACTER CODE
;EXIT: BC=ADDRESS OF CHARACTER DATA
;DE=ATCC (SEE TEXT)
;HL=NEXT BUFFER ENTRY
;A=HI BYTE OF D.F. ADDRESS

;MULTIPLY CODE BY 8

6F	 HIPRNT LD	 L,A
2600	 LD	 H,0
29	 ADD	 HL,HL
29	 ADD	 HL,HL
29	 ADD	 HL,HL

;ADD BASE ADDRESS OF TABLE

ED5B0000	 LD	 DE,(CHARS)
19	 ADD	 HL,DE

2A000J5 LD	 HL,(ATT)

;H=MASK, L=ATT
;CONSTRUCT NEW ATTRIBUTE

lA
AD
A4
AD
2A0000

LD	 A,(DE)
XOR	 L
AND	 H
XOR	 L
LD	 HL,(BUFFPT)

;HL=FIRST FREE BUFFER LOCATION
;ROTATE AND STORE ATTR

07
77

RLCA
LD	 (HL),A

;STORE ATTR. ADDRESS

;LET BC = DATA ADDRESS

44	 LD	 B,H
4D	 LD	 C,L
210000	 PLACE	 LD	 HL,CHSTRE
7E	 PWAIT	 LD	 A,(HL)

;IF THE BUFFER IS FULL THEN WAIT FOR A'_U'

;INTERRUPT

FE28	 CP	 40
DA1900	 JP	 C,GO
FB	 EI
18F7	 JR	 PWAIT
F3	 GO	 DI

;UPDATE BUFFER CHARACTER COUNT

34	 INC	 (HL)
ED5B0000	 LD	 DE,(ATCC)

;DE=ADDRESS OF ATTRIBUTE

94

2C	 INC	 L
73	 LD	 (HL),E
23	 INC	 HL
72	 LD	 (HL),D
2C	 INC	 L

;FIND AND STORE HI BYTE OF D.F. ADDRESS

7A	 LD	 A,D
E603	 AND	 3
0 7	RLCA
0 7 	 RLCA
07	 RLCA
F640	 OR	 64
77	 LD	 (HL),A
23	 INC	 HL

;STORE CHARACTER DATA ADDRESS

71	 LD	 (HL),C
2C	 INC	 L
70	 LD	 (HL),B
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INC	 HL

;SET BUFFPT TO NEXT FREE BUFFER ENTRY

LD	 (BUFFPT),HL
C9	 RET

There will be times during some programs when you want the interrupt
handler to continually print a particular character or set of characters in
the same place on the screen. For example, you may wish to
superimpose 'laser target sights' on the centre of the screen, and these
would need continual OR-printing on every interrupt, as the enemy
spaceship (or whatever) moves behind them. Since time is so short
between two interrupts (especially if you are using the horizon
generator, at low level), it would be highly preferable not to have to load
all the data for the target sights into the print buffer after every interrupt.

In order to enable this, I have devised a system of routines which use a
subsection of the print buffer, which shall be called 'RO-buffer' for
'Read-Only buffer'. Unlike normal entries in the print buffer, those in the
RO-buffer will not be erased by the interrupt handler when they have
been printed. Thus all that we need to do before each interrupt is to
make sure the correct attributes for each cell concerned have been
inserted in the RO-buffer. If the attribute mask is the zero byte, then we
will not even need to do this, since the characters will always be printed
with the same attributes, regardless of the 'old' attributes for that cell.

Consecutive entries normally 'grow' upwards from the start of the print
buffer: so to keep them separate, we will make the RO-buffer grow
downwards from the end of the print buffer. The two regions should
never overlap. We will store the number of entries in the RO-buffer in the
variable ROLNTH, and the start (lowest address) of the RO-buffer in the
variable ROBFPT. Thus we initialise them (for a zero-length RO-buffer)
with the lines.

(YOUR ADDRESS)
0
0.

Before we go any further we need a routine to set up a RO-buffer. What,
in fact, the following routine will do is to ALTER the length of the RO-
buffer by the value in C, which may be positive or negative. Having
adjusted ROLNTH, the routine fills all the entries between the end of the
'normal' entries (i.e. BUFFPT) and the beginning of the RO-buffer, with
'null' characters, to prevent any garbage being printed. For this reason

the routine, called ALTRBF, should always be called with the interrupts
disabled. ALTRBF then sets ROBFPT to the new start address of the
RO-buffer, and returns it in HL, which will be used later.

;ROUTINE TO ALTER LENGTH OF RO-BUFFER
;ENTRY: C=ALTERATION TO LENGTH
;PRESERVED: C
;EXIT: HL=START OF RO-BUFFER, B=0, A=NO. OF
;UNUSED ENTRIES IN PRINT BUFFER

210000 ALTRBF LD	 HL9ROLNTH

;ALTER ROLNTH BY C

A, (HL)
A,C
(HL) ,A

;FIND NO. OF UNUSED ENTRIES IN PRINT BUFFER

;(>=0)

A,(CHSTRE)
B,A
A, 4c^

B
(HL)
B,A

;FILL THEM WITH "NULL" ENTRIES

2AP000	 LD	 HL,(BUFFPT)

;BUT JUMP IF THERE ARE NO ENTRIES TO BE FILLED

JR
	

Z,HOPFL
LD
	

DE,6

;NOTE: D=0

;
72	 BLNK	 LD
19	 ADD

23

220000

ROLNTH
ROBFPT

ORG
DEFB
DE FW

7E
81
77

LD
ADD
LD

3A0000
47
3E28
90
96
47

LD
LD
LD
SUB
SUB
LD

28957
110600

(HL) ,D
HL,DE
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10FC 2D
2D

lA

DEC	 L
DEC	 L

;TAKE CURRENT ATTRIBUTE

LD	 A,(DE)

DJNZ	 BLNK

;RESET ROBFPT TO START OF RO-BUFFER

220000 HOPFL	 LD	 (ROBFPT),HL
C9	 RET

Obviously any routine written to output characters to the print buffer is
easily adapted to use the RO-buffer. which is indeed a subsection of the
former. You could modify HIPRNT or any of your own printing routines. I
shall be supplying a routine to dump pre-defined shapes such as our
target-sight into the RO-buffer, but first let me get the simple routine
needed to refresh the attribute bytes of each entry out of the way.

The routine is called SRVR1 (for it is a SeRVice Routine). It takes the
attribute address from an entry, finds the attribute from the file, then
masks it with our standard variable MASK, which as usual is placed
directly after ATT, the attributes for our characters. The completed
attribute byte is then rotated left by one bit (to counter the rightwards
rotation by the interrupt handler) and inserted in the RO-buffer. Note that
if we wish to select OR-printing then we set bit 7 of ATT (bit 7 of MASK
should always be zero), which will then be rotated to bit 0 before
inse rt ion in the buffer. This also applies to HIPRNT.

Here, then, is the listing for SRVR1. Note the use of the zero flag to detect
the end of the buffer, when the to-byte of its address becomes zero.

;SERVICE ROUTINE TO UPDATE ATTRIBUTES
;IN THE RO-BUFFER
;EXIT: B=MASK, C=ATTRIBUTE, A=0
;HL=BYTE AFTER PRINT BUFFER

2A0000	 SRVR1	 LD	 HL,(ROBFPT)

;LET B=MASK, C=ATTRIBUTE

ED4Bm00O
	

LD	 BC,(ATT)

;TAKE ATTRIBUTE ADDRESS

NXSRVI INC	 L
LD	 E,(HL)
INC	 L
LD	 D ,(HL)
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;CREATE NEW ONE

C
B
C

;ROTATE LEFT, PRESERVING THE OR-FLAG

07	 RLCA

;STORE NEW ATTRIBUTE IN BUFFER

LD	 (HL),A

;MOVE ON TO NEXT ENTRY

A,L
A,6
L,A
NZ , NXSRV1

;UNTIL RO-BUFFER HAS BEEN SERVICED
C9	 RET

SRVR1 should be called whenever there is a chance that the attributes
of the cells used by our RO-buff entries have been changed, for
example, by moving a sprite into them, or a horizon down one line. The
routine also gives you the opportunity to vary the colour of the
`permanent' characters on your screen, by altering ATT. Since it deals
with the entire RO-buffer, every entry will use the same ATT value. If this
is not desired, then the easiest modification is to change the fragment

XOR
AND
XOR

99

2C
5E
2C
56

A9
AV
A9

XOR
AND
XOR

77

7D
C606
6F
2VEE

LD
ADD
LD
JR

C
B
C



to	 LD	 C,(HL)
RRC	 C
XOR	 C
AND	 B
XOR	 C

thereby effectively using the original value of ATT with which the entry
was inserted (by a modified HIPRNT, for example).

Now for that rather specialised routine I mentioned earlier, to send
specific 'shapes' to the RO-buffer. A shape will consist of a number of
separate characters that together form an image to be printed on the
screen. As an example, I shall be taking the previously-discussed laser
target sight, which will be made up of thirteen characters as shown.

1

9

13

The routine, called SRVR2, will need two data tables. One will hold the
desired position of each character on the screen, while the other will be
a table of character data, stored, as usual, in eight bytes per character.
The position data and character data must, of course, be stored in the
same order, with no gaps in the tables!

To represent the position of each character, I have decided to number
the cells 0 to 02FFH, in the order of their attributes. This has the

100

advantage that the to-byte of the position will be identical to that of the
attribute and display file addresses for the cell. If you prefer to use a
co-ordinate system, then it is a simple task to write a routine to convert
from one system to the other. Alternatively, you could modify SRVR2.

As an aid to easy calculation of position data, here is a labelled screen
grid — just read the line value and add the column value (both in hex.).

01	 03	 05	 07	 09	 08	 OD	 OF	 11	 13	 15	 17	 19	 1B	 1D	 1F

00	 02	 04	 06	 08	 OA	 OC	 OE	 10	 12	 14	 16	 18	 1A	 1C	 1E

000O

LINE 020

2
1•

3 060

0804

5
0A0

OCO

0E0

100

120

140

160

180

1A0

1C0

1E0

200

220

240

260

6

7

8

9

10 4
11

12

13

14

15

16

17

18

19

20
280

2A0

2C0
21

22

23
2E0

	

0	 2	 4	 6	 8

3	 5	 7
	

9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31
10	 12	 14	 16	 18	 20	 22	 24	 26	 28	 30

COLUMN

The tasks of SRVR2 are to take the position of a character, calculate the
attribute address, display file address, and character data address,
and store them all in the correct order in the RO-buffer. I will list the
routine before demonstrating its use.

;ROUTINE TO SEND DATA TO RO-BUFFER
;ENTRY: HL=START OF POSITION DATA
;DE=START OF RESERVED RO-BUFFER AREA
;BC=ADDRESS OF CHARACTER DATA
;A=NO. OF CHARACTERS
;EXIT: A=0, BC=8
;N.B. AF IS DESTROYED

	

C5	 SRVR2	 PUSH	 BC
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08
1C

;USE BC AS A CONSTANT

LD	 BC,8

;A BECOMES A COUNTER

NXCHR9 EX	 AF,AF'
INC	 E

;STORE CHAR. DATA ADDRESS IN BUFFER

73	 LD	 (HL),E
2C	 INC	 L

72	 LD	 (HL),D

2C	 INC	 L 

;TRANSFER LO-BYTE OF ATTRIBUTE ADDRESS
;ADD EIGHT TO IT

7E
12
1C
23

LD	 A,(HL)
LD	 (DE),A
INC	 E
INC	 HL

EB

P9

;SAVE NEW CHAR. DATA ADDRESS, RETRIEVE
POSITION DATA ADDRESS

EX	 DE,HL
ADD	 HL,BC

;FORM HI-BYTE OF ATRIBUTE ADDRESS

7E	 LD	 A,(HL)
F658	 OR	 58H
12	 LD	 (DE),A
1C	 INC	 E

;FORM HI-BYTE OF D.F. ADDRESS

$	 E69/3	 AND	 3
07	 RLCA	 Referring to the previous block-diagram of the laser target, I shall be

07	 RLCA	 printing character 1 at (10, 15), so we have

07	 RLCA	 position = 140 + OF
F640	 OR	 40H	 = 14FH

By inspection we see that character 2 is one line down (+20H) and one

; STORE I T	 column to the left (-1) so its position is 16EH, character 3 is at 16 FH and
so on. I will label the start of the position data TRGPOS and that of the

12	 character data TRGDAT (the 'donkey work' of creating the character

'	 1C	 INC	
EDE) , A	 data has been done for you, and you will find it listed in the routine).

23	 INC	 HL The first task in TARGET is to call INT1 to set up the interrupt handler.
This must be done before anything else, since, as you recall, INT1 clears9

; RETRIEVE CHAR. DATA ADDRESS, SAVE POSITION DATA 	 the print buffer. We then disable the interrupts, which are not desirable
;ADDRESS	 while we are loading the print buffer. To reserve 13 characters in the
;	 RO-buff we use

E3	 EX	 (SP),HL

08	 EX	 AF,AF'

;NEXT CHARACTER

3D	 DEC	 A

2ODE	 JR	 NZ,NXCHR9

E1	 POP	 HL

C9	 RET

E3
EB

EX	 (SP),HL
EX	 DE,HL

102

LD	 C,13
CALL	 ALTRBF
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;TEST BREAK KEY
;CALL INT FIRST, SINCE IT CLEARS THE BUFFER, AS
;WELL AS INITIALIZING THE INTERRUPT HANDLER 	 3E7F

DBFE
1FCD00c7O TARGET CALL	 INT1

104

LD	 A,7FH

IN	 A,(OFEH)
RRA

105

... which returns the start address of the RO-buffer in HL. We need to
put this in DE, with

EX	 DE,HL

.. then prepare the other registers for SRVR2.

LD	 HL,TRGPOS
LD	 BC,TRGDAT
LD	 A,13
CALL	 SRVR2

Now choose a full mask (7FH, since bit 7 should always be reset) and
OR	 print (set bit 7 of ATT, giving ATT=80H). Finally, initialize the
'attribute' entries in the RO-buffer with SRVR1.

LD	 HL,7F80H
LD	 (ATT),HL
CALL	 SRVR1

For demonstration purposes I have put the last instruction in the main
loop so that SRVR1 is called after every interrupt, but in this case it is not
imperative, since the attribute file is not altered within the loop. It
WOULD be necessary, however, if you were to incorporate the horizon
demonstration routine of the previous chapter.

FIiG'j	 When the BREAK key is pressed, TARGET terminates by clearing the
RO-buffer (setting ROLNTH to zero) and reselecting IM1.

CALL	 DISINT
LD	 A,(ROLNTH)	 ;ADD (—ROLNTH) TO ROLNTH
NEG
LD	 C,A
CALL	 ALTRBF
RET

The rest of the listing is sufficiently explained by the comments, so here
is TARGET.

;THIS DEMO OR—PRINTS A HIGH RESOLUTION
;RIFLE SIGHT ON THE CENTRE OF THE SCREEN

;NO INTERRUPTS WHILE WE ARE ALTERING THE BUFFER

F3 DI

;SET UP ROBUFF FOR 13 ENTRIES

^EOD

CD0m0tÅ

LD	 C,13
CALL	 ALTRBF

;PREPARE TO DUMP DATA FOR 13 CHARACTERS IN THE

;BUFFER

EB
213400
014E0Qf
3E0D

EX	 DE,HL
LD	 HL,TRGPOS
LD	 BC,TRGDAT
LD	 A,13

;FILL RO—BUFFER

CD000m CALL	 SRVR2

;SELECT FULL MASK, AND OR—PRINT OPERATION BY
;SETTING BIT 7 OF ATT

21807F
220000
FB

LD	 HL, 7F8OH
LD	 (ATT),HL
EI

CDQ)m00

;CALCULATE ATTRIBUTES

TSLP	 CALL	 SRVR1

;WAIT FOR INTERRUPT
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38F5

CD0000

3A0000
ED44
4F

CD0000
C9

4F01
6E01
6F01
7001
8D01
8E01
8F01

9001
9101
AE01
AF01
B001
CF01

00
18
10
10
18
10
10

18

00

00

JR	 C,TSLP

;IF PRESSED THEN SELECT IM 1,
CLEAR THE RO—BUFFER	 AND END

CALL	 DISINT
LD	 A,(ROLNTH)
NEG
LD	 C,A
CALL	 ALTRBF
RET

;THE POSITION DATA

^

TRGPOS	 DEFW	 014FH
DEFW	 016EH
DEFW	 016FH
DEFW	 0170H
DEFW	 018DH
DEFW	 018EH
DEFW	 018FH

DEFW	 0190H
DEFW	 0191H
DEFW	 O1AEH
DEFW	 01AFH
DEFW	 Q1B0H
DEFW	 01CFH

;THE CHARACTER DATA

TRGDAT	 DEFB	 0
DEFB	 24
DEFB	 16
DEFB	 16
DEFB	 24
DEFB	 16
DÉFB	 16
DEFB	 24

DEFB	 0
DEFB	 0

00

03
OE
18
10
30

10
10
FE
93
1p
18
10
7C

00
00

00

80
E0
30
10
18

00
00

00
92
FF
PV
00
00

21
61
43
4A
FF
42
43
61

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

O
3
14
24
16
48

16
16
254
147
16
24
16
124

0

0
0
128
224
48
16
24

Q'
0

146
255

0

fd

33
97
67
74
255
66
67
97

106
107



	

D7	 DEFB	 215	 FE	 DEFB	 254

	

11	 DEFB	 17	 10	 DEFB	 16

	

11	 DEFB	 17	 ;

	

00	 DEFB	 0	 08	 DEFB	 8

	

D7	 DEFB	 215	 18	 DEFB	 24

	

00	 DEFB	 D	 10	 DEFB	 16

	

11	 DEFB	 17	 30	 DEFB	 48

	

11	 DEFB	 17
As you will recall, we have made provision in the print-processor pa rt of

	

08	 DEFB	 8	 the interrupt handler for an 'OR printing' function that merges a new

	

OC	 DEFB	 12	
character with the current contents of a screen cell in the display file. I

	

4	 DEFB	 132	
will now provide the suppo rt routines for this function.

3 

	

A4	 DEFB	 164	 Whenever we come to print a character on the screen, we will need to

	

FF	 DEFB	 255	 know whether the contents of the destination cell are to be preserved by

	

84	 DEFB	 132	 OR-printing, or destroyed by over-printing. For example, when two

	

84	 DEFB	 132	 characters in a game move into the same cell, we will probably want to

	

0C	 DEFB	 12	 merge them together, while if we are moving a character from one cell to
the next, trailing a blank behind it to delete the old image, then we

	

OP	 DEFB	 d	
certainly won't want to OR-print the space with the old image.

	

00	 DEFB	 0

	

00	 DEFB	 0	
To this end we need a map in memory, which I shall call the OR-map, to

	

92	 DEFB	 146	
keep track of which cells are 'occupied'. Only one bit per cell is required,

DEFB	 254	
a 1 indicating 'cell occupied' and a zero indicating 'empty cell'.

FE 

	

00	 DEFB	 0	 Thus we have four bytes for each of the twenty-four screen lines, making

	

VT	 DEFB	 0	 a 96 byte OR-map. Not surprisingly, I have labelled the start of this as

	

00	 DEFB	 0	 OR MAP. To reserve the required space we need the line:  

ORMAP	 DEFS	 96       21	 DEFB	 33
30	 DEFB	 48
10	 DEFB	 16
18	 DEFB	 24
OE	 DEFB	 14
03	 DEFB	 3
00	 DEFB	 0
op	 DEFB	 0

;
D7	 DEFB 	 215
7C	 DEFB	 124
10	 DEFB	 16
18	 DEFB	 24
10	 DEFB	 16
93	 DEFB	 147
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The OR-map will need clearing regularly, so before we go any further,
let's have a routine to fill it with zeroes, CLOR.

;ROUTINE TO CLEAR THE OR-MAP

21 0000	 CLOR	 LD	 HL,ORMAP
015F00	 LD	 BC,95
70	 LD	 (HL),B
54	 LD	 D,H
5D	 LD	 E,L
13	 INC	 DE
EDBm	 LDIR
C9	 RET
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Every time we are preparing to send a character to the print buffer and
wish it to be considered for OR-printing with existing and future
characters, we should access the bit corresponding to the destination
cell in the OR-map.

If that bit is set, then there is already something in that cell, and we select
OR-print by setting bit 7 of the attribute byte, ATT. If the bit is zero, then
as far as we are concerned the cell is 'empty', and having set the
OR-map bit to signify that it is now occupied, we reset bit 7 of ATT to
select over-printing. The character is then sent to the print-buffer using
HIPRINT (or your own routine) in the usual manner.

;ROTATE A MASK UNTIL THE '1' IS OVER THE
REQUIRED BIT

E607	 AND	 7
47	 LD	 B,A
04	 INC	 B

3E01	 LD	 A,1
0F	 NXTROT RRCA
10FD	 DJNZ	 NXTROT

;PUT THE MASK IN C

4F

A6
110000
lA

The following routine, ORCHK, carries out the process described
above, using the pointer ATCC, which holds the location of the current
attribute byte, as a means of locating the correct OR-map bit. No entry
values are required, and the comments in the listing provide adequate
explanation.

;ROUTINE TO DECIDE WHETHER TO OR-PRINT ON THE
;CURRENT CHARACTER CELL

LD
	

C,A

;TEST IS THIS CELL ALREADY OCCUPIED

(HL)
DE , ATT
A, (DE)

AND
LD
LD

•

2A0000 ORCHK	 LD	 HL,(ATCC) ;IF NOT THEN SELECT OVER-PRINT

;TAKE ATTR.	 ADDRESS DIVIDE ITS LOWEST 10 BIT	 CBBF RES	 7,A
;BY 8 2802 JR	 Z,NOTOR

7D LD	 A,L ;OTHERWISE SELECT OR-PRINT
CB1C RR	 H
1F RRA CBFF SET	 7,A
CB1C RR	 H 12 NOTOR	 LD	 (DE) ,A
1F RRA
CB3F SRL	 A ;NOW SET THE BIT IN THE OR-MAP

;TO SIGNIFY "CELL USED"
;PUT RESULT IN DE

79 LD	 A,C
5F LD	 E,A B6 OR	 (HL)
1600 LD	 D,Çä 77 LD	 (HL),A
7D LD	 A,L C9 RET

;ADD BASE. ADDRESS OF TABLE

21 mQ;0m LD	 HL,ORMAP
19 ADD	 HL,DE
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CHAPTER 12

Perfectly Flickerless Sprite
Pixel-Animation

This way, animation will be achieved in just one print operation rather
than the two required by the former technique, and the number of
characters we need to print will be halved. This is a distinct advantage
when you bear in mind that the standard print-processor can only print
40 characters per TV frame.

For the purposes of the rest of this discussion I shall be referring to a one
character shape being moved in steps of one pixel.

If our shape is containable within (m) columns (i.e. is less than or equal
to (m x 8) pixels wide) then we see that it can, at most, occupy (m + 1)
separate columns. Hence the sprite must be at least (m + 1) columns in
width. For example, our 1 x 1 shape may occupy columns 14 and 15 in
the following way:

13	 14 15 16

We are now ready, at last, to begin development of the sprite
generation, printing and control routines for the production of flickerless
pixel graphics in conjunction with the interrupt-driven print processor.

As you will recall, we define a sprite to be some image contained in a
movable object block (hence their other name, MOBs) of adjacent
characters on the screen. This block will always be rectangular, and the
image may be anything from 1 x 1 character upwards in size.

The most obvious approach to moving a sprite from one position to
another is to 'blank out' the 'old' image, by printing spaces over it, and
then to print the new image in the new position. If the two images are
mutually exclusive (i.e. they do not overlap), then this is a perfectly
acceptable technique.

If, however, as is more usually the case, we have only moved the sprite
by a few pixels, then there seems little point in printing a space in a cell
common to both images, only to replace it with pa rt of the new image
almost instantly.

To avoid this time wasting, we will use a more subtle approach to sprite
animation. Each shape will be surrounded by a narrow region of blank
pixels, so that as we move from one position to the next, these trailing
blanks will wipe out any pa rt of the old image not already obliterated by
the printing of the new image.
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2-column
sprite required

If, in addition, we place the restriction that the shape can never occupy
more than (m + 1) different columns in moving from one position to the
next, then we see that both the 'old' and 'new' images can be contained
in an area (m + 1) columns wide.

For example, we must restrict the motion of our 1 x 1 shape so that if the
old image occupies column 14, the new one doesn't occupy column 16.
Hence if our shape in columns 14 and 15 has two blank pixel columns to
its right in column 15, then we must not allow it to move more than two
pixels to the right:

+2 PIXELS

IC>
13	 14	 15 	 16

2 PIXELS

13	 14 	 15 	 16

8 PIXELS
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20

1 3

+3 PIXELS

[>
13	 14	 15	 16

This restriction is, in practice, easy to apply, and leads to the result that
we can animate a shape contained in (m x n) characters by continually
printing a set of sprite images of fixed dimensions (m + 1) by (n +- 1).
Thus to move our 1 x 1 shape about the screen we will need a 2 x 2 cell
sprite.

Now if you can imagine our m x n shape floating around within its (m +
1) x (n + 1) sprite, you will see that by virtue of the eight different
horizontal positions and eight different ve rt ical positions the shape can
take, the resulting sprite will be any one of 8 x 8 = 64 possible images.

m+1

m
8 PIXELS

If the shape is movable at one pixel at a time in each of the X and Y
directions, then each of these 64 patterns would at some time need to be
printed. Before proceeding any further with this discussion, it would be
prudent to define some variables. We will call the horizontal distance (in
pixels) of the shape from the left hand edge of its sprite XP, and the
vertical distance of the shape from the bottom edge of the sprite YP,
thus:

XP

YP

EDGES
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We now have a direct choice over the method of generation of the sprite
patterns. We may either store just one of the sprite 'images' in memory,
and manipulate the shape within it bit-wise to obtain the required image
for printing, or we may store the images in a somewhat larger table in
RAM, using an indexing technique to 'pluck out' the required image
without further manipulation.

Experience has shown that, while the former technique uses as little as
one eighth of the amount of memory to store the image, and is thus
useful if RAM is at a premium, it is very time consuming to perform the XP
bit-shifting operations required on each of the (M + 1) x N x 8 bytes
affected, and it is thus preferable, wherever possible, to employ the
la tter technique.

Although the sprite may be one of 64 possible patterns, the situation is
not as grave as it seems. We do not need to store 64 different images in
memory, as it is possible to produce the eight images corresponding to
the different values of YP from the one image corresponding to a given
XP. Thus we only need to store (at most) eight images, one for each
value of XP.

We will store the images one at a time, and each image will be stored
one column at a time, working from top to bottom and left to right. Thus
the order of storage for an image of our 1 x 1 shape in its 2 x 2 sprite will
be:

Each image will be stored as though YP = m, that is to say the shape will
be against the bottom edge of the sprite and the top line of the image will
be blank. The images are stored in increasing order of XP, so for our
1 x 1 shape the first image will be:
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0
TOP-LEFT
CORNER

► XC

^
YC

... and the last will be:

XP=7

t 1 PIXEL

MOTION

X P=7

XP=O
XC=XC+1

As our shape glides across the screen, the animation routines will
simply be cycling through the sequence of images as XP cycles through
0 to 7. I will now define the screen position of the sprite in terms of the
position of the top left hand corner of the image, (XC, YC), where XC is
measured rightwards from zero, YC is measured downwards from zero,
and the C stands for cell co-ordinates rather than the P for pixels. Thus
we have:

If the shape is moving leftwards, then we will be cycling backwards
through the images. When XP reaches 0, the rightmost column will be
completely blank and we will be able to decrement XC and change XP to
7 without leaving any trace of the old image in its rightmost column,
which is outside the new sprite area. If however, we are moving
rightwards, then it will not be sufficient just to switch from image 7 to
image 0, incrementing XC, as this would leave a pixel-column of the old
image in the column immediately to the left of the new one, thus:

DEBRIS

To get around this problem we need to simulate a'ninth' image, and this
will be done by including an extra column of blank cells immediately
BEFORE image 0. We will then move from XP = 7, by pointing the sprite
generator at this column of blanks and pretending that XP = 8. As far as
the rest of the routines are concerned, XP will be 0 and XC will be
incremented. We will then have:

E>

X P=7

"XP=8" , i.e. XP=0 ,
XC=XC+1
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X P=4
YP=4

The various images corresponding to each value of YP will be produced
by pointing the sprite generator at the YPth row of the XPth image,
counting downwards from row zero. The reason for storing the images
column by column can now be seen. Let us look at the memory layout of
(say) image 4 of our 1 x 1 shape. We find that after the bottom left corner
of this image comes the top right corner, then the bottom right corner,
and then the top left corner of the next image. Thus:

XP=4

YP=0

6	 XP=5
YP=O

7

ETC

By pointing at row 4 of cell 0, we effectively shi ft up all the bytes in the
image by four rows, and the result is a centralised shape with XP = 4,
YP = 4:

In a similar fashion to XP = 8, we will simulate YP = 8 by pointing the
sprite generator at row 0 of cell 1 when moving upwards from YP = 7.
Notice that YP and YC are increasing in opposite directions, so when YP
reaches 7 we then let YP = m and DECREMENT YC.

I should point out at this stage that it is by no means essential to store
eight separate images if we do not require movement in the X direction
at one pixel per cycle. After all, there is little point in storing eight images
if we are only moving in two-pixel steps, since there would only be four
attainable values of XP, and hence only four of the images would ever be
used. It emerges that we have a choice between storing 8,4,2 and 1
separate images.

With eight images, any horizontal speed up to eight pixels per
movement is possible. With four images, we have a step of two pixels
between images and thus speeds of 0, 2, 4, 6 and 8 pixels are allowed,
but XP must always be even. With two images, we have a step of four
pixels between images, and thus a speed of 0, 4 or 8 pixels per
movement is possible, with XP being a multiple of four.

For example, if we represent our 1 x 1 shape in two separate images
(bearing in mind that the shape is always at the bottom left corner of
image 0), then we have the sequence:

MOTION

4 BYTES —i

XP=5
YP=4

ETC.

IMAGE 0
	

IMAGE 1	 "IMAGE 2"
(simulated from image 0)

Obviously with one image we just have the simple case of movement by
one character at a time.

It is now possible to calculate the amount of memory needed to store the
images of any one sprite. Take an (m x n) character shape, and enclose
it in an (m +1) x (n + 1) character sprite. Producing (a) images of this
sprite, and bearing in mind that each cell requires eight bytes and each
set of images requires a preceding blank column, we have:
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memory needed = 8 x a x (m + 1) x (n + 1) + 8 x (n + 1)
=8(a(m+ 1)+1)(n+1)bytes.

Thus for a shape three columns wide by two lines deep, defined in four
images, we have m = 3, n = 2, a = 4 and:

memory needed = 8 (4 (3 + 1) + 1) (2 + 1)
= 408 bytes.

In addition to this, and assuming that all the images for the sprites
currently in use are stored consecutively in memory, we must include
eight zero bytes after the last image of the last sprite, to allow for the
memory 'take-up' when YP = 8 and the last image is being used. In this
case, those eight bytes will represent the bottom right corner of the
sprite.

As an example, suppose we have two sprites in use, both of the 3 x 2
shape in the previous memory calculation. If one is a plane, the other a
train, then a suitable memory-reserving sequence might be:

PLNSPC
TRNSPC

;8 BYTES

(Using labels suffixed SPC for SPaCe).

Let us now discuss the method of controlling and keeping track of the
position of the sprites. For each sprite we will use a seventeen-byte table
of information which we shall call the 'sprite motion data'. This table will
tell our animation routine at what speed to move the sprite along X and Y,
the whereabouts of the sprite at any time, the location of the image data,
the dimensions of the sprite, the colour it is to be printed in and so on.
Whenever we want to move a sprite, we will point the IY index register at
the start of its motion data and then call the animation routine, which will
do all of the rest of the work for us, referring to the table of motion data.

Before proceeding to a complete breakdown of this table, let us first
redefine XP to be the number of the image currently being used by the
sprite generator. Thus if there are four images, XP will now cycle
continuously through the values (0, 1, 2, 3) as the sprite moves across
the screen. That is to say, that XP is continually incremented and then
reduced modulo < number of different images >.

When there are eight images, then XP will have the same value as
before, that is the number of pixels from the shape to the left hand edge
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of the sprite. Otherwise, you will need to multiply XP by the step between
images (2, 4 or 8 pixels) to find this distance. This conversion is worth
bearing in mind when you are writing collision-detection routines and
such like.

Here then is a list of the seventeen bytes of motion data for each sprite,
followed by some elaboratory notes.

Address Contents

IY XP = Current image number (< 8)

IY+1 VX = Rate of change of XP (positive or negative)

IY+2 N = Number of images = (max. value of XP)+1

IY+3 XC = position of leftmost sprite column

IY+4 YP	 (0-7)

IY+5 VY = Rate of change of YP (positive or negative)

IY+6 YC = position of uppermost sprite line

I Y+7 LO
Address of row 0, cell 0 of image 0 

IY+8 HI

IY+9 Cycle count (see notes)

IY+10 Cycle period (see notes)

IY+1 1 Width of expanded sprite

IY+12 Depth of expanded sprite

IY+13 LO
Length of one image = width x depth x 8

JIY+14 HI

IY+15 Attribute byte and flag for OR-printing

IY+16 Attribute mask

The 'cycle count' and 'cycle period' of (IY + 9) and (IY + 10) will be used
to increase the versatility of our sprite control routine. Whenever the
routine is called, the cycle count will be decremented. If the count is not
zero then an immediate return will be made. Otherwise, the cycle count
will be reloaded with the constant 'cycle period', which controls
indirectly the frequency of movement of the sprite, and the sprite will be
moved and printed. More about this later.

In view of the amount of memory needed to store the images of a fully
operational sprite, it would be wise of us to store the bit-patterns of the
various shapes a program requires in as compact a form as possible,
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DEFS
DEFS
DEFW

408

408
0,0,e,0
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UPPER SAFETY MARGIN
= Py PIXELS

H
8 (XPmax x D)+PxXPmax x D

and then to expand them to the full blown sprite images as and when
required. We will need some utility routines to do this, and I have chosen
to provide a two-stage sprite expansion system.

The first routine, called PADOUT, will copy the dormant shape from its
storage area to the 'sprite image area', adding a column of blanks to the
right, a line of blanks above it, and the statutory preceding blank column
to image Ø. The second routine, SPREX, will manipulate a copy of image
0, row by row, using shifting and rotating operations to generate the
other images.

The 'bare' sprite data should be stored one column at a time, one row at
a time, working from left to right and top to bottom, in the same manner in
which the images are stored.

Referring to the earlier pa rt of this chapter, you will recall that the motion
of the (m) column wide shape must be restricted so that it does not
occupy more than (m + 1) columns in moving from one position to the
next. At the time, I dismissed such a restriction as 'easy to apply'. Now is
the time to explain how to do so.

The shape must include as its top and right hand edges an L-shaped
region of blanking between 0 and 7 pixels in width. The width of this
safety region is determined as follows.

Suppose that the highest valued image used by the sprite is that
corresponding to XPmax , and that the absolute rate of change of XP is VX
per movement. Let the step in pixels between the shape's positions in
successive sprite images be D. Then the number of pixels moved each
time is D x VX. We see that the distance of the shape from the left hand
edge of the sprite is (XP x D), and hence at minimum there are (8 –
( XPmax x D)) pixels of the shape in the leftmost column.

If the right hand safety margin in sprite is P x pixels wide, then at minimum
there will be (8 – (XPmax x D) + Px ) blank pixels in the rightmost column
of the sprite. Some diagrams may help:
	  m cells 	

	
SPRITE IMAGE

RIGHT-HAND SAFETY MARGIN = P X PIXELS
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Above we see how the shape must 'shrink' to allow a blank margin to fit
around it. When the XPmax image is being used we have

MOTION

8 (XPmax x D)

... and we see that, if our rule that the m-column shape does not
occupy more than m + 1 columns during motion is to be obeyed, then
we can only allow (8 – (XPmax x D) + P x ) pixels of movement to the right.
Now the distance moved to the right is D x VX, hence

8–(XPmaxxD)+Px=DxVX
Px + 8 = D (VX + XPmax)

and finally:

Px = D (VX + XPmax ) – 8

After all that theoretical strain I think a practical example would help to
clarify the situation.

Suppose that we are animating a car, which at one time or other will be
moving in one pixel steps, but at present is moving two pixels at a time.
We will thus need a full set of eight images, which means the 'step
between_ images' is one pixel, i.e.

D=1

to move the car in two pixel steps, we have

VX=ô=?=2.

Now at this constant speed we will be cycling either through the 'odd'
images, where
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408	 ;IMAGE AREA
0,0,0,p
(SPRITE DATA);(3-2)*8=48 BYTES OF DATA
17	 ;SEE LATER FOR DETAILS

;ON HOW TO INITIALIZE THE
;MOTION DATA
;WIDTH, DEPTH

PLNSPC DEFS
DEFW

PLNDAT DEFB
PLNMTN DEFS

LD	 BC,p302H
LD	 DE,PLNDAT
LD	 HL,PLNSPC
LD	 IY,PLNMTN
CALL	 PADOUT

XP = {1, 3, 5, 7)giving XPmax = 7

or through the 'even' images, where

XP ={0, 2, 4, 6) giving XPmax = 6

Thus we have for the 'odd' cycle,

P =1 (2+7)-8=1 pixel

and for the even cycle,

Px =1 (2 + 6) – 8 = 0 pixels

This gives us the significant result that if we can restrict XP to multiples of
VX then no right hand margin is required, but if we are forced to use the
images for odd values of XP then the right most pixel column of the
shape must be blank. Hence the car shape must include a blank right
hand safety margin of one pixel in width.

A similar analysis is applicable to determine the necessary width of the
upper safety margin; I shall not therefor repeat all the gory detail. Taking
the absolute ve rt ical speed VY (0-8 pixels per movement), and the
maximum value of YP, YPmax (always less than eight), we find that the
thickness of the upper margin, P y pixels, is given by

Py = VY + YPmax -8

Suppose, as a further example, that we wish to design, within a 4 x 3
sprite and hence a 3 x 2 shape, a fighter plane capable of moving at up
to four pixels per movement in the X direction and up to three pixels in
the Y direction. How much of the 3 x 2 shape are we free to design in?

Since speeds may be as low as one pixel per frame, we'll need eight
images again, so step D = 1 pixel. At maximum, we have VX = 4 and
VY = 3. It is quite possible that at some time or other we may reach XP =
7 and YP = 7, the maximum possible values. Hence XPmax = 7, and
YPmax = 7 (if you are ever in any doubt, then use the maximum available
values in calculations, that is YP = 7 and XP = [number of images] –
1). This gives us

Py =D (VX +XPmax )-8=1 (4+7)-8=3
and
Py =VY+YPmax –8=3+7-8=2..
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So we need a two-pixel upper margin and a three-pixel right hand
margin. Hence the area we have left to design in is (3 x 8) – 3 = 21
pixels wide, and (2 x 8) – 2 = 14 pixels deep, thus:

2 CELLS =
16 PIXELS

21 PIXELS
	

3 PIXELS

I will now provide the previously mentioned PADOUT routine which
expands the 'standard sprite' or 'shape' data, stored in its compact
form, to an 'expanded sprite', which is formed as image 0 in our
previously reserved sprite image area.

Taking note of the entry requirements from the assembly listing, we see
that for the 3 x 2 shape in the above example, a suitable 'run-up' to
calling PADOUT would be as follows:

Notice that we call PADOUT with IY pointing at the motion data for our
shape. This is because the routine initialises the values(IY + 7), (IY + 8),
(IY + 11), (IY + 12), (IY + 13) and (IY + 14) (see previous table for
details of these). O.K: get typing!
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;TO "PAD OUT" BARE SPRITE DATA AND PRODUCE ENTRIES
;IN THE SPRITE MOTION DATA

;ENTRY: DE=SPRITE DATA ADDRESS
HL=IMAGE STORAGE AREA
B=COLUMN WIDTH OF STANDARD SPRITE
C=LINE DEPTH OF STANDARD SPRITE
IY=SPRITE MOTION DATA ADDRESS

;EXIT: HL=ADDRESS OF IMAGE 0
B=COLUMN WIDTH OF EXPANDED SPRITE
C=ROW DEPTH OF EXPANDED SPRITE

;NOTE! HL AND BC WILL BE USED BY "SPREX"
;NOTE AF' DESTROYED

;CALCULATE NO. OF ROWS IN EXPANDED SPRITE

0C	 PADOUT INC	 C
FD710C	 LD	 (IY+12),C
CB21	 SLA	 C
CB21	 SLA	 C
CB21	 SLA	 C

;STORE BC FOR SPREX

78	 LD	 A,B
04	 INC	 B
FD700B	 LD	 (IY+11),B
C5	 PUSH	 BC

70
OD
CD58m0
Cl
79
D608
4F

LD	 (HL),B
DEC	 C
CALL	 CL
POP	 BC
LD	 A,C
SUB	 8
LD	 C,A

El

;BC=NO. OF ROWS IN STANDARD COLUMN

;STORE START OF IMAGE 0

POP	 HL

D5
C 5
08

PUSH	 DE
PUSH	 BC
EX	 AF,AF'

E5
EB
3600
0E07
CD5800
El

;INSERT A SPACE ON THE TOP LINE

NXSCOL PUSH	 HL
EX	 DE,HL
LD	 (HL),0
LD	 C,7
CALL	 CL
POP	 HL

;FILL THE REST OF THE COLUMN WITH SPRITE DATA

08

;A COUNTS THE COLUMNS

EX	 AF,AF'

Cl
C5
EDBO

POP	 BC
PUSH	 BC
LDIR

;DO NEXT STANDARD COLUMN

3D DEC	 A
JR	 NZ,NXSCOLPUSH	 DED5

2OEF

;EXPAND WITH A RIGHTMOST BLANK COLUMN

;STORE DATA ADDRESS

;START WITH A COLUMN OF BLANKS

0660
C5

LD	 B4O
PUSH	 BC

Cl
79

POP	 BC
LD	 A,C
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C607	 ADD	 A,7
4F	 LD	 C,A
EB	 EX	 DE,HL

70	 LD	 (HL),B
CD5800	 CALL	 CL

;RETRIEVE ADDRESS OF IMAGE 0

POP	 HL

;AND VALUE IN DE, FOR SPREX

D1	 POP	 DE
D5	 PUSH	 DE
E5	 PUSdd	 HL

;CALCULATE # OF BYTES IN ONE IMAGE AND STORE
;IT IN SPRITE MOTION DATA

Now that we have taken our bare, unexpanded sprite data from memory
and created image 10 from it, we need to generate the other images.
Each successive image is formed by shifting the rows of the previous
one by one or more bits to the right. The routine SPREX does this by
taking each row of image m in turn, copying it into an area of `workspace'
and then repeatedly shifting it and copying it into the appropriate
position for each of the other images. We will label the start of the
workspace as WKSPC and note that since we only need to place one
row of a sprite in it at a time, twenty bytes should be ample. Hence you
should start your program with a line like:

WKSPC	 DEFS	 20

Notice that SPREX needs to be called with IY pointing at the motion data
for your sprite, since it sets the number of images in (IY + 2). The entry
values of HL and BC are already set up for you by calling PADOUT, so
the only parameter you have to set after calling PADOUT is the step (in
pixels) between images, stored in D. We therefore append to our
previous fragment for setting up the aeroplane sprites, the lines:

E1

60	 LD	 H,B
68	 LD	 L,B
42	 LD	 B,D
54	 LD	 D,H
19	 MULI	 ADD	 HL,DE
10FD	 DJNZ	 MULI
FD750D	 LD	 (IY+13),L
FD740E	 LD	 (IY+14),H
El	 POP	 HL

Cl	 POP	 BC
;PUT IMAGE 0 LOCATION IN SPRITE MOTION DATA

FD7507	 LD	 (IY+7),L

FD7408	 LD	 (IY+8),H

C9	 RET

;CLEARING SUBROUTINE
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CL	 LD	 D,H

5D
	 LD	 E,L

13
	 INC	 DE

EDBO
	 LDIR

C9
	 RET

LD	 D,1
	 ;FORM 8 IMAGES

CALL	 SPREX

Beware that nearly all of the alternate register set is used by the routine,
so if you are intending to come back to BASIC after using SPREX, be
sure to preserve HL' with

E XX
PUSH	 HL
EXX

AND
EXX
POP	 HL
EXX

at the beginning and end of your program respectively.

;ROUJTINE TO FORM THE "SHIFTED" IMAGES OF EXPANDE
;SPRITE DATA AS PRODUCED BY "PADOUT"

;ENTRY: HL=ADDRESS OF IMAGE 0
D=STEP BETWEEN IMAGES
B=WIDTH OF EXPANDED SPRITE
C=DEPTH OF EXPANDED SPRITE IN ROWS

;PRESERVED: BC
;N.B.! B'C'D'E'H'L' ARE DESTROYED
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;EXIT:	 DE'=ENTRY VALUE OF DE,BC'=0,L1=0 10F8 DJNZ	 NXBYT3

3E08 SPREX	 LD	 A,8 ;STORE ADDRESS OF CURRENT ROW OF NEXT IMAGE IN DE
JEFF LD	 E,BFFH
92 SUBDIV	 SUB	 D D9 NXPOS	 EXX
1C INC	 E EB EX DE,HL
30FC JR	 NC,SUBDIV D9 EXX
FD7302 LD	 (IY+2),E
1D DEC	 E ;SHIFT ROW BY D' PIXELS
D5 PUSH	 DE
C5 PUSH	 BC D5 PUSH DE
0600 LD	 B4O 4A LD C,D

;BC NOWS HOLDS LENGTH OF 1 COLUMN IN BYTES ;ONE PIXEL AT A TIME
!rp

{
110000 LD	 DE,WKSPC 7C NXSHF	 LD A,H
D9 EXX D9 EXX
El POP	 HL 210000 LD HL,WKSPC
D1 POP	 DE A7 AND A

CB1E NXBYT	 RR (HL)
;H'=WIDTH,L'=# OF ROWS 2C INC L
;D'=IMAGE STEP,E'=# OF IMAGES-1 3D DEC A
;GENERATE ONE ROW OF EACH IMAGE 20FA JR NZ,NXBYT

•

D5 NXROW9	 PUSH	 DE ;NEXT SHIFT
44 LD	 B,H
D9 EXX D9 EXX

OD DEC C
;STORE ADDRESS OF ROW 0 OF IMAGE 0 20F0 JR NZ,NXSHF

E5 PUSH	 HL ;RETRIEVE ADDRESS OF NEXT IMAGE ROW TO HL
110000 LD	 DE,WKSPC

D9 EXX
;BUILD THAT ROW OF SPRITE IN WORK SPACE EB EX DE,HL

110000 LD DE,WKSPC
D9 EXX D9 EXX
D9 NXBYT3	 EXX
7E LD	 A,(HL) ;TRANSFER THE ROW OF H' 	 COLUMNS TO IMAGE AREA
09 ADD	 HL,BC
12 LD	 (DE),A 44 LD B,H
13 INC	 DE D9 NXBYT2	 EXX
D9 EXX lA LD A,(DE)

130 131



  

^ .̂  •                      
E D B 7

There are two possible patterns with alternate set and reset pixels.
Distinguish them by remembering that 5 is odd and thus has the
rightmost pixel-bit set:

///.

5	 A

and this just leaves the pattern for 9, which has a ce rtain unmistakable
symmetry about it:
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77	 LD	 (HL),A
09	 ADD	 HL,BC
13	 INC	 DE
D9	 EXX
1OF8	 DJNZ	 NXBYT2

;LOOP BACK TO GENERATE THE SAME ROW OF
THE OTHER IMAGES

Dl	 POP	 DE
1D	 DEC	 E
20D8	 JR	 NZ,NXPOS
D9	 EXX

;FIND NEXT ROW OF IMAGE 0

If you take any one row of a character and break it up into two groups of
four pixels each, then each group will correspond to one digit in the
hexadecimal representation of that row-byte. It is then easily seen that
the four pixels will be one of only sixteen patterns, and with a little
practice you will find it very easy to attach the correct digit to any given
pattern. The most obvious ones are probably:

o

... Followed closely by the one-bit-set patterns.

and	 F

El
23

POP	 HL
INC	 HL

1 2 4 8

;RETRIEVE DE' AND REPEAT FOR NEXT ROW

D9	 EXX
D1	 POP	 DE
2D	 DEC	 L
2000	 JR	 NZ,NXROW9

Then we have the patterns with two consecutive set bits:

/'4
;RETURN WITH THE CORRECT REGISTER SET

3 6 C

D9
C9

EXX
RET

... and those with just one reset bit.

So far, so good. By now you should have a reasonable understanding of
the principles involved in this sprite animation technique, together with a
pair of routines that do nearly all the preparation work for such
animation. The only real task that you now need to perform whenever
you wish to define a sprite, is the unavoidably tedious one of designing
the shape and converting it into the original sprite data. Many people
find 'character designer' programs useful, and indeed there are a
number available, including the somewhat limited one-character
version on the introductory 'Horizons' cassette that came with your
machine.

You could invest in one of these programs, or better still, write your own.
Personally, I prefer the more traditional method of a pencil, an eraser, a
pile of graph paper and a good supply of coffee and patience.
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variable CHSTRE holds the number of used entries in the buffer, and
that BUFFPT points at the next free entry. Both are adjusted accordingly
by the routine.

If you are not already familiar with the patterns, then I hope that the
above categorisation will provide you with a useful mnemonic.

I shall now provide the actual sprite 'printing' routine, SPRINT, which
assimilates the correct information for each sprite and sends it to the
print buffer for the print-processor.

SPRINT has been written with speed and versatility as the top priorities.
If we are moving sprites once in every TV frame, in addition, perhaps, to
producing sound and a low-level full screen horizon, then time is of the
essence and should take priority over compactness of code and so on.
You will not normally call SPRINT directly, as it will be subsidiary to a
more general routine called SPRMV, which will perform various
manipulations of the motion data before jumping to SPRINT.

SPRINT allows us to check for OR-printing using the OR-map system
described at the end of the last chapter. A slightly modified version of
ORCHK has been built into SPRINT for speed, and the option of
checking for OR-printing is selected by setting bit 7 of the sprite's
attribute byte, stored in (IY + 15).

Resetting this bit causes the OR-map to be ignored, and in this case
over-printing will always occur. The state of this flag causes an early
branch in the routine between two distinct sections, one incorporating
ORCHK, the other not. It was found that this arrangement is far quicker
than running a combined routine involving repeated flag tests and
jumps would be.

Notice that the routine calls ATTLOC, which was listed in Chapter 1 and
is used to provide the attribute address of the top left corner of the sprite.

Since the routine destroys the contents of all alternate registers, you
must once again preserve HL'if you wish to return to BASIC. SPRINT
makes the assumption that there is actually room for your sprite in the
print buffer, and as such should not be called if there is not room, in
which case you should wait for an interrupt to clear the buffer. You will
notice that the sections involved in sending data to the buffer use
single-register increment instructions to step through it. If you have
extended the buffer beyond 42 entries in length, as described in
chapter 9, then you will need to change the instructions to dual-register
increments, i.e. change INC L to INC HL. Recall that the one-byte

It is not desirable to receive an interrupt when only half a sprite has been
sent to the buffer, so unless you are using the interrupt intercept for
something other than the print processor, you should disable the
interrupts before calling SPRINT, and enable them on return.

SPRINT will cope admirably with sprites that 'spill off' the edges of the
screen, or even those that are not on the screen at all. For example, we
may have just the right hand column of a 3 x 3 sprite on the screen by
sending SPRINT the value XC = –2, or FE Hex.

As the routine stands, any part of the sprite that is in the text area will be
printed. However, we can, if we wish, alter the width of this 'sprite
window' by changing the operands of the instructions labelled LFTLM1,
LFTLM2, RGTLM1 and RGTLM2, where LFTLM stands for 'LeFT LiMit'
and RGTLM for 'RiGhT LiMit'. The left limit is the value of the leftmost
column in the sprite window, while the right limit is the value of the
column immediately to the right of the window (32 in the case of a
maximum window).

For example, suppose that we want the sprite window to be over the
central 20 columns of the screen (we may be using the outer ones for
scoring, say). Then the left limit will be column 6, and the right limit will be
column 6 + 20 = 26. So we use:

LD
	

A, 6
LD
	

(LFTLM1+1),A
LD
	

(LFTLM2+1),A
LD
	

A, 26
LD
	

(RGTLM1+1),A
LD
	

(RGTLM2+1),A

That's about all there is to say regarding this formidable listing, so I'll
leave you to type it in and peruse the coding.

;THIS ROUTINE SENDS SPRITE DATA TO THE PRINT BUFFER
;ENTRY: B=XP,C=YP,D=YC,E=XC

HL=ADDRESS OF IMAGE 0
;ALL AS SET UP BY SPRMV
;EXIT: DE =m

;DESTROYS: A'F'B'C'D'E'H'L'

D5	 SPRINT PUSH	 DE
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78
A7
2809

78
87
87
47
79
CB2F
CB2F
CB2F
80

FD5E0D
FD560E
19
10FD D9

EB
4F
0600
210000
09

3A0000
47
D9

;IF XP=O THEN LEAVE HL POINTING AT IMAGE 0

LD	 A,B
AND	 A
JR	 Z,POSO

;FIND CORRECT IMAGE

LD	 E,(IY+13)
LD	 D,(IY+14)

NXA	 ADD	 HL,DE
DJNZ	 NXA

;FIND LOCATION OF TOP-LEFT ATTRIBUTE OF SPRITE

POP	 BC
PUSH	 HL
CALL	 ATTLOC

;E COUNTS THE COLUMNS REMAINING

LD	 E,(IY+11)

;DECIDE BETWEEN OR-PRINT AND OVER-PRINT MODES
;BY TESTING BIT 7 OF THE SPRITE ATTRIBUTES

EXX
LD	 L,(IY+15)
LD	 H,(IY +16)
BIT	 7,L
RES	 7,L
EXX
JP	 Z,SPRTNO

;OR-PRINT IS SELECTED. FIND APPROPRIATE ADDRESS IN
;OR-MAP

LD	 A,B
ADD	 A,A
ADD	 A,A
LD	 B,A
LD	 A,C
SRA	 A

SRA	 A
SRA	 A
ADD	 A,B

;ADD BASE ADDRESS OF OR-MAP

EXX
EX	 DE,HL

ADD	 C,A
LD	 B4O
LD	 HL,ORMAP
LD	 HL,BC

LD	 A,(CHSTRE)

LD	 B,A
EXX

;HL' HOLDS LOCATION IN OR-MAP ROTATE MASK OVER
;CORRECT CELL-BIT IN THE OR-MAP

Cl

E5
CD000m

FD5EOB

D9
FD6EOF
FD6610
CB7li
CBBD
D9
CAD80O

;FIND CORRECT VERTICAL POSITION

09	 POSO	 ADD	 HL,BC

79	 LD	 A,C
E607	 AND	 7
47	 LD	 B,A
3E80	 LD	 A,80H

2803	 JR	 Z,NROT1

OF	 NXTRT	 RRCA
10FD	 DJNZ	 NXTRT

;STORE MASK IN C'

D9	 NROT1	 EXX
4F	 LD	 C,A
D9	 EXX
79	 LD	 A,C
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r
;POINT BC AT IMAGE DATA

POP	 BC
NXTX1	 PUSH	 HL

;STORE OR-MAP ADDRESS

D9	 EXX
E5	 PUSH	 HL
D9	 EXX

;LET D=DEPTH IN LINES

FD560C	 LD	 D,(IY+12)

;IF PRINT POSN IS OUT OF X-RANGE THEN SKIP COLUMN

FE20	 RGTLM1 CP	 32
3071	 JR	 NC,HOPCL1
FEOm	 LFTLM1 CP	 0
386D	 JR	 C,HOPCL1

;STORE COLUMN POSN IN A'

	

EX	 AF,AF'

;IF PRINT POSN IS BELOW TEXT AREA THEN END

7C	 NXTY1	 LD	 A,H
FE5B	 CP	 91
3068	 JR	 NC,OUT81

;IF PRINT POSN IS ABOVE TEXT AREA THEN MISS THIS
;LINE OF SPRITE

FE58
	

CP	 88
D5
	

PUSH	 DE
EB
	

EX	 DE,HL
382F
	

JR	 C,NPR1

;DECIDE WHETHER OR-PRINT ON THIS CELL IS NEEDED
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D9	 EXX

79	 LD	 A,C

A6	 AND	 (HL)

CBBB	 RES	 7,E

2802	 JR	 Z,NOTOR3

;IF CELL IS OCCUPIED THEN SET FLAG FOR OR-PRINT

SET	 7,E

;SIGNIFY CELL OCCUPIED

79	 NOTOR3 LD	 A,C

B6	 OR	 (HL)

77	 LD	 (HL),A

D9	 EXX

;SEND CHARACTER TO BUFFER

lA	 LD	 A,(DE)

D9	 EXX
AB	 XOR	 E

A2	 AND	 D

AB	 XOR	 E

04	 INC	 B

D9	 EXX

2A0000	 LD	 HL,(BUFFPT)

07	 RLCA
77	 LD	 (HL),A

2C	 INC	 L

73	 LD	 (HL),E

2C	 INC	 L
72	 LD	 (HL),D

2C	 INC	 L

7A	 LD	 A,D

E603	 AND	 3

07	 RLCA
07	 RLCA
07	 RLCA
F640	 OR
	

64

77	 LD
	

(HL),A

2C	 INC
	

L

139

Cl

E5

08

CBFB



if!

71
2C

7 0
2C

LD
INC
LD
INC

(HL),C
L

(HL),B
L

08
3C

IN16	 EX	 AF,AF'
INC	 A

;FETCH OR-MAP ADDRESS AND MOVE 11ASK TO
220000 LD (BUFFPT),HL ;INCREMENTING THE POINTER IF NECESSARY

;INCREASE DATA POINTER TO NEXT CELL OF IMAGE D9 EXX

El POP	 HL
210800 NPR1 LD HL,8 CB09 RRC	 C
09 ADD HL,BC 3001 JR	 NC,NINC2
44 LD B,H 2C INC	 L
4D LD C,L D9 NINC2	 EXX
EB EX DE,HL
Dl POP DE ;POINT HL AT FIRST ATTRIBUTE OF NEXT COLUMN

;IF LINE-COUNT IS ZERO THEN NEXT COLUMN El POP HL

2C INC L
15 DEC D
2810 JR Z,IN16 ;LOOP BACK FOR NEXT COLUMN

;OTHERWISE MOVE OR-MAP POINTER TO NEXT LINE 1D DEC E

C24E00 JP NZ,NXTX1
D9 EXX
7D LD A,L ;SET NEW VALUE OF CHSTRE
C604 ADD A,4
6F LD L,A D9 EXX
D9 EXX 78 LD A,B

320000 LD (CHSTRE),A
;AND MOVE ATTRIBUTE POINTER TO NEXT LINE D9 EXX

C9 RET
7D LD A,L
C620 ADD A,32 ;JUMPS TO HERE TO OMIT ALL OR PART OF A COLUMN
6F LD L,A
30AF JR NC,NXTY1 08 HOPCL1	 EX AF,AF'
24 INC H

;MOVE IMAGE POINTER TO THE NEXT SPRITE COLUMN
;LOOP BACK FOR NEXT LINE OF SPRITE

60 OUT81	 LD H,B
C35E00 JP NXTY1 69 LD L,C

010800 LD BC,8
;INCREASE COLUMN POSITION 09 NXT81	 ADD HL,BC

15 DEC D

140 141



JR	 NZ,NXT81

LD	 B,H
LD	 C,L

;JUMP BACK INTO MAIN ROUTINE

JR	 IN16

;THE MUCH SHORTER AND FASTER OVER-PRINTING SECTION

79	 SPRTNO LD	 A,C

Cl	 POP	 BC

;HOLD CHSTRE IN E

D9	 EXX

ED5B0000	 LD	 DE,(CHSTRE)
D9	 EXX

E5	 NXTX2	 PUSH	 HL

;LET D=DEPTH IN LINES

FD560C
	 LD	 D,(IY+12)

;IF PRINT POSN IS OUT OF X-RANGE THEN SKIP COLUMN

FE20	 RGTLM2 CP	 32
3056	 JR	 NC,HOPCL2
FE00	 LFTLM2 CP	 0
3852	 JR	 C,HOPCL2

;STORE COLUMN POSN IN A

08	 EX	 AF,AF'

;IF PRINT POSN IS BELOW TEXT AREA THEN END

7C	 NXTY2	 LD	 A,H
FE5B	 CP	 91
304D	 JR	 NC,OUT82

;IF PRINT POSN IS ABOVE TEXT AREA THEN MISS THIS

;LINE OF SPRITE

FE58	 CP	 88
D5	 PUSH	 DE
EB	 EX	 DE,HL
3822	 JR	 C,NPR2

;SEND CHARACTER TO BUFFER

lA	 LD	 A,(DE)
D9	 EXX
AD	 XOR	 L
A4	 AND	 H
AD	 XOR	 L
1C	 INC	 E
D9	 EXX
2A0000	 LD	 HL,(BUFFPT)
07	 RLCA
77	 LD	 (HL),A
2C	 INC	 L
73	 LD	 (HL),E
2C	 INC	 L
72	 LD	 (HL),D
2C	 INC	 L
7A	 LD	 A,D
E603	 AND	 3
07	 RLCA
07	 RLCA
07	 RLCA
F640	 OR	 64
77	 LD	 (HL),A
2C	 INC	 L
71	 LD	 (HL),C
2C	 INC	 L
70	 LD	 (HL),B
2C	 INC	 L
220000	 LD	 (BUFFPT),HL

;INCREASE DATA POINTER TO NEXT CELL OF IMAGE

210800	 NPR2	 LD	 HL,8
09	 ADD	 HL,BC

20FC
44
4D

18DB
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44	 LD	 B,H
4D	 LD	 C,L

EB	 EX	 DE ,HL

D1	 POP	 DE

;IF LINE-COUNT IS ZERO THEN NEXT COLUMN

15
	

DEC	 D

280A
	

JR	 Z,IN17

;OTHERWISE MOVE ATTRIBUTE POINTER TO NEXT LINE

7D	 LD	 A,L

C620	 ADD	 A,32

6F	 LD	 L,A

30C2	 JR	 NC,NXTY2

24	 INC	 H

;JUMPS HERE TO OMIT ALL OR PART OF COLUMN

08	 HOPCL2 EX	 AF,AF'

;MOVE IMAGE POINTER TO THE NEXT SPRITE COLUMN

60	 OUT82	 LD	 H,B
69	 LD	 L,C
010800	 LD	 BC,8
09	 NXT82	 ADD	 HL, BC
15	 DEC	 D

20FC	 JR	 NZ,NXT82
44	 LD	 B,H
4D	 LD	 C,L

;JUMP BACK INTO THE MAIN ROUTINE

18E3 JR	 IN17

;LOOP BACK FOR NEXT LINE OF SPRITE	
We now have the three routines necessary to prepare the data for, and
actually print, our sprites on the screen. To complete the set of sprite

C3ED00	 JP	 NXTY2	 generation routines I shall supply a master sprite controlling routine. The
function of SPRMV will be to update the values of XP, XC, YP and YC

; INCREASE COLUMN POSITION 	 according to VX and VY (all stored in the motion data, indexed by the IY
register) and then to set up the correct parameters in the registers and

08	 IN 17	 EX	 AF , AF'	 jump to SPRINT the sprite. The only parameter required by SPRMV is the

3C	 INC	 A	 address of the motion data, in IY. Once SPRMV has been called, no
further work is required to move and print your sprite.

;POINT HL AT FIRST ATTRIBUTE OF NEXT COLUMN
Before explaining how to initialise and manipulate the motion data,
together with providing a spectacular demonstration routine, allow me
to present the listing for SPRMV.El

2C
POP	 HL
INC	 L

;GENERAL PURPOSE SPRITE CONTROLLER

;ENTRY: IY POINTS AT MOTION DATA SEE TEXT
;FOR DETAILS
;NOTE:B'C'D'E'H'L'A'F' DESTROYED
;NOTE: IY IS PRESERVED

;DECREMENT CYCLE COUNT

;LOOP BACK FOR NEXT COLUMN

1D	 DEC	 E

C2E000	 JP	 NZ,NXTX2

D9	 EXX
7B	 LD	 A,E
320000	 LD	 (CHSTRE),A

D9	 EXX
C9	 RET
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FD3509	 SPRMV	 DEC	 (IY+9)
CO	 RET	 NZ

;IF ZERO THEN REFILL CYCLE COUNT

FD7E0A	 LD	 A,(IY+10)
FD7709	 LD	 (IY+9),A

;LET HL=ADDRESS OF IMAGE 0

FD6608	 LD	 H,(IY+8)
FD6E07	 LD	 L,(IY+7)

;ADD STEP TO XP

FD7E00	 LD	 A,(IY+0)
FD8601	 ADD	 A,(IY+1)
F22500	 JP	 P,NNEG1

;IF RESULT NEGATIVE THEN LET XP=XP+XMAX
;AND LET XC=XC-1

FD8602	 ADD	 A,(IY+2)
FD3503	 DEC	 (IY+3)
FD5E03	 LD	 E,(IY+3)

;JUMP TO DEAL WITH Y

C33F00	 JP	 XDN
FD4602	 NNEG1	 LD	 B,(IY+2)

;IF XP<XMAX THEN GO FOR Y

B8	 CP	 B
FD5E03	 LD	 E,(IY+3)
3811	 JR	 C,XDN

;ELSE INCREMENT XC, LET XP=XP-XMAX

INC	 (IY+3)
SUB	 B
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;AND DECREASE HL BY ONE COLUMN TO
ALLOW FOR A BLANK
;LEFT COLUMN

08	 EX	 AF,AF'
FD7EOC	 LD	 A,(IY+12)
01F8FF	 LD	 BC,0FFF8H
09	 NXUB	 ADD	 HL,BC
3D	 DEC	 A
C23900	 JP	 NZ,NXUB
08	 EX	 AF,AF'

;STORE NEW VALUE OF XP

FD7700 XDN	 LD	 (IY+0),A
47	 LD	 B,A

;ADD STEP TO YP

FD7E04	 LD	 A,(IY+4)
FD8605	 ADD	 A,(IY+5)
F25800	 JP	 P,NNEG2

;IF RESULT NEGATIVE THEN LET YP=YP MOD 8

E607	 AND	 7
4F	 LD	 C,A

;AND INCREMENT YC

FD3406	 INC	 (IY+6)
FD5606	 LD	 D,(IY+6)
C36500	 JP	 YDN

;IF YP>7 THEN LET YP=YP-8
;AND DECREMENT YC

FE08	 NNEG2	 CP	 8
FD5606	 LD	 D,(IY+6)
4F	 LD	 C,A
3805	 JR	 C,YDN
E607	 AND	 7
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If we have (say) two sprites moving at the same frequency, and we wish
to keep them 'out of phase', perhaps because there isn't enough room in
the print buffer to animate them both in the same TV frame, then we use
different initialisations of the cycle count. For example, suppose that two
sprites are given cycle periods of two calls.

FD3506	 DEC	 (IY+6)
FD7704 YDN	 LD	 (IY+4),A

;JUMP TO THE SPRITE PRINTING ROUTINE

C30000	 JP	 SPRINT

With reference to the table of motion data contents found earlier in this
chapter, we recall that seven bytes of the seventeen alotted to each
sprite are initialised by the routines PADOUT and SPREX.

Thus we need only reserve space for them with DEFB 0 in the assembly
listing. The variables we have to initialise ourselves include the obvious
position values XP, XC, YP and YC. Remember that XP is measured to
the right and YP upwards from, the bottom left corner of the sprite, while
XC is measured to the right of and YC downwards from, the top left
corner of the screen. Recall also that (XC, YC) are the co-ordinates of the
top left corner of the sprite.

The speeds VX and VY are measured in the same directions as XP and
YP, and may be greater than, less than or equal to zero. If VX 0 then
movement is to the right, while if VX < O then it is to the left. Similarly VY >
O signifies upward movement, while VY < 0 sends the sprite
downwards. This arrangement allows high versatility in the direction of
movement. For example, we could cause a sprite to make a gentle 'dive'
with horizontal speed three pixels and vertical speed one pixel per
movement, by setting:

VX = 03H VY = OFFH (minus one)

As I explained earlier, the 'cycle count' is provided as a means for
regulating the frequency at which the sprites move, and also whether
two or more sprites move in phase with each other.

This is best shown by means of an example. Suppose that we have two
sprites, with motion data at labels MDAT1 and MDAT2, and that we want
one sprite to move every five TV frames, and the second to move once in
every three frames. We set the respective 'cycle periods' to values five
and three, and, as usual, initialise the 'cycle counts' to one, so that both
sprites will move on the first call to SPRMV.AII that we then have to do is:

LD	 IY,MDAT1
CALL	 SPRMV
LD	 IY,MDAT2
CALL	 SPRMV

after each interrupt.
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Then we can make them move on alternate TV frames by setting the first
cycle count to one, and the second to value two. Whatever happens, the
cycle period and cycle count must always be non-zero. Since otherwise
a movement frequency of once in every 256 calls to SPRMV would
result.

Using the concepts of cycle count and cycle period, we can animate all
the sprites involved in a program in one block. If we place all their motion
data consecutively in memory, then a suitable fragment after each
interrupt (detected by a HALT instruction) might be as follows:

MDAT

NXTSPRT

EQU	 (ADDRESS OF MOTION DATA)
LD	 IY,MDAT
LD	 B,(NUMBER OF SPRITES)
PUSH	 BC
CALL	 SPRMV
POP	 BC
LD	 DE,17
ADD	 IY,DE
DJNZ	 NXSPRT

Referring again to the earlier table of motion data contents, you will
notice that the address of the first byte of image O (immediately after the
preceeding blank column) is stored at (IY + 7). This value is also
returned in HL after the call to PADOUT to set up the sprite data.

We can use this entry in the motion data as a means of switching or
cycling through different sets of images for any one sprite. For example,
you may wish to make your character 'walk' instead of glide, or perhaps
make your spacecraft gradually disintergrate in flight, after being hit by
a particularly nasty plasma bolt.

To realise this function, set up as many different sets of sprite data as
you need, storing the values returned by PADOUT in your own look-up
table. IY should be kept pointing at one set of motion data, which will
obviously then be set up with the last set of sprite data generated.
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Then when you are running your program, use an 'animation count' and
'animation period' analogous to the 'cycle count' and 'cycle period'
system to step through the different sets of images, retrieving the
appropriate address from your look-up table and inserting it at (IY + 7)
every time you want to switch data.

There are various other manipulations of the motion data that you could
try; for example, you could make the sprite move in a preprogrammed
pattern by running through a table of values for VX and VY, or you could
make the sprite do a 'chameleon' act by manipulating the attribute byte
at (IY + 15) (remember to preserve bit 7, the OR-printing flag, though!).
I'll leave further variations on this theme to your imagination, and begin
development of a demonstration routine.

After a great deal of thought I elected to show you how to move two
sprites in opposite directions along the horizontal centre line of the
screen. One sprite will be of a special playing card, the six of clubs,
known traditionally in Oxfordshire as 'Gordon's Card', while the other, to
preserve variety, will be of a red telephone.

It would be a pity not to use the smoothest possible animation, so we will
move both sprites by one pixel in every TV frame. Now the print buffer
can take forty characters, so let's use twenty on each sprite. We know
that 5 x 4 = 20, so we can use a 3 x 4 cell shape for the card, and a 4 x 3
cell shape for the telephone.

Recall the formula for the image area for (a) images of an (m x n) shape,
namely:

Memory needed = 8 (a (m + 1) + 1) (n + 1) bytes.

For the telephone, m = 4, n = 3, a = 8 and

Memory needed = 8 (8 (4 + 1) + 1) (3 + 1)
= 1312 bytes.

For the card, m = 3, n = 4, a = 8 and

Memory needed = 8 (8 (3 + 1) +1) (4 + 1)
= 1320 bytes.

Not forgetting the eight zero bytes at the end of the combined image
area, we reserve space with

TELSPC DEFS
CARSPC DEFS

DE FW
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The horizontal speed will be VX = 1, the maximum value of XP will be
XPmax = 7, and the distance between two successive images will be D =
1 pixel. Hence the width of the safety margin to the right of our shapes
will be:

Px = D (VX + XPmax ) – 8
=1(1+7)-8
= m pixels,

that is to say that we may design our shapes in the full three or four
columns! Since the sprites will not be moved vertically, no upper safety
margin is necessary anyway. The phone and card have been designed
in the full area allowed, and I have encoded the data for you, the results
of which will be found at labels TELDAT and CARDAT respectively.
Casting your mind back to the procedure for employing PADOUT and
SPREX, you will see that we can generate the images of our telephone
by the fragment:

LD	 HL,TELSPC
	 ;IMAGE AREA

LD	 DE,TELDAT	 ;SPRITE DATA
LD	 BC 9,0403H	 ;B=WIDTH, C=HEIGHT
LD	 IY,TELMTN	 ;MOTION DATA
CALL	 PADOUT
LD	 D,1
	 ;STEP BETWEEN IMAGES OF

CALL	 SPREX	 ;ONE PIXEL

A similar fragment will generate the images of the playing card; where
TELMTN and CARMTN are the start addresses of the motion data tables
for the phone and card respectively.

We will initialise the position of the telephone to just off the left hand edge
of the screen, with the base of the phone in line eleven. Hence the top left
corner of the sprite is at (-4, 9) and the shape is at the bottom left corner
of the sprite, i.e.

XP= 0,XC=OFCH,YP=0,YC =9 .

We shall be moving the sprites once in every TV frame, so set the cycle
count and cycle period to one, I have elected to use OR-printing in this
demonstration, so that the two sprites merge as they cross over each
other. The telephone will be red (value 2) and we'll mask the paper from
the current attribute (i.e. PAPER 8), hence we have attribute byte 82H
and mask byte 38H. Plugging zero into the gaps in our table that will be
filled by PADOUT and SPREX, we have the initial motion data:

TELMTN DEFB	 0, 1,O,0FCH,0,0,9,0,g, 1,1,

0,0,01,0, 82H,38H
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The card will start just off the right hand screen edge with its base in line
twelve. Hence we start with

XP=O,XC=32,YP=O,YC=9.

Remembering that VX = –1 = OFFH since the card is moving leftwards,
and using cyan INK, PAPER 8 and OR-printing (bit 7 of the attribute set)
we have the initial card motion data

CARDAT DEFB	 0, OFFH, 0,32,0,0,9,Q,0,1,1,
,0,0,0,0,85H, 38H

To operate the OR-printing function, we must make sure that the OR-
map is cleared (using the CLOR routine in the last chapter) before each
complete set of sprite movements is started. Otherwise, we would end
up OR-printing the new image of a sprite on top of its old one, causing an
undesirable trail over the screen as the sprite moves. Thus the main loop
of the demonstration will include the lines

CALL	 CLOR
LD	 IY,TELMTN
CALL	 SPRMV
LD	 IY,CARMTN
CALL	 SPRMV

AF	 XOR	 A
320000	 LD	 (ROWS+1),A
320000	 LD	 (TOPBRD+1),A
320000	 LD	 (BOTBRD+1),A

;GENERATE SPRITE DATA FOR TELEPHONE

214D01
118C00

LD	 HL,TELSPC

LD	 DE ,TELDAT

;PHONE IS 4 COLUMNS BY 3 LINES

010304	 LD	 BC,04m3H

FD216A00	 LD	 IY,TELMTN

CD0000	 CALL	 PADOUT

1601	 LD	 D,1

CD0000	 CALL	 SPREX

;GENERATE SPRITE DATA FOR PLAYING CARD

216D06 LD	 HL,CARSPC

LD	 DE ,CARDAT11ED00

The rest of the demonstration listing is self explanatory. Notice that the
routines INT1 and DISINT are called from Chapter 9.

Here then is the 'spectacular demonstration' routine. Study the listing
carefully, and feel free to try altering the speed of the sprites, the number
of images and so on.

;DEMO ROUTINE FOR PADOUT,SPREX,SPRINT
AND SPRMV

;PRESERVE HL' FOR RETURN TO BASIC

D9	 TEST	 EXX
E5	 PUSH	 HL
D9	 EXX

;SET ZERO-HORIZON, BLACK SKY AND SEA
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;CARD IS 3 COLUMNS BY 4 LINES

010403	 LD	 BC,0304H

FD217B00	 LD	 IY,CARMTN

CD0000	 CALL	 PADOUT

1601	 LD	 D,1

CD0000	 CALL	 SPREX

;INITIALIZE INTERRUPT-DRIVEN PRINT-
PROCESSOR

CD0000	 CALL	 INTI

76	 HALT

;MOVE THE SPRITES ACROSS THE SCREEN
4 TIMES AT ONE
;PIXEL PER TV FRAME IN OPPOSITE DIRECTIONS
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0E02
0600

C5

LD	 C,2
NXAM2	 LD	 B4O

NXAM	 PUSH	 BC

;CLEAR THE OR-MAP BEFORE EACH SET OF
MOVEMENTS

D9
C9

00
01

EXX
RET

;SPRITE MOTION DATA

TELMTN	 DEFB	 0
DEFB	 1

CD0000 CALL	 CLOR 00 DEFB	 0
FC DEFB	 OFCH

;MOVE AND PRINT PHONE 00 DEFB	 0
00 DEFB	 0

FD216A00 LD	 IY,TELMTN 09 DEFB	 9

CD0000 CALL	 SPRMV 00 DEFB	 0
00 DEFB	 0

;MOVE AND PRINT CARD 01 DEFB	 1
01 DEFB	 1

FD217B00 LD	 IY,CARMTN 00 DEFB	 0
CD0000 CALL	 SPRMV 00 DEFB	 0
C1 POP	 BC 00 DEFB	 0
76 HALT 00 DEFB	 0

82 DEFB	 82H

;NEXT FRAME 38 DEFB	 38H
00 CARMTN	 DEFB	 0

10EA DJNZ	 NXAM FF DEFB	 OFFH
00 DEFB	 0

;REVERSE DIRECTIONS ALONG X 20 DEFB	 32
00 DEFB	 0

FD7E01 LD	 A,(IY+1) 00 DEFB	 0
FD77F0 LD	 (IY-16),A 09 DEFB	 9
ED44 NEG 00 DEFB	 0
FD7701 LD	 (IY+1),A 00 DEFB	 0

01 DEFB	 1
;NEXT PASS 01 DEFB	 1

00 DEFB	 0
OD DEC	 C 00 DEFB	 0
20DA JR	 NZ,NXAM2 00 DEFB	 0

00 DEFB	 0
;RESELECT IM 1 AND RETRIEVE HL 85 DEFB	 85H

38 DEFB	 38H
CD0000 CALL	 DISINT
D9 EXX ;UNEXPANDED SPRITE DATA
El POP	 HL
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0F TELDAT DEFB 15
1F
3F
7F
FF
FE
FE
FC
78

30
01
03
03

DE FB
DE FB
DE FB
DE FB
DEFB
DE FB
DE FB
DEFB
DEFB
DEFB
DEFB
DEFB

31
63
127
255
254
254
252
120
48
1
3
3

9C
DE
CF
E7
F3
F8
FF
FF
FF
FF
FF

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

9CH
ODEH
OCFH
OE 7H
243
248
255
255
255
255
255

07
07

OF
1F
3F
7F
7F
7F
3F
3F
0F
FF
FF
FF
FF

;

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

7
7

15
31
63
127
127
127
63
63
15
255
255
255
255

FF
OF
06
06
06
FF
FF
1F
CF
E7
F3
7B
39
39
7B

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

255
15
6
6
6
255
255
31
OCFH
0E7H
243
7BH
39H
39H
7BH

F0
60

60
60
FF

FF
F8
F3
E7
CF
DE
9C

;

DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

240
96

96
96
255

255
OF8H
OF3H
0E7H
OCFH
ODEH
9CH

F3
E1
CE
1F
FF
FF
FO
F8
FC
FE
FF
7F
7F

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

243
0E1H
OCEH
31
255
255
240
248
252
254
255
127
127

156
157



81 DEFB 81H
3F DEFB 63 85 DEFB 85H
lE DEFB 30 8F DEFB 8FH
OC DEFB 12 85 DEFB 85H
80 DEFB 128 81 DEFB 81H
CO DEFB 192
CO DEFB 192 83 DEFB 83H
E0 DEFB OEOH 81 DEFB 81H
E0 DEFB OEOH 80 DEFB 80H
F0 DEFB 240 80 DEFB 8011
F8 DEFB OF8H CO DEFB OCOH
FC DEFB OFCH 60 DEFB 96
FE DEFB OFEH 3F DEFB 63
FE DEFB OFEH FF DEFB 255
FE DEFB OFEH 00 DEFB 0

00 DEFB O
FC DEFB OFCH 00 DEFB 0
FC DEFB OFCH 00 DEFB O
FO DEFB OFOH 81 DEFB 81H

00 DEFB 0
42 DEFB 66

3F CARDAT DEFB 63 E7 DEFB 0E7H
60 DEFB 96
D8 DEFB OD8H 42 DEFB 66
AO DEFB OAOH 00 DEFB m

B9 DEFB OB9H 00 DEFB O
AB DEFB OABH 00 DEFB 0
B9 DEFB OB9H 81 DEFB 8111
85 DEFB 35H

00 DEFB 0
8F DEFB 8FH 42 DEFB 66
85 DEFB 85H E7 DEFB OE7H
81 DEFB 81H 42 DEFB 66
80 DEFB 80H 00 DEFB 0

00 DEFB 0
81 DEFB 81H 00 DEFB 0
83 DEFB 83H 42 DEFB 66
81 DEFB 81H E7 DEFB 0E7H
85 DEFB 85H 42 DEFB 66
8F DEFB 8FH 00 DEFB 0
85 DEFB 85H 81 DEFB 81H
81 DEFB 8111 00 DEFB 0
80 DEFB 80H 00 DEFB 0
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TELSPC DEFS	 1312

; LENGTH=5* 4* 64+(5*8)

	

CARSPC DEFS	 1320

0000	 DEFW	 0

0000	 DEFW	 0
0000	 DEFW	 0
0000	 DEFW	 O

If you have followed the last few chapters accurately, the images which
should appear on your screen look like this:
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00	 DEFB	 0

00	 DEFB	 0

00	 DEFB	 0
FF	 DEFB	 OFFH
FC	 DEFB	 OFCH
06	 DEFB	 6
03	 DEFB	 3
01	 DEFB	 1
81	 DEFB	 81H
C1	 DEFB	 0C1H
81	 DEFB	 81H
Al	 DEFB	 0A1H
F1	 DEFB	 OF1H
Al	 DEFB	 OA1H
81	 DEFB	 81H
01	 DEFB	 1
81	 DEFB	 81H

Cl	 DEFB	 OC1H
81	 DEFB	 81H
Al	 DEFB	 OA1H
F1	 DEFB	 OF1H
Al	 DEFB	 0A1H
81	 DEFB	 081H
01	 DEFB	 1
81	 DEFB	 81H
Al	 DEFB	 0A1H
F1	 DEFB	 OF1H
Al	 DEFB	 0A1H
81	 DEFB	 081H
DD	 DEFB	 ODDH

95	 DEFB	 095H
1D	 DEFB	 29
05	 DEFB	 5
1B	 DEFB	 27
06	 DEFB	 6
FC	 DEFB	 OFCH

;IMAGE AREA FOR EXPANDED SPRITE DATA
;LENGTH=4*5„64+(4*8)
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and counting downwards, the first line in the high-resolution area will be
STRTLN and the number of lines in the area will be specified by the
one-byte variable DEPTH.

CHAPTER 13

High-Resolution Colour

Hands up all those of you who have ever had the need for more than the
two colours normally available in each character cell. Well behold, your
wishes are about to be granted. With the routines in this chapter you will
be able to cover an area of the screen eight columns wide and up to
twenty four lines deep with colour attributes at eight times normal
resolution; that is, one attribute byte for each row of each cell in the
high-resolution area.

The routine works using our tried and trusted technique of interrupts
vectored under interrupt mode 2 (IM 2) to our own interrupt handler, as
described in Chapter 7.

On receiving an interrupt, the Spectrum will execute a suitable delay
routine while it waits for the TV beam to approach the high-resolution
area. From then on we have exactly 224 T-states to send as long a row
as possible of our 'high-resolution' attributes to the normal attribute file.
Experimentation proves that, under the usual restriction that the routine
is placed in the top 32K of RAM to avoid delays due to ULA interference,
it is possible to replace the attributes of just 8 cells if we are to have time
to adjust our pointers and counters ready for the next row of attributes.

The new attributes will be stored in a special high-resolution attribute
file, the start of which we shall label with the two-byte variable HIATT. For
maximum flexibility, the high-resolution area will be of variable length
and variable ve rt ical position. Labelling the top line of the screen as zero
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The interrupt handler, which I have christened HIRES, includes two
stack operations inside its main loop. In order to ensure that these do not
run the risk of ULA interference by access to the lowest 16K of RAM, the
routine stores away the value of SP in VALSP and then uses its own
two-byte machine stack, placed immediately before the routine and
thus in the top 32K of RAM.

Central to the routine is a sequence of eight consecutive LDI instructions
to load the attributes from the high-resolution file to the normal file. This is
the fastest possible method of data transferance, each operation taking
a nominal 16 T-states. This compares with a usual 21 T-states per
repitition of the LDIR instruction (this only takes 16 T-states on its final
execution, when BC = 0).

High resolution attributes are, of course, mapped out in exactly the
same manner as the standard attribute bytes. Bits 0 to 2 are for INK, bits
3 to 5 are for PAPER, bit 6 for BRIGHTness, and setting bit 7 denotes
FLASH 1.

Here then is the listing for HIRES, the interrupt handler, followed shortly
after by an initialisation routine. Remember the restrictions; the interrupt
handler, its preceeding variables, and the high-resolution attribute file
must all be in the top 32K of RAM.

;HIGH RESOLUTION COLOUR
;N.B! POSITION ABOVE 32K BOUNDARY
;VARIABLES AND ROOM FOR A TWO-BYTE
;MACHINE STACK:- USED BY INTERRUPT
;HANDLER

00	 STRTLN DEFB	 0

18	 DEPTH	 DEFB	 24
OMMO	 HIATT DEFW	 0

g pV0	 VALSP DEFW	 0

0000	 DEFW	 GI

;PRESERVE REGISTERS

C5	 HIRES	 PUSH	 BC

D5	 PUSH	 DE

E5	 PUSH	 HL
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1Rj

PUSH	 AF

;STORE SP AND USE THE TWO BYTES PRECEDING
;THIS ROUTINE AS A STACK

ED73040,0	 LD	 (VALSP),SP
310800	 LD	 SP,HIRES

CB3C	 SRL	 H
CHID	 RR	 L
CB3C	 SRL	 H
CHID	 RR	 L
110058	 LD	 DE,580CH
19	 ADD	 HL,DE

F5

;PUT ATT. ADDRESS IN DE
;PRODUCE AN EXACT DELAY

011802	 LD	 BC,0218H
OB	 DELAY DEC	 BC
78	 LD	 A,B
B1	 OR	 C
20FB	 JR	 NZ,DELAY

;CALCULATE # OF TEXT ROWS ABOVE HI-RES AREA
;

3A0000	 LD	 A,(STRTLN)
87	 ADD	 A,A
87	 ADD	 A,A
87	 ADD	 A,A
CA2F00	 JP	 Z,G04IT2

EB
	

EX	 DE,FiL

;TAKE START OF HI-RES ATTRIBUTE FILE

2A0200	 LD	 HL,(HIATT)

;A COUNTS THE NUMBER OF LINES LEFT

3A0100	 LD	 A,(DEPTH)

;BC COUNTS THE HI-RES COLOUR BYTES
;FOR THIS LINE

^

014000 NXLINE LD	 BC,64
;

;WAIT UNTIL BEAM REACHES HI-RES AREA 	 ;SAVE ADDRESS OF LEFT-HAND ATTRIBUTE ON THIS LINE
;EACH LOOP TAKES 224 T-STATES, OR ONE TV-ROW	 ;

D5	 NXTROW PUSH	 DE
960F	 SCANL	 LD	 B,15	 ;
10FE	 LN2	 DJNZ	 LN2	 ;TRANSFER THE EIGHT ATTRIBUTES FOR THIS ROW
00	 NOP
00	 NOP	 EDAO	 LDI
C8	 RET	 Z	 EDAO	 LDI
3D	 DEC	 A	 EDA0	 LDI
C22400	 JP	 NZ,SCANL	 EDAP1	 LDI

EDAO	 LDI
;CALCULATE ATTRIBUTE ADDRESS FOR (STRTLN,12) 	 EDAO	 LDI
; EDAO	 LDI

6F	 G04IT2 LD	 L,A	 EDAO	 LDI
3A000	 LD	 A,(STRTLN)
67	 LD	 H,A	 ;RETRIEVE ADDRESS OF LEFT-HAND ATTRIBUTE
CB3C	 SRL	 H
CB1D	 RR	 L	 D1	 POP	 DE
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;IF BC=0 THEN ROW 7 IS COMPLETE

E26A00 JP	 PO,LSTROW

;23 T-STATE TIMING EQUALIZER

JR	 $+2
NOP
AND
JR

;ADD 32 TO ATTR. ADDRESS AND MOVE
ON TO NEXT LINE

1800
op
E6FF
18E4

OFFH
NXTROW

EB	 LSTROW
0E20

EB
3D
C20000

EX
LD
ADD
EX
DEC
JP

DE , HL
C,32
HL, BC
DE,HL
A
NZ , NXLINE

;RETRIEVE SP, THEN UNSTACK THE OTHER REGISTERS

ED7B0400	 LD	 SP,(VALSP)
F1	 POP	 AF
El	 POP	 HL
D1	 POP	 DE
Cl	 POP	 BC

;RETURN FROM INTERRUPT
;NOTE: YOU COULD INSERT A JUMP TO THE ROM
;INTERRUPT ROUTINE HERE (TO 0038H)

EI
RE TI

The interrupts will be intercepted by means of a 257 byte vector table,
starting at an arbitrary page boundary which I have chosen to be FENH.
This technique was detailed in Chapter 7. We need a routine to set up
the vector table and select interrupt mode 2, and it shall be called
HIRON for High Resolution ON. Following the routine is a sho rt fragment
to set up the jump instruction to HIRES at FDFDH, to which all interrupts
are vectored.
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FB
ED4D

;INITIALIZE INTERRUPT INTERCEPTION
;WITH A 257 BYTE VECTOR TABLE AT Q1FE0OH

;EXIT: BC=0, DE=01FF01 , HL=qIFF0l

3EFE	 HIRON	 LD	 A,OFEH
ED47	 LD	 I,A
0l0001	 LD	 BC,PII00H
67	 LD	 H,A
69	 LD	 L,C
57	 LD	 D,A
58	 LD	 E,B
36FD	 LD	 (HL),OFDH
EDB0	 LDIR
ED5E	 IM	 2
C9	 RET

;PRODUCE THE JUMP TO HIRES
;AFTER AN INTERRUPT

LABEL ORG	 OFDFDH
JP	 HIRES
ORG	 LABEL

Now that you have the interrupt handler and initialisation routine, you
have all the means to produce high resolution colour, and its nearly time
for some examples.

The maximum high-resolution area is 8 x 24 = 192 cells, and hence at
most 192 x 8 = 1536 attribute bytes are required, or 1.5K of memory. As
it stands, the routine HIRES positions this area in the centre of the
screen, starting at column twelve. Some variation in this is possible by
altering the base address of the attribute area held in the instruction:

LD	 DE,580CH

shortly after label G041T2. Some timing adjustment may be necessary,
but on my Spectrum I found that the leftmost column of the high-
resolution area could quite happily be varied between column 0 and
column 13. Thus to cover the area from column 5 to column 12 inclusive,
change the instruction to:

LD	 DE,5805H
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Unlike the full screen horizon generator in the interrupt handler of
Chapter 9, HIRES does not depend on returning to a HALT instruction
before each interrupt to maintain stability and prevent flickering
attributes. Once we have 'turned on' the high resolution colour,
therefore, we are free to do any processing we like without worrying
about when the interrupts occur, just as long as we don't disable them.

By substituting the instruction:

JP	 0038H

for the pair

EI
RETI

at the end of HIRES, we would cause a jump to the standard ROM
interrupt handler after every high-resolution frame had been generated.
It would then be safe to return to BASIC, which would run normally, apart
from the fact that the deeper and lower the high-resolution area, the
slower BASIC would get!

For the first example, I have simply pointed HIRES at the start of the ROM
and told it to display the first 1.5K in the full-blown high-resolution area,
for 256 TV frames (5.12 seconds). The routine is called DEMO1 (points
for imagination ...?).

XOR
	 A

LD
	

(STRTLN),A

;PRODUCE HI-RES COLOUR FOR
;5.12 SECONDS

76	 TSLP3	 HALT
DJNZ	 TSLP3

;RESELECT IM 1 FOR RETURN TO BASIC

IM
	

1
LD
	

A, 3FH
LD
	

I,A
RE T

The second demonstration is slightly more exotic, and involves the use
of a subroutine DATPRP to generate a 25 line attribute file. Obviously not
all of these lines can be used at any one time, but by cycling the label
pointing at the 'sta rt ' of the file, HIATT, backwards or forwards in steps of
eight bytes, we can make the high-resolution attributes 'scroll' up or
down the screen.

DATPRP, for DATa PReParer, generates a 25 line attribute file, each line
the same, and each row of a line having jut one paper colour and white
ink. In an effort to provide some colour separation, I have used the
sequence black, magenta, yellow, blue, green, white, red, cyan for the
paper colours of successive rows. However, whether it is possible to
distinguish these separate colours (or shades, for those of you reading
in black and white) will depend on the resolution of your TV sets, over
which I regrettably have no control.

AF
320000

DEMO1

1OFD

ED56
3E3F
ED47
C9

6F
67
3E18
320000

2200.00

CD0000

;USE FIRST 1.5K OF ROM AS
;HI-RES COLOUR FILE

LD	 L,A
LD	 H,A
LD	 A,24
LD	 (DEPTH),A
LD	 (HIATT),HL
CALL	 HIRON

;NOTE L=0 FROM HIRON

Here comes DATPRP, followed closely by DEMO2.

;DEMO ROUTINE TO SET UP A 25 LINE
;HI-RES COLOUR FILE
;SPACE NEEDED=2564=1984

TSTDAT DEFS	 1984

210000	 DATPRP LD	 HL,TSTDAT

;FOR 25 LINES

45 LD	 B, L
0E19 19 LD	 C,25

;USE BLACK PAPER ON ROW 0
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AF
	 XOR	 A

;ALWAYS USING WHITE INK

F607	 NXCOLR OR	 7

;CREATE A ROW OF 8 HI-RES ATTRIBUTES

0608
	

LD
	

B,8
77
	

FL9	 LD
	

(HL) ,A
23
	

INC
	

HL
10FC
	

DJNZ
	

FL9

;NEXT PAPER COLOUR

A,24
38H
NZ,NXCOLR

;NEXT LINE

C
NZ,NXCOLR

DEMO2 will make a multicoloured pile shrink into the 'ground', with the
colours scrolling downwards as it goes. The routine is best run with a
global black paper and border.

;SET-UP 25-LINE ATT. FILE AND TURN ON HI-RES

CD0000 DEMO2	 CALL	 DATPRP
CD0000	 CALL	 HIRON

;CYCLE (HIATT) BACKWARDS THROUGH THE FIRST
;EIGHT ROWS, MAKING THE COLOUR FLOW DOWN THE
;SCREEN. NOTE: THIS IS WHY WE NEED 25-LINES,
;NOT 24

0E18 18
79
320000
3E18
91
320000
0608
210000
22 0000
76
19
10F9
0D
20E7

ED56
3E3F
ED47
C9

AND INCREMENT
;(STRTLN), MAKING THE HIRES AREA SHRINK

DOWNWARDS

LD	 C,24
TSLP	 LD	 A, C

LD	 (DEPTH),A
LD	 A,24
SUB	 C
LD	 (STRTLN),A
LD	 B,8
LD	 HL,TSTDAT+64

NXRUN	 LD	 (HIATT),HL
HALT
ADD	 HL,DE
DJNZ	 NXRUN
DEC	 C
JR	 NZ,TSLP

;RESELECT IM 1 FOR RETURN TO BASIC

IM	 1
LD	 A, 3FH
LD	 I,A
RET

The final demonstration routine for HIRES is a rather spectacular piece
called (you guessed it) DEMO3. Again, it uses the ROM to provide a
fairly random attribute file, but this time it spend 30.72 seconds or so
running HIATT backwards from 0600H to zero. The result is a very
captivating pa ttern. Try followng its movement from left to right, and then
look from right to left across it. Do you notice any difference in its
apparent speed?

;SET UP FULL LENGTH HI-RES AREA
AF	 DEM03 XOR	 A
320000	 LD	 (STRTLN),A
3E18	 LD	 A,24
320000	 LD	 (DEPTH),A

C618
E638
20F2

ADD
AND
JR

Ob
20E F
C9

DEC
JR
RET

;TURN ON THE HI-RES COLOUR
11F8FF LD	 DE,0FFF8H

CDg 0,0	 CALL	 HIRON
;AFTER EVERY CYCLE DECREMENT (DEPTH)
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2606 LD	 H,6

;NOTE L=0 FROM HIRON

220000
76
2D
20F9
25
20F6

TSLP2 LD	 (HIATT),HL
HALT
DEC	 L
JR	 NZ,TSLP2
DEC	 H
JR	 NZ,TSLP2

;RESELECT IM 1 FOR RETURN TO BASIC

3E3F
	

LD
	

A, 3FH

ED56
	

IM
	

1
ED47
	

LD
	

I,A

C9
	

RET

In closing this chapter I ought to point out that the above format is not the
only possible layout for high-resolution colour. For a sta rt , if you were
willing to have just one attribute byte per scan line, then you wouldn't
need to 'dump' a high-resolution colour file on a one-to-one basis, and
could dispense with the 16 T-state:

LDI

in favour of a pair of instructions like:

LD	 (DE),A
INC	 E

Where the accumulator would hold the current row attribute, and each
pair would take 11 T-states. This way you could probably increase the
width of the high-resolution area by three or four columns.
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;USE ROM AS HI —RES COLOUR FILE, STEPPING HIATT
;BACKWARDS FROM 0600H TO ZERO. NOTE
THAT THERE ARE 06WOH HI —RES ATTRIBUTES

CHAPTER 14
Producing Full-Screen Images
with the Border

Spectacular though it was, the full-screen horizon generated in Chapter
9 by switching the border colour one hundred times a second (at 100
Hz) was merely scatching the su rface of the potential effects of direct
border colour control. In this chapter, I shall realise the full potential of
high-speed border switching with a set of routines that will allow you to
produce ten distinct columns on the border, with each row of each
column taking any one of the eight colours. The switching speeds
involved will stretch the Z-80 processor to its limits, with a 12 T-state gap
between colour changes and an average frequency over one TV row of
156250 Hz.

The principles involved in the 'picture generator' are very similar to those
of our full-screen horizon. We use interrupts vectored under interrupt
mode 2 to our own customised interrupt handler, which after executing
appropriate delays for the TV beam to descend to the screen, hurtles
through a table of border values like a bat out of hell, always changing
the border colour at exactly the same stages in the generation of each
TV frame.

To go into more detail, recall that the time taken for the TV to generate
one row of the display is exactly 224 T-states. Now the fastest way of
transferring data from a table to po rt 254 is by using a sequence of OUTI
instructions, each of which takes 16 T-states. As this instruction is so
rarely used, I shall take the trouble to detail its action for you.

The HL pair holds the address of the data byte, the C register holds the
lo-byte of the po rt address, and the B register supplies the hi-byte of that
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BORSTR DEFS	 111

;BORDER PICTURE GENERATOR PRESERVE REGISTERS

BORPIC PUSH	 BC
PUSH	 DE
PUSH	 HL
PUSH	 AF
EX	 AF,AF'
PUSH	 AF

;WAIT 38 T-STATES

(SP),HL
(SP) ,HL

;WAIT FOR (FLYBAK+1) TV ROWS WHILE BEAM REACHES
;TOP OF SCREEN

3E1F
06/OF
10FE
00
A7
C8
3D
C27BOQJ

FLYBAK
SCANM
LN4

LD	 A,31
LD	 B,15
DJNZ	 LN4
NOP
AND	 A
RET	 Z
DEC	 A
JP	 NZ,SCANM

;5 T-STATE TIMING TRIMMER

CO	 RET	 NZ

;POINT HL AT PICTURE DATA

2A0000

;C HOLDS PORT VALUE

C5
D5
E5
F5
08
F5

E3
E3

EX
EX

LD	 HL,(PICDAT)

address. In every execution, the B register is decremented, the po rt

address is formed, the data byte at HL is sent out to the po rt , and HL is
incremented. If B reaches zero then the zero flag is set, if not, then it is
reset.

Theory would dictate that we can produce INT (224/16) = 14 'border
columns' on the screen, but we must remember that the TV beam
spends a certain amount of time in 'horizontal flyback' from the right
hand edge to the left hand edge of the screen. Experimentation reveals
that this traversal occupies the beam for around 64 T-states. or 2/7 or
about 29% of its time.

We consequently have just enough time to change the border colour ten
times as the beam crosses the screen from left to right, and this results in
each 'border column' being four text columns in width.

I name this interrupt handler BORPIC for obvious reasons. The border
data for BORPIC will be stored anywhere you like in the top 32K of RAM,
and must be pointed to by the two-byte variable PICDAT. We shall
format the border data as follows:

FIRST BYTE: NUMBER OF BORDER LINES

then the data for each 'border line'.

FIRST BYTE: NUMBER OF TV ROWS IN THIS BORDER LINE

TEN BYTES: The border values for each of the 10 border columns.

The concept of border lines is analogous to that of text lines, except that
border lines have a variable number of rows in them (up to 256), and the
rows continue above and below the text area. It is easily seen that the
storage area needed for a picture with n border lines is given by:

Memory needed = (11 * n) + 1

In the listing of BORPIC you will see that I have reserved room for ten
lines of border data and labelled it BORSTR. This area will be used later,
but for now here is the listing. Please don't try to run it until I've explained
how to!

0000	 PICDAT DEFW

;PICDAT HOLDS ADDRESS OF BORDER DATA
;SPACE NEEDED=1+11*(NO. OF BORDER LINES)
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OEFE

;A COUNTS THE LINES OF BORDER DATA

LD	 C , föFEH
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7E	 LD	 A,(HL)
23	 INC	 HL
08	 NXTLN2 EX	 AF,AF'

;A COUNTS ROWS FOR THIS BORDER LINE

7E
	

LD	 A,(HL)
23
	

INC	 HL

;STORE START OF THIS ROW OF DATA IN DE

54
5D

LD	 D,H
LD	 E,L

;THE CORE OF 10 SUCCESSIVE BORDER CHANGES
i

EDA3 NXTRW OUTI
EDA3 OUTI
EDA3 OUTI
EDA3 OUTI
EDA3 OUTI
EDA3 OUTI
EDA3 OUTI
EDA3 OUTI

n EDA3 OUTI

^I.
EDA3 OUTI

;GENERATE NEXT ROW OF DISPLAY

3D DEC	 A
CAB600 JP	 Z,NXTLN
62 LD	 H,D
6B LD	 L,E

;FIRST WAIT 30 T-STATES

0600 LD	 B4O
0600 LD	 B4O
1800 JR	 $+2
00 NOP
18DD JR	 NXTRW

;NEXT LINE OF BORDER DATA

e8	 NXTLN	 EX	 AF,AF'

3D	 DEC	 A

;7 T-STATES EQUALIZER

E6FF	 AND	 OFFH

C28E00	 JP	 NZ,NXTLN2

;RETRIEVE REGISTERS AND RETURN FROM INTERRUPT

F1	 POP	 AF

08	 EX	 AF,AF'

F1	 POP	 AF

EI	 POP	 HL

D1	 POP	 DE

Cl	 POP	 BC

FB	 EI

ED4D	 RETI

As I said, BORPIC will be run as an interrupt handler using IM2. We shall
use the usual 257-byte table of vectors to a jump instruction to BORPIC,
a technique described in detail in Chapter 7. As usual, which page
boundary you place the table at and where you put the jump instruction
are entirely up to you. If you are undecided, however, then why not put
the vector table at FENNH and the jump instruction at
FDFD H. The latter may be achieved by adding the lines:

LABEL ORG	 OFDFDH
JP	 BORPIC
ORG	 LABEL

The routine HIRON from Chapter 13 may then be used to set up the
vector table and select interrupt mode two (it was used previously to set
up the same table for the high-resolution colour routine HIRES).

Right then, now we have the routines necessary to make the border
picture a reality. The generator is extremly sensitive to timing variations,
and so, as in the case of the full-screen horizon generator in Chapter 9,
we must always return to a HALT instruction before an interrupt. This
way we have a maximum variation in timing of 4 T-states, the time taken
for the processor to execute a NOP, which is what it repeatedly does
when the HALT instruction is reached.

C3 Ib00 0
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9^!
Referring to the listing of BORPIC, you will see a mysterious label on the
line:

FLYBAK LD	 A,31

We will use this to make adjustments to the height at which the border
picture starts on the screen. The value loaded into A is the number of TV
rows the routine should wait before commencing the border data
processing. If you want a picture to start right at the top of the screen,
then adjust (FLYBAK + 1) until it does. The resulting value will depend
on your particular television set as well as your Spectrum.

In the case of my colour po rtable I found that loading (FLYBAK + 1) with
31 brough the beam down to the top of the screen. There were then 32
rows of top border left before the text area, and indeed it is the general
case that the depth of this 'top margin' plus the value in (FLYBAK + 1)
should be 63. There are, of course, 192 rows in the text area. Below this
is the 'bottom margin', the visible depth of which varies with different TVs
and Spectrums, but on my system is about 44 rows deep, giving a total
of 32 + 192 + 44 = 268 rows on the screen.

Although we can now produce a stable image on the screen border, the
picture will be somewhat incomplete unless we can show the pa rts of
the 'border columns' and 'border lines' which are, if you like, 'behind' the
text area. What we need is a routine which examines the data for the
'invisible' pa rt of the border and sets the paper attributes of all text cells
appropriately, so that after 'switching on' the picture generator we
appear to have a full-screen image, and the boundary between the text
area and the border cannot be detected. I shall now develop just such a
routine, and call it ATTSET.

Nine of the border columns overlap the text area as shown:
i-- 	

Widths:
(text columns)	 1 4 4 4 4 4 4 4 3

Border Column 0	 1	 2	 3	 4	 5	 6	 7	 8
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For the purposes of this routine we will assume that the text area has
been divided into exactly six border lines, each of 32 rows in depth. If
you prefer to have narrower border lines or possibly border lines of
variable depth, then ATTSET is easily adjusted. It will not have escaped
your notice that 32 rows = 4 text lines in depth, so with this format we end
up producing 'border cells' that are four text cells square.

The principles involved in ATTSET are really very simple; we enter the
routine with HL pointing at the border data for the first column of the first
border line in the text area. ATTSET takes this byte, multiplies it by eight
to obtain a PAPER value, ORs it with the INK value of the first cell and
then places the lot in the first byte of the attribute file. The next border
value is taken and used for the next four text columns of line Q), and this
procedure is repeated for the next six border columns. The value of
border column eight is used for the final three text columns, and this line
of border data is then reprocessed three times for the remaining text
lines of this border line.

The whole of the above procedure is then repeated for each of the five
remaining border lines in the text area, and the listing of ATTSET
evolves, followed by a demonstration.

;ROUTINE TO SET THE PAPER ATTRIBUTES
GIVEN BORDER DATA
;ENTRY :HL=ADDRESS OF FIRST BYTE OF BORDER
DATA IN TEXT AREA AS PRODUCED BY "EXPAND"

;EXIT:BC =O, HL=5B0tH

;POINT HL AT START OF ATTRIBUTES
110058 ATTSET LD	 DE,5800H
EB	 EX	 DE,HL

;B COUNTS THE BORDER LINES

LD	 B,6

;C COUNTS THE ATTRIBUTE LINES (4 PER BORDER LINE)

0E04	 NXTLN3 LD	 C,4

;STORE BORDER DATA ADDRESS

PUSH	 DE
PUSH	 BC
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D5	 NXT14

C5
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;C HOLDS MASK FOR PAPER 77
2C

LD
INC

(HL),A
L

0E38 LD	 C,38H AE XOR (HL)
Al AND C

;TAKE BORDER BYTE MULT BY 8 TO GET PAPER BITS AE XOR (HL)
77 LD (HL),A

lA LD	 A,(DE) 2C INC L
07 RLCA 13 INC DE
07 RLCA
07 RLCA ;NEXT BORDER COLUMN

;USE THE INK OF THE CELL WITH OUR PAPER TO FORM 10E5 DJNZ NXT12
;NEW ATTRIBUTE BYTE

;NOW DO THE THREE RIGHT-MOST ATTRIBUTE COLUMNS
AE XOR	 (HL)

Al AND	 C lA LD A,(DE)
AE XOR	 (HL) 07 RLCA
77 LD	 (HL),A ÿD 7 RLCA

07 RLCA
;DO THE SAME FOR THE NEXT SEVEN BORDER COLUMNS AE XOR (HL)
;EACH OF WHICH IS FOUR TEXT COLUMNS WIDE Al AND C

AE XOR (HL)
13 INC	 DE 77 LD (HL),A
2C INC	 L 2C INC L
0607 LD	 B,7 AE XOR (HL)
lA NXT12	 LD	 A,(DE) Al AND C
07 RLCA AE XOR (HL)
07 RLCA 77 LD (HL),A
07 RLCA 2C INC L
AE XOR	 (HL) AE XOR (HL)
Al AND	 C Al AND C
AE XOR	 (HL) AE XOR (HL)
77 LD	 (HL),A 77 LD (HL),A
2C INC	 L 23 INC HL
AE XOR	 (HL)
Al AND	 C ;HL NOW POINTS AT THE NXT LINE OF ATTRIBUTES
AE XOR	 (HL)
77 LD	 (HL),A Cl POP BC
2C INC	 L
AE XOR	 (HL) ;REPEAT FOR THE NEXT THREE ATTRIBUTE LINES
Al AND	 C
AE XOR	 (HL) OD DEC C
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2803 JR Z,OUT1
D1 POP DE 210000
18BB JR NXT14	 22000

;DISCARD LAST STACK ENTRY

F1 OUT1 POP AF	 AF
;INCREASE POINTER TO NEXT LINE OF BORDER DATA

;DENOTE "8 BORDER LINES"

LD	 HL,BORSTR
LD	 (PICDAT),HL

;START WITH BLACK BORDER

XOR	 A

13	 INC	 DE
13	 INC	 DE
13	 INC	 DE

3608
23

LD	 (HL),8

INC	 HL

;REPEAT FOR FIVE BORDER LINES

DJNZ	 NXTLN3
C9
	

RET

As a demonstration for BORPIC and ATTSET, we shall produce a
multi-coloured 'quilt' pattern of eight border lines by eight border
columns, each line being 32 rows deep, as indeed is required by
ATTSET. The first 32 rows above the text area are needed for the first
line, so we must set (FLYBAK + 1) to 63 – 32 = 31 in order to start
generating the image in the right place. The border data will be built up
at BORSTR, and the space needed will be 1 + (8 x 11) = 89 bytes,
which is within the 111 bytes we reserved in BORPIC.

Since we have one byte for the number of lines, eleven bytes for the first
border line and one byte for the depth of the second, the first border
value of the second border line will be at (BORSTR + 1 + 11 + 1) =
(BORSTR + 13), hence we set the PAPER attributes with:

LD	 HL,BORSTR+13
CALL	 ATTSET

;LOOP TO GENERATE DATA FOR EACH BORDER LINE
;DENOTE "32 ROWS IN THIS LINE"

3620	 NXBLIN LD	 (HL),32

23	 INC	 HL
;MAKE FIRST BORDER COLUMN BLACK

3600	 LD	 (HL),0

23	 INC	 HL

;RUN THROUGH THE 8 COLOURS FOR THE
MIDDLE 8 COLUMNS

0608	 LD	 B,8

77	 NXBCLM LD	 (HL),A

C603	 ADD	 A,3
E607	 AND	 7

23	 INC	 HL

10F8	 DJNZ	 NXBCLM

;MAKE LAST COLUMN BLACK

10B3

The comments in the assembly listing should provide adequate
explanation of the rest of the routine, named BPDEMO.

70
23

LD	 (HL),B
INC	 HL

;DEMONSTRATION FOR BORPIC AND ATTSET

3E1F	 BPDEMO LD	 A,31
320000	 LD	 (FLYBAK+1),A

;BUILD BORDER DATA AT BORSTR
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;CHANGE COLOUR OF SECOND COLUMN TO
NEXT IN SERIES

C603	 ADD	 A,3
E607	 AND	 7

20E8	 JR	 NZ,NXBLIN
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ll

;TRANSFER "# OF LINES"

EDAM	 LDI

;A REG. WILL COUNT ROWS OF T.V. DISPLAY ALLOTED
;TO DATE

AF
	

XOR	 A

08
	

EX	 AF,AF'

;C =BINK COLOUR

4E	 NEWCOL LD	 C,(HL)

23	 INC	 HL

;B=BAPER COLOUR

46	 LD	 B, (HL)
23	 INC	 HL

;IF WE'RE AT THE TEXT AREA THEN STORE ADDRESS OF
;EXPANDED DATA

08	 NXTWD	 EX	 AF,AF'

;THE NEXT VALUE MAY BE ALTERED TO CHANGE
THE DEPTH OF THE TOP MARGIN

•

FE21	 TPMRGN CP	 33
C21200	 JP	 NZ,NYET

D5	 PUSH	 DE
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;ROUTINE TO EXPAND BORDER DATA FOR BORPIC

21 0D(ô0

C D000'P1

CDO0P10

;SET PAPER ATTRIBUTES TO MATCH BORDER
;DATA

LD	 HL,BORSTR+13
CALL	 ATTSET

;TURN ON BORDER PICTURE

CALL	 HIRON

;ENTRY: HL=START OF COMPACT BORDER DATA
;EXIT: HL=ADDRESS OF FIRST BORDER VALUE OF
;FIRST BORDER LINE IN TEXT AREA
;A=0, B=BAPER COLOUR, C=BINK COLOUR
;DE=NEXT BYTE AFTER COMPACTED DATA
;BUILD UP THE DATA IN THE SPACE AT BORSTR

11p.006 EXPAND LD	 DE,BORSTR

;GENERATE IT FOR 5.12 SECONDS
;NOTE B=0 FROM ATTSET

76	 TSLP9	 HALT

10FD	 DJNZ	 TSLP9

;RESELECT IM 1 FOR BASIC

ED56	 IM	 1

3E3F	 LD	 A,3FH
ED47	 LD	 I,A

C9	 RET

As a final utility routine for BORPIC I thought it would be rather useful to
have one which generates the border data for us, given a set of bit-
patterns and colour values, which I shall call collectively 'compact
border data'.

The routine EXPAND will allow us to specify any number of border lines,
each of any depth (up to 256 in each case), and use two colours for each
border line, which will then be defined by the leftmost ten bits of two
'compact data bytes'. Each of these ten bits corresponds to one border
column on a border line. Using a system analogous to the Spectrum
BASIC's INK and PAPER values, let the two colours available on each
border line be BINK and BAPER, denoting a BINK border cell by a 1,
and a BAPER cell by a Q.

To minimise the amount of data required for an image, we will only
specify the BINK and BAPER values at the start of the data and
whenever we wish to change their values as we work down the screen.
We need some way of telling EXPAND to start using new colours, and
probably the easiest way to do that is by using the spare six rightmost
bits of the data for a line. We will set them to 3FH for a change of colours,
then follow that byte with two bytes containing the BINK and BAPER
values respectively. Setting the same bits to 3EH will denote 'end of
data'. This procedure will become clearer with the examples following
the listing of EXPAND.
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;INCREASE ROW COUNT
;
;CHOOSE BAPER OR BINK FOR EACH OF
LEFT-MOST 2 BITS

NYET	 ADD	 A,(HL) 17 RLA

EX	 AF,AF' 70 LD (HL),B
D23000 JP NC,PAPER2

;TRANSFER DEPTH OF THIS LINE (IN ROWS) 71 LD (HL),C
17 PAPER2 RLA

LDI 23 INC HL

INC	 BC 70 LD (HL),B
D23700 JP NC,PAPER3

;TAKE FIRST COMPACT DATA BYTE 71 LD (HL),C
23 PAPER3 INC HL

7E LD A,(HL) ;
EB EX DE,HL ;TEST BITS 0-5 OF SECOND COMPACT DATA BYTE

D5 PUSH DE ;
lA	 LD	 A,(DE)

;FOR EACH OF EIGHT BITS... 	 13	 INC	 DE
EB	 EX	 DE,HL

1E08	 LD	 E,8	 ;
;3FH INDICATES NEW COLOURS REQUIRED

;PLACE A BAPER BYTE IN BORDER DATA IF BIT IS SET 	 ;
F6CO	 OR	 gCOH

17	 ABC	 RLA	 3C	 INC	 A

70	 LD	 (HL),B	 28C7	 JR	 Z,NEWCOL

D22200	 JP	 NC,PAPER	 ;
;3EH INDICATES END OF DATA

;OTHERWISE INSERT A BINK BYTE 	 ;
3C	 INC	 A

71	 LD	 (HL),C	 C20B00	 JP	 NZ,NXTWD

;IN WHICH CASE, RETRIEVE ADDRESS FOR ATTSET

El	 POP	 HL
23	 INC	 HL
C9	 RET

Notice the line

86
08

E DAP1

03

;MOVE ON TO NEXT BIT

23	 PAPER	 INC	 HL
10	 DEC	 E
C21C00	 JP	 NZ,ABC

;TAKE SECOND COMPACT BYTE

D1	 POP	 DE
13	 INC	 DE
lA	 LD	 A,(DE)
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TPMRGN CP	 32

The value in this instruction is the number of rows of the border picture
which are above the text area, and should always be equal to
63 — (FLYBAK + 1), that is to say the sum of the two values at labels
FLYBAK in BORPIC and TPMRGN in expand should be 63:
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(FLYBAK + 1) + (TPMRGN + 1) = 63

TPMRGN in case you hadn't guessed, stands for 'top margin'. EXPAND
uses this value to find the correct address in the border data for use as
an entry value to ATTSET, where such a use is applicable. It then stores
this value away and returns it in HL ready for immediate use, if so
desired, with ATTSET.

As a simple demonstration for EXPAND, I have written a routine to
display a crude but large manifestation of the Melbourne House logo, as
seen on the spine of this book. We will be using a grid of 10 x 8 square
border cells, so we need the top margin to be 32 rows deep. This is set
by:

LD	 A,32
LD	 (TPMRGN+1),A
LD	 A,31
LD	 (FLYBAK+1),A

EXPAND builds the data in the previously reserved space at BORSTR,
so we must point PICDAT at it:

LD	 HL,BORSTR
LD	 (PICDAT),HL.

The desired image is as shown:

On first sight, the bit pattern for this is given by the hex values:

00 00
00 00
41 00
63 00
77 00
5D 00
49 00
E3 80

We must now incorporate the other information. The first byte must be
the number of border lines (8) followed by the first BINK and BAPER
values (7 and 6 respectively). We require a new BAPER after line 0, so
we denote this by changing the data

from 00 00 to 00 3F

and then include the new value of BAPER after the BINK value, which
remains the same. The first seven bytes are now:

08— BORDER LINES
07 06 	 BINK, BAPER
00 3F— DATA FOR LINE 0
07 02 — BINK, BAPER.

Bit 7 6 5 4 3 2 1 0 7 6

The rest of the data is treated in the same fashion, adding 3EH to the last
value to signify 'end of data', thus the last two bytes change

White
Bink

Line Yellow Baper

Red Baper

Magenta Bape

Blue Baper

from E3 80 to E3 BE.

The final list of compact border data is found at label MELDAT in the
assembly listing, so we set up the image with the simple, rapid-fire
sequence:

LD	 HL, MELDAT
CALL	 EXPAND
CALL	 ATTSET
CALL	 HIRON

Here is the complete listing, called EXDEMO.

;DEMO ROUTINE FOR EXPAND ATTSET AND BORPIC
;GENERATES THE MELBOURNE HOUSE LOGO

;32 LINES OF THE PICTURE WILL BE ABOVE TEXT



I
08 MELDAT	 DEFB	 8

3E20 EXDEMO	 LD	 A,32
320000" LD	 (TPMRGN+1),A ;ONE WITH YELLOW BAPER

;NOTE 63-32=31 FOR FLYBAK 07 DEFB	 7
i ; 06 DEFB	 6

3E1F LD	 A,31 2,0 DEFB	 32
I 320aß0 LD	 (FLYBAK+1),A 0p DEFB	 0

3F DEFB	 03FH
;BUILD UP BORDER DATA AT BORSTR...

;TWO WITH RED BAPER
210000 LD	 HL, BORSTR
220000 LD	 (PICDAT),HL 07 DEFB	 7

02 DEFB	 2
;BY USING "EXPAND" ON COMPACT BORDER DATA 20 DEFB	 32

00 DEFB	 0
212600 LD	 HL,MELDAT 00 DEFB	 Id
CD0000 CALL	 EXPAND 20 DEFB	 32

41 DEFB	 41H
;NOW SET PAPER ATTRIBUTES APPROPRIATELY 3F DEFB	 3FH

CD0000 CALL	 ATTSET ;TWO WITH MAGENTA GAPER

;TURN ON BORDER PICTURE GENERATOR 07 DEFB	 7

03 DEFB	 3
CDfô000' CALL	 HIRON 20 DEFB	 32

63 DEFB	 63H
;GENERATE PICTURE FOR 5.12 SECONDS 00 DEFB	 0
;NOTE B =0 FROM HIRON 20 DEFB	 32

77 DEFB	 77H
76 XLP	 HALT 3F DEFB	 3FH
10FD DJNZ	 XLP

;AND THREE WITH BLUE PAPER
;RESELECT IM 1 FOR BASIC

0 7 DEFB	 7
ED56 IM	 1

01 DEFB	 1
3E3F LD	 A,3FH

20 DEFB	 32
ED47 LD	 I,A

5D DEFB	 5DH
C9 RET

00 DEFB	 0

1 ;COMPACT BORDER DATA 8 BORDER LINES
20
49

DEFB	 32
DEFB	 49H

;WITH WHITE BINK;
00 DEFB	 0
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;3-2 -1-0 COUNTDOWN
;
;COMPACT BORDER DATA

;IMAGE "3"

;
08 DAT3 DEFB 8
05 DEFB 5

02 DEFB 2
20 DEFB 32
FF DEFB OF Fli

86 DEFB 80H
20 DEFB 32
01 DEFB 1

80 DEFB 80H
20 DEFB 32
01 DEFB 1
80 DEFB 80H
20 DEFB 32
FE DEFB OFFH
80 DEFB 80H

20 DEFB 32
FF DEFB OFFH

192

20	 DEFB	 32	 80	 DEFB	 80H
E3	 DEFB	 0E3H	 20	 DEFB	 32
BE	 DEFB	 OBEH	 01	 DEFB	 1

80	 DEFB	 80H
The routines provided in this chapter have a great many possible uses. 	 20	 DEFB	 32
You could use BORPIC on its own to provide some very fancy graphics 	 01	 DEFB	 1
in the top and/or bottom margin (remember you may use border lines as	 80	 DEFB	 80H
little as one row deep), using a border line 192 rows deep of one colour	 2.6	 DEFB	 32
in between. Alternatively, and remembering that the routines do not 	 FF	 DEFB	 OFFH
affect the display file or INK attributes, you could use BORPIC, ATTSET	 BE	 DEFB	 OBEY,
and EXPAND to provide a spectacular background when, say, an
arcade game has been frozen or you have just been exterminated. 	 '

;IMAGE "2"

I will conclude this chapter with one such example, producing a
sequence of four images of the numbers 3, 2, 1 and Ø, in that order. This	 08	 DAT 2	 DEFB	 8
countdown may be used, for example, as the background to a text 	 02	 DEFB	 2
image of a submarine about to launch one of its Polaris missiles, in 	 04	 DEFB	 4
spectacular 3-D, of course.	 20	 DEFB	 32

FF	 DEFB	 OFFH
80	 DEFB	 80H

20	 DEFB	 32
01	 DEFB	 1

80	 DEFB	 80H

20	 DEFB	 32
01	 DEFB	 1
80	 DEFB	 80H
20	 DEFB	 32
FF	 DEFB	 OFFH

80	 DEFB	 80H

20	 DEFB	 32
FF	 DEFB	 OFFH
80	 DEFB	 80H
20	 DEFB	 32
CO	 DEFB	 OCOH

0p0	 DEFB 
20	 DEFB	 32
CO	 DEFB	 BCOH
00	 DEFB	 0
20	 DEFB	 32
FF	 DEFB	 OFFH
BE	 DEFB	 OBEH
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;IMAGE "1" C7 DEFB	 OC7H
08 DAT1 DEFB 8 80 DEFB	 80H
07 DEFB 7 20 DEFB	 32
02 DEFB 2 CD DEFB	 OCDH
20 DEFB 32
1C DEFB 1CH	 80 DEFB	 80H
00 DEFB 0	 20 DEFB	 32
20 DEFB 32	 D9 DEFB	 OD9H
7C DEFB 7CH	 80 DEFB	 80H
00 DEFB 0	 20 DEFB	 32
20 DEFB 32	 F1 DEFB	 OF1H
OC DEFB 12	 801 DEFB	 80H
00 DEFB 0	 20 DEFB	 32
20 DEFB 32	 FF DEFB	 0'FFH
OC DEFB 12 80 DEFB	 80H
00 DEFB 0 20 DEFB	 32
20 DEFB 32 7F DEFB	 7FH
OC DEFB 12 3E DEFB	 3EH

00 DEFB fä ;TABLE OF COMPACT BORDER DATA ADDRESSES
20 DEFB 32
OC DEFB 12	 0000 BORTAB	 DEFW	 DAT3
00 DEFB 0	 1B00 DEFW	 DAT2
20 DEFB 32	 3600 DEFW	 DAT1
7F DEFB 7FH 5100 DEFW	 DATO
80 DEFB 80H ;
20 DEFB 32 ;THE COUNTDOWN. ROUTINE;"""
7F DEFB 7FH ;USE 32 TV-ROWS ABOVE TEXT AREA
BE DEFB OBEH I ;

; 3E20 CNTDWN	 LD	 A,32
;IMAGE "0" 320000 LD	 (TPMRGN+1),A
; 3E1F LD	 A,31

fi8 DATO DEFB 8	 '	 320000 LD	 (FLYBAK+1),A
01 DEFB 1	 210000 LD	 HL,BORSTR
05 DEFB 5	 220600 LD	 (PICDAT),HL
20 DEFB 32
7F DEFB 7FH ;SET UP VECTOR TABLE, 	 BUT DON'T TURN ON
00 DEFB 0 ;PICTURE GENERATOR UNTIL BORDER DATA IS SET UP
20 DEFB 32 ;
FF DEFB OFFH F3 DI
80 DEFB 80H CD0000 CALL	 HIRON
20 DEFB 32 216C¢0 LD	 HL,BORTAB
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1

0604

5E
23
56
23
C5
E5

EB
CD0000

CD0000

FB
0632
76
10FD
F3

E 1
C1
10E8

3E3F
ED47
ED56
FB
C9

LD	 B,4 APPENDIX A:
;TAKE ADDRESS OF COMPACT BORDER DATA 	 A List of all Principal Routines
NXTNUM	 LD	 E,(HL)

INC	 HL
LD	 D, (HL)

Name Function/Discription Page
INC	 HL
PUSH	 BC DF-LOC Finds cell location in display file. 6
PUSH	 HL CLS-DF Clears the display file.	 	 7

ATTLOC Finds cell location in attribute file. 7
;SET UP BORDER DATA AND PAPER ATTRIBUTES DF-ATT Converts display file address to attribute file

address.	 	 8
EX	 DE, HL ATT-DF Converse of DE-ATT.	 	 9
CALL	 EXPAND LOCATE Combination of DF-LOC and ATTLOC, also finds
CALL	 ATTSET attribute value.	 	 9

CLSATT Clears the attribute file with one byte. 	 	 10
; PRODUCE THE PICTURE FOR 1 SECOND CLS Combination of CLS-DF and CLSATT	 	 11
; PRINT1 General-purpose PRINT routine.	 	 16

E I PLOT Plots a point anywhere.	 	 20
LD	 B, 56 DRAW Draws a straight line between any two points. 	 	 24

PSE	 HALT ATTSTR Copies attribute file into higher memory.	 	 30

DJNZ	 PSE BLEND Mixes two attribute files together. 	 	 31

DI KFIND1 Returns value of key being pressed. 	 	 42
KTEST1 Tests one key, given its value.	 	 44

; NEXT PICTURE INT Initialises IM2 and its vector table. 	 	 51
INTERP Interrupt-driven print-processor with full-screen

POP	 HL horizon generator.	 	 62
POP	 BC INT1	 , Sets up vectortable for IM2 and initialises INTERP. 77
DJNZ	 NXTNUM HRZST1 Sets full-screen horizon level. 	 	 80

HRZMV1 Moves the full-screen horizon up or down by
;RESELECT IM 1 FOR BASIC pixels.	 	 84
; HRZNMK Main horizon control routine. 	 	 87

LD	 A,3FH HRZCOL Sets colours above and below the horizon. 	 	 91
LD	 I , A HIPRNT Sends a character to the print-processor buffer. 	 .. 94
IM	 1 ALTRBF Alters	 length	 of the	 'read-only'	 part of the	 print-
EI processor buffer (the RO-buffer). 	 	 97
RET SRVR1 Services the attribute values of entries in the RO-

buffer.	 	 98
SRVR2 Sends data to the RO-buffer. 	 	 101
CLOR Clears the OR-map.	 	 109
ORCHK Checks whether we should OR-print on a cell. 	 110
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PADOUT	 Creates first image from bare sprite data, by adding
blanks. 	  126

SPREX	 Forms multiple 'shifted' images of sprite data, as
expanded by PADOUT. 	  129

SPRINT	 Sprite printing routine. 	  135
SPRMV	 Master sprite control routine. 	  145
HIRES	 High-resolution colour generator. 	  163
HIRON	 Sets up vector table, IM2, and jump to HIRES. 	  167
BORPIC	 Interrupt-driven border picture generator. 	  174
ATTSET	 Sets attributes according to data for BORPIC 	  179
EXPAND	 Expands compacted data for the picture generated

by ATTSET and BORPIC 	  185

APPENDIX B:

Recommended Reading
Throughout this book you will have seen references to 'T-states' and the
various times taken for different instructions to be executed. A complete
breakdown of the timing for each Z-80 instruction, its op-code and its
affect on the flags can be found in what is considered by many to be the
authoritative guide to Z-80 programming, 'Programming The Z-80 by
Rodnay Zaks, published by Sybex.

This book is undoubtedly worth having as a reference guide, although it
is somewhat pricey.

The other book no good Spectrum machine language programmer
should be without is, 'The Complete Spectrum ROM Disassembly' by
Dr. Ian Logan and Dr. Frank O'Hara, published by Melbourne House.

A complete, fully-commented ROM assembly listing almost entirely fills
the 236 pages of the book, which should be on hand whenever you need
to study how a particular ROM routine has been programmed, or what
entry values are necessary to its utilisation.                                    

iE 198 199           



APPENDIX C:
Recommended Assemblers
and Monitor/Disassemblers
Hisoft `DEVPAC 3'

... is comprised of `GENS3' assembler and 'MON3' monitor/
disassembler. The routines in this book were developed on 'GENS3'. A
microdrive-compatible version is available. 'GENS3' is 7K long and
hence only practical to use on a 48K Spectrum.

Hisoft
13 Gooseacre
Cheddington
Leighton Buzzard
Beds.
LU7 ØSR

Sinclair Research
... a company with which you should now be familiar, publishes 'ZEUS
Assembler' and `Monitor/Disassembler', both for the 48K Spectrum and
originally written by Crystal Computing Limited.

Sinclair Research
Stanhope Road
Camberley
Surrey
GU15 3BR.

Oxford Computer Publishing (OCP)

... supply two separate programs for the 16K/48K Spectrum; 'Full
Screen Editor/Assembler' and 'Machine Code Test Tool' — a tutor and
debugging monitor.

Oxford Computer Publishing Ltd,
4 High Street
Chalfont St. Peter
Bucks
SL9 9QB

Picturesque

.. do a very powerful pair of utilities called 'Editor Assembler' and
'Spectrum Monitor', the latter also being a disassembler, and both being
for the 16K or 48K Spectrum.

Picturesque
6 Corkscrew Hill
West Wickham
Kent
BR4 9BB
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n
•

ADVANCED SPECTRUM MACHINE LANGUAGE•
• MELBOURNE HOUSE REGISTRATION CARD
• Please fill out this page and return it promptly in order that we may keep

• 	 you informed of new software and special offers that arise. Simply fill in
n and send to the correct address on the reverse side.
n
•
•
•
n Name 	
•

• Address 	
•
• Code 	•
n

• What product did you purchase? 	

• Which computer do you own? 	

n• E Saw it in a Retail Shop
•nE Other. Please specify 	

•▪ Which magazines do you purchase?
•▪ Regularly: 	

• Occasionally: 	

• What Age are you?
•

[ 10 15	 E 16-19	 E 20-24	 [ Over 25
n We are continually writing new material and would appreciate receiving
• your comments on our product.
n How would you rate this book?
• E Excellent	 E Value for money

• 	 E Good	 E Priced right

• E Poor	 E Overpriced

• Please tell us what books you would like to see produced for your
• SPECTRUM.

n
n Where did you learn of this product?
•▪E Magazine. If so, which one? 	

• E Through a friend
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