
The Macintosh 68000 Development System

User's Guide

If you have any comments or suggestions regarding either the
Macintosh 68000 Development System software or this documentation,
please send comments to

Macintosh Development Tools
Apple Computer, Inc.

Mail Stop 2T

20525 Mariani Avenue
Cupertino, CA 95014

Your input is extremely valuable in helping us to provide you with
the best development tools possible.

Table of Contents iii

Table of Contents

Chapter 1 - Introduction

3 About This Chapter
4 Overview
6 File Naming Conventions
7 Editor
8 The Assembler
9 The Linker

10 The Executive
11 A Simple Sample Session
12 The Debuggers
12 MacDB
14 Macs Bug
15 The Resource Compiler
16 System Definition Files

Chapter 2 - The Editor

19 About This Chapter
19 Files Required
19 File Naming Conventions
19 Invoking the Editor

20 About the Editor
20 Editor Documents
21 Editing
21 Tabs and Alignment
22 Document Format
22 Printing Documents

iv Macintosh 68000 Development System

Chapter 3 - The Assembler

25

25

25

26

26

26

27

27

28

28

29

29

30

30

30

30

30
31

32

32

33

33

33

34

34

34

35

36

36

36

37

38
39

40

40

40

40

41

41

41

41

41

42

42

43

43

43

43

44

44

45

About This Chapter
Files Required
File Naming Conventions
Invoking the Assembler
Using the Assembler
Assembler Source Files
Selecting Listing Options
Selecting a Source File
Types of Source Files
In Search of Source Files
What the Assembler Produces

Assembler Syntax
Labels
Current Program Location
Instructions
Comments
68000 Instruction Syntax
Addressing Modes
Variants on 68000 Instructions
Code Optimization

Expressions
Numbers
Strings
Symbols
Operations

Precedence
Assembler Directives

Assembly Control Directives
INCLUDE
STRING_FORMAT
IF. .ELSE. .ENDIF
MACRO
. MACRO/. ENDM
END
.DUMP

Symbol Definition Directives
EQU
SET
REG
.TRAP

Data Allocation Directives
DC
DS
DCB
.ALIGN

Linker Control Directives
XDEF
XREF
RESOURCE

Creating Packed Symbol Files
About Packed Symbol Files

Table of Contents v

Chapter 4 - The Linker

49 About This Chapter
49 Files Required
49 File Naming Conventions
49 The Structure of a Macintosh Application

50 Invoking the Linker
50 The Linker Control File

50 Linker Commands
51 Setting the File's Type and Creator
52 Setting the Global Storage Area
52 Specifying the Output File

52 Adding Resources and Data to the Code

Chapter 5 - The Executive

57 About This Chapter
57 Files Required
57 File Naming Conventions
57 Invoking the Executive
57 The Executive Control File

58 Using the Executive

vi Macintosh 68000 Development System

Chapter 6 - The MacDB Debugger

61 About This Chapter
61 Setting Up MacDB
62 Theory of Operation
63 The MacDB Windows
64 Features of MacDB Windows
65 The Close Box
65 The Title Bar
65 The Start Box
65 The Anchor Box
65 The Align Box
66 The Scroll Arrows
66 The Scroll Bar
66 The Scroll Box
66 The Size Box
66 Values in Cells
66 Changing the Value in a Cell
67 Handy Hints
67 MacDB Menus
67 Debug Menu
67 128K/512K Mac
67 Heap Check On/ Off
67 Wait
67 Quit
68 Run Menu
68 Trace
68 Proceed
68 Go Till
68 Go To
68 Trace Into ROM
69 Bkpts Menu
69 Set
69 Clear
69 Clear All
69 Window Menu
69 New
69 Duplicate
70 Symbolic/Hex Address
70 Frozen/Thawed
70 Anchor /No Anchor
70 Title
71 Format Menu
71 Inst
71 Char
71 Word
71 Long
71 Pascal String
72 List
72 Search
72 A-Traps
73 MemBlock

Table of Contents vii

73 Symbols Menu
74 Value
74 Open and Purge
74 About Symbols

Chapter 7 - The MacsBug Debuggers

77 About This Chapter
77 About MacsBug
77 Setting Up MacsBug
78 MacsBug
78 MaxBug
78 TermBugA and TermBugB
78 LisaBug
78 Theory of Operation
79 Invoking MacsBug
80 Syntax of MacsBug Commands
80 Numbers
80 Text Literals
80 Symbols
81 Expressions
81 MacsBug Commands
81 Memory Commands
82 Register Commands
83 Control Commands
84 A-Trap Commands
86 Heap Zone Commands
88 Disassembler Commands
88 Miscellaneous Commands
89 Handy Hints
89 Stopping the Disk Drive

90 Using No-Ops

90 Using MacsBug with the Lisa Workshop

viii

Chapter

Macintosh 68000 Development

8 - The Resource Compiler

System

93 About This Chapter
93 About RMaker
93 RMaker Input Files
93 Naming the Resource File
94 Appending to an Existing Resource File
94 Adding Resources
95 Defined Resource Types
95 Syntax of RMaker Lines
96 ALRT
96 BNDL
96 CNTL
97 DITL
97 DLOG
98 FREF
98 MENU
98 PROC
98 STR
99 STR#
99 WIND
99 Creating Your Own Types
100 Using RMaker
101 Errors in the Input File

Table of Contents ix

Appendix A - Sample Program Listing

105 The Window Sample Program
116 The Program’s Resource File

Appendix B - System Traps

121 System Traps: Sorted by Name
126 System Traps: Sorted by Number

Appendix C - Error Messages

133 Assembler Error Messagess
135 Linker Error Messages
137 RMaker Error Messages

Appendix D - Quick Reference

141 System Overview
142 File Naming Conventions
143 Assembler Quick Reference
145 Linker Quick Reference
146 Serial Cable Connections
147 MacsBug Quick Reference

Glossary

151 Glossary

Index

159 Index

L_

Chapter 1

Introduction

About This Chapter 3

About This Chapter

This chapter introduces you to the Macintosh 68000 Development System.

You should be familiar with the use of Macintosh: how to point, click,
and select. If you aren*t, read Macintosh , your owner* s guide. It

introduces you to the Finder, the application that manages your
documents, and to the basic methods for using a Macintosh application.

You should also be familiar with the assembly language of the Motorola
MC68000, the microprocessor used in the Macintosh. If you aren*t, read
the M68000 16/32-Bit Microprocessor Programmer * s Reference Manual ,

supplied with this package. For brevity, this manual will hereafter be

referred to as the 68000 Reference Manual. For the same reason, the
MC68000 microprocessor will be referred to as the 68000.

Programming the Macintosh in assembly language is not a simple task.

It requires detailed and thorough knowledge of the Macintosh. The

Inside Macintosh manual provides all the technical information
programmers need to create Macintosh applications. In places this
manual assumes you are familiar with certain aspects of the Macintosh.
Please refer to Inside Macintosh when you come across such passages.

To help you launch your Macintosh programming career, this development
system contains an application that displays a menu bar and a window,
and lets you edit within the window. A listing of the program, called
Window, is in an appendix; the source for the program is on disk. The

importance of this program cannot be over-stressed. It shows how to

initialize and use Macintosh ROM routines, how to support desk
accessories from your application, and how to support multiple windows
from an application. Sample desk accessories are also on the disk.

The following Inside Macintosh chapters are particularly helpful:

- Inside Macintosh : A Road Map . This chapter contains a sample
program similar to the Window program but easier to understand
since it is written in Pascal.

- Programming Macintosh Applications in Assembly Language . This

chapter explains the use of the Toolbox and Operating System
routines in the Macintosh. It describes how to pass parameters to

the routines, how to call the routines, how calls to the routines
are dispatched, how the routines return results, and which 68000
registers you can safely use.

- The Structure of a_ Macintosh Application . This chapter is

especially important for proper interaction between the

application and the Finder.

- The Resource Manager : A Programmer *s Guide .

- The Segment Loader : A Programmer *s Guide .

4 Macintosh 68000 Development System

Overview

The Macintosh 68000 Development System includes two disks, named MDS1
and MDS2. These disks contain a host of useful applications and files.
To acquaint you with the Macintosh 68000 Development System, these
files are described below. MDS1 is the disk that should be placed in
the built-in drive when you start up the development system. In

general it contains the main applications provided with the system.

=[—1

— - - = MDS1

9 items 362K in disk 37K available

Edit

icmi
moj.

Asm Link Exec

fl
RMaker

K>

PackSyms MacDB Nubs Empty Folder System Folder t<>

a

- Edit is the Editor. It is the application with which you enter
Assembler, Linker, Exec, and RMaker source files.

- Asm is the Assembler. It translates assembly-language source
files into relocatable modules that can be linked together into
one application.

- Link is the Linker. It connects modules produced by the Assembler
together into one application.

- Exec is the Executive. It automates and integrates assembling,
linking, and the adding of resources to your application.

- RMaker is the Resource Compiler. It uses the instructions in a

text file to create a resource file.

- PackSyms is an application that converts a symbol file into a

packed symbol file. The use of packed symbol files saves memory,
time, and disk space.

- MacDB Nubs is a folder. It contains small programs (Nubs) that
should be run on the same Macintosh as the program being debugged.

- System Folder and Empty Folder contain their usual files.

Overview 5

MDS2 contains debuggers, sample programs, and useful system definition
files

.

=1—1 ——— r-'lUiZ =
6 items 393K in disk 7K available

r s —»•

<>

Empty Folder Sample Programs Debuggers

/—.

Trap Files Equ Files .D Files <>

<? a

- Debuggers is a folder that contains several Debuggers , providing
various levels of assembly-language debugging tools

- Sample Programs is a folder that contains a sample program, some
sample desk accessories, a sample window definition procedure, and

their associated files. An example given later in this chapter
uses files from this folder.

- Trap Files is a folder. The files in this folder assign trap
numbers to trap names. These trap names and numbers are listed in

an appendix. The traps are described in Inside Macintosh .

- Equ Files is a folder. The files in this folder assign values to

the constants and absolute memory locations used by the system.
These constants are described in Inside Macintosh , and can help
you avoid using incorrect values in your applications.

- .D Files is a folder that contains packed versions of the files in

the Trap Files and Equ Files folders. These are the files you
will probably use with your application.

- Empty Folder is devoid of the usual files.

6 Macintosh 68000 Development System

File Naming Conventions

Many files are used and created by the various applications in the
Macintosh 68000 Development System. A file naming convention helps you
and applications identify the creator and contents of otherwise similar
files. Each kind of file has a unique extension — a period followed
by a few letters — appended to the main part of its name. Thus,
different yet related files are logically associated because they have
the same base name • For example

,

- Curve. Asm is an assembly-language source file.

- Curve. Err is a list of errors generated by the Assembler when it
assembles Curve. Asm.

A list of all the file extensions is given in the Quick Reference
appendix.

The development system is able to create three physically different
types of files: application files, text files, and binary files. These
three file types are designated by the following icons:

Application

=_ [\ L,
OOOI

-= 10110
==- 01011

Text File Binary File

When using the Macintosh, you generally don*t need to worry about the
names of volumes. However, when using the Macintosh 68000 Development
System you must sometimes specify volume names. For example, Linker
control files list the files to be linked. Files mentioned by file
name only are taken from the volume that contains your Linker control
file. To specify another volume, use the form:

VolumeName : FileName

A colon separates the volume* s name from the file*s name.

(warning)
The development system uses a space to indicate the end
of a file name and a period to indicate a file*s
extension. Avoid using these two characters in volume
names

.

The Editor 7

The Editor

The Editor is used for entering text. Documents created by the Editor

are used as assembly-language source files, Linker control files,

Executive control files, and Resource Compiler input files.

The Editor doesn't provide any of the sophisticated text formatting
functions available with programs such as MacWrite. It does, however,

save text as documents of a type known as text-only files. These

documents can be shared with all other programs that use text-only
files or that let you paste text from the clipboard. For example,

documents created by the Editor can be "prettied up" using MacWrite.

Editor document names should be given the following extensions:

- .Asm to indicate the main source file for an assembly

- .Files to indicate a file that contains a list of separate

assemblies to be performed

- .Link to indicate a Linker control file

- .Job to indicate an Executive control file

- .R to indicate a Resource Compiler source file

The Editor is described in Chapter 2.

8 Macintosh 68000 Development System

The Assembler

The Assembler translates 68000 assembly-language source documents into
files containing relocatable code and symbol table information. Such
files are given the extension .Rel. .Rel files must be linked before
an executable object file is produced.

If errors occur during assembly, a list of the errors is placed in a
•Err file. If a listing of the file is requested, it's placed in a

•Lst file.

The Assembler has the following special features

:

- Instructions can be grouped together into macros. Macros are
invoked by name, and they can be given strings as parameters.
Partial strings may be used within the macro.

- It modifies some instructions so that your program can call, jump
to, or branch to code in other relocatable segments.

- Conditional assembly instructions allow multiple versions of a

program to be generated from a single source.

The Assembler is described in Chapter 3.

The Linker 9

The Linker

The Linker combines a number of .Rel files, produced by the Assembler,
into an application file. An applications name has no extension. A
symbol table, which is primarily used by the Debugger, is placed into a

.Map file. If you request a Linker listing, it too is placed into the

•Map file.

The files to be linked together are specified in a Linker control file,

created by the Editor, that has the .Link extension. This file also
controls segmentation and listing of the program.

Errors encountered during linking are automatically written to a .LErr
file

.

The Linker is described in Chapter 4.

10 Macintosh 68000 Development System

The Executive

The Executive automates assembly, linking, and resource compilation.
Control files, known as .Job files, determine the sequence of
applications to be executed by the Executive.

Each command in an Executive control file specifies not only what
application is to be executed, but also what applications should be
used upon successful and unsuccessful completion of that application.

The Executive is described in Chapter 5.

A Simple Sample Session 11

A Simple Sample Session

Here’s a typical session with the Editor, Assembler, and Linker. The

named files actually exist in the Sample Program folder; you can try
the example if you wish.

1. Select the Editor; then, from the File menu, open the file
Window. Asm on MDS2. This is the source file for the assembly.

2. To see how errors are handled, enter the line "Syntax Error"; then

save the updated file by choosing Save from the File menu.

3. Assemble the file by choosing ASM MDS2 :WINDOW.ASM from the

Transfer menu. Window. Asm is assembled automatically.

4. An error occurs in the assembly, so the Assembler places a list of

errors in the file Window. Err. When the assembly is complete, the

Editor is launched with the Window. Asm and Window. Err documents

open.

5. Select the faulty line and cut it from the document, then transfer
back to the Assembler. This time Window. Asm assembles
successfully, and the resulting relocatable code and symbol table

is placed in Window. Rel. (The file Window. Err is automatically
removed from the disk.)

6. Because the assembly was successful, the Executive is launched.
Transfer to Link. Select and open the file Window. Link, the

Linker control file. The application produced by linking
Window. Rel is called Window. The symbol table file is called

Window.Map

.

The following diagram shows the files involved in this process (the

error documents are removed when a successful assembly takes place).

12 Macintosh 68000 Development System

The Debuggers

Two families of debuggers are provided with the Macintosh 68000
Development System. The first, and most powerful, is called MacDB. It
is a two-machine debugger (either Macintosh or Lisa running MacWorks).
The second, called MacsBug, works on a single Macintosh.

MacDB and MacsBug have similar capabilities, but MacDB requires far
less memory (and thus can be used to debug larger applications), it
provides more information at any instant, and it's much easier to use.

These debuggers are briefly described below.

MacDB

MacDB is the two-machine debugger. A small program called a Nub runs
on the same machine as your application, MacDB runs on another machine,
and the two machines are connected by a serial cable. The cable
provided with the Development System is intended for debugging using
two Macintoshes. The chapter on MacDB tells how to use MacDB with a
Li sa

.

Several different Nubs are provided with the Development System. These
various Nubs let you connect the machines using the printer port or the
modem port, or allow you to debug your application using MacWorks.

Features of MacDB include

- Multiple memory display windows. Memory can be displayed as
characters, words, long words, strings, or disassembled
symbolically. System traps are displayed symbolically too.

- Symbolic display of addresses. Memory addresses can be displayed
in hexadecimal or as symbols , and you can use these symbols in
expressions (for example, you can set the PC to START).

- One or more register display windows. All registers and memory
locations can be changed easily.

- Multiple breakpoints can be set and cleared.

- Instructions can be executed one at a time.

- Memory search for patterns.

- Special trace and break capability for system trap instructions.

- Display and checking of the heap.

- Display of linked lists.

The Debuggers

Here is a typical MacDB display:

i

*
-

i r "^
« Debug Run Bkpts Window Formal Symbols

PC |S Registers Examine

eSTRRT

:

JSR $34 (PC > amir£ DO = SEEH KTSTiTil

STRRT+4

:

JSR $4E<PC > (1 N 1 Tf D

1

= oooc*£0R8
STRRT+8

:

JSR $56<PC > (SETUF D2 = FFFF 0000
STRRT+C

:

DrawMenuBar D3 = 6001 0024
STRRT+E

:

JSR $86 (PC > <SETUF D4 = 0000 0024
STRRT+12 JSR $9E(PC > (SETUF TTT^ D5 = 0000 OOFF
STRRT+16 MOUE.L $5D4<PC , -<R7 > (D6 = 0000 FFFF
STRRT+1R TE 1 d 1

e

D7 = FFFF FF03
STRRT+1C SystemTask
STRRT+1E CLR -(R7) 1R41E RO = 0001 R6D4
STRRT+20 MOUE #$FFFF -(R7> 1R41E R

1

= 0000 5RC8
STRRT+24 PER $2EE(PC

)

(RB0U7 R2 = 0000 5RB6
STRRT+28 GetNextEvent R3 = 0001 R644

*STRRT+2R MOUE (R7>+,D0 1R41E R4 = 0000 557R
STRRT+2C BEQ.S *$-18 (STRR7 R5 = 0001 R6D8
STRRT+2E JSR $9C(PC> (SETUF R6 = 0001 R520
STRRT+32 BEQ.S *$- IE (STRR7 R7 = 0001 R41E
STRRT+34 RTS
INITMRNRGERS: PER $-4<R5) 1R6D4 PC = 0000 4E9E
INI TMRNR+4 : InitGraf SR = 2000
I N I TMRNR+6
I M I TMRNR+8
I N I TMRNR+E
I N I TMRNR+ 10

I N I TMRNR+ 12

Ini tFont
MOUE.L #$FFFF,
F I ushEvents

I n i tW i ndow
: InitMenus

DO

0

Breakpoints
n

:

=c

*STRRT+2R : MO'

n

7> 1R41E 0000 0000
1R422 0000 00R8 i!i

1R426 FFFF 0000 ijljil

1R42R 6001 0024 ;;i!

1R42E 0000 0024 jjijij

1R432 0000 OOFF HI
1R436 0000 FFFF
1R43R FFFF FF03 m
1R43E 0000 533R r-i

1R442 0001 R5D4 v
1R446 0000 533R S

Examine
fi! “L.

1R6C4 FFFF FFFF O
1R6C8 FFFF FFFF jiiiji

1R6CC 0000 0000 iiijii

j 1R6D0 0000 0000 jijij!

0> 1R6D4 0000 533R ijilij

5> 1R6D8 0001 R6D4 m
1R6DC 0000 0018
1R6E0 0000 0000 :|:|:i

1R6E4 nnnn nnnn n
1R6E8 0000 OBRO ^

MacDB is described in Chapter 6.

14 Macintosh 68000 Development System

Macs Bug

The MacsBug debuggers are single-Macintosh debuggers. The different
versions are for use on a 128K Macintosh, a 512K Macintosh, a Lisa
running MacWorks , or a Macintosh connected to an external terminal.

Features of MacsBug include

- display and set bytes of memory

- disassemble memory

- display and set registers

- set and clear up to eight breakpoints

- tracing of single or multiple instructions

- selective tracing of system traps

- display and checking of the heap

Here is a typical MacsBug display:

MODS 12 s PC SUBQ-U *S1,D7
PC=00H0DB 12 SR=00002000
00 = 00000000 0 l = HGHFH2Hfl D2 = fl000678C D3=464F4248
DH = 000 10000 05 = 00000007 D6 = 0000005C D7 = 0000000H
fl0 = 000 15168 81 = 20010878 82 = 00012888 83 = 00012804
84=00006228 85=00015688 86=00015156 87=000150F4

MacsBug is described in Chapter 7.

The Resource Compiler 15

The Resource Compiler

The Resource Compiler, named RMaker , is a tool that translates a

sequence of resource definitions in a text file into a file that
contains those resources.

Features of RMaker include

- predefined resource types

- definable resource types

- the ability to include specific resources from other files, or
entire resource files

- visible display of the compilation process, with error reporting

Here is a typical RMaker display:

« File Transfer
N

SSiIi Source File Window.

R

Output File MDS2:Window.Rsrc E3S3
Stat i cText
15 20 36 300
This sample program was written

Stat icText
35 20 56 300
just to proue it could be done!

* U 1 ND Resource # 1 spec i f i es th<
* for the window in which editir
* call to GetNewU i ndow

.

Type WIND '

, 1

fl Samp 1 e
50 40 300 450
Uisible NoGoRway
0
0

Data Size: 334
Map Size: 1 34
Total Size: 468

111
n il i iPVi*i

>

ii *

»

f Hi
i

I

RMaker is described in Chapter 8

16 Macintosh 68000 Development System

System Definition Files

Some of the most important tools available to assembly-language
programmers are the system definition files. These files contain the

values and addresses of the definitions available to the programmer.

It's a good idea always to use these definition files and the symbolic
names they contain, since some of these values may be subject to

change

.

The system definition files provided with the development system are

SysEqu.Txt
SysEqu.D
SysEquX.D
ToolEqu .Txt

ToolEqu.D
ToolEquX.D
QuickEqu.Txt
QuickEqu.D
QuickEquX.D
FSEqu.Txt
FSEqu.D
PackEqu .Txt

PrEqu.Txt
SysErr • Txt
SysTraps .Txt

ToolTraps .Txt

QuickTraps .Txt

PackMacs .Txt

SANEMacs .Txt

MacTraps .D

MacDef s .Txt

Low-level equates and globals
Packed version of common ones
Packed version of all
Toolbox equates and globals
Packed version of common ones
Packed version of all

QuickDraw equates and globals
Packed version of common ones

Packed version of all
File system equates and globals
Packed version of all
Package equates and globals
Printer equates and globals
System error numbers
Low-level traps
Toolbox traps
QuickDraw traps
Package macros
Numerics macros. See Inside Mac,
Apple Numerics Manual (//030-0247-A)

Packed version of SysTraps +

ToolTraps + QuickTraps
Macros translating Lisa-style
directives into development system
directives

.

Be sure that the symbols you use in your programs are identical to the

symbols in these files. The .Txt files can be loaded into the Editor
for viewing or printing.

Packed symbol files are explained in the chapter on the Assembler.

Chapter 2

The Editor

J

About This Chapter 19

About This Chapter

This chapter describes the Editor, a general-purpose text editor. In

the context of the Macintosh 68000 Development System, its primary uses
are to enter and edit assembly-language programs, Linker control files,
Executive control files, and RMaker input files.

Files Required

If you wish to move the Editor to another disk, you must move the file
named Edit. If you wish to transfer from the Editor to the Assembler,
the Linker, the Executive, or RMaker, those applications must be on the

same disk.

File Naming Conventions

The following types of files are all created in the Editor, and should
be given names with the designated extensions:

Asm is

Files is

be

Link is

Job is

R is

recommended for assembly-language source programs.

recommended for a file that contains a list of .Asm files to

assembled

•

the extension for Linker control files,

the extension for Executive control files,

the extension for RMaker input files.

These extensions indicate types of files that are used as inputs to the

Assembler, the Linker, the Executive, and RMaker. Other extensions,
such as .Txt, .Equ, and .D, can be used to classify other files used in

your assemblies.

Invoking the Editor

There are several ways to use the Editor:

- From the Finder, select and open the application named Edit.

- From the Finder, select and open a text file created by the

Editor. You can open up to four files simultaneously by selecting
a group of them (by Shift-clicking them or dragging across

multiple icons) before opening one of them. All files created
using the Editor can be selected, as can listing and error files
generated by the Assembler and Linker.

- Choose Edit from the Transfer option of the Assembler, the Linker,
the Executive, or RMaker.

20 Macintosh 68000 Development System

- Call Edit from an Executive control file, as described in

Chapter 5.

About the Editor

The Editor is a disk-based editor. Thus it f

s capable of editing
documents much larger than will fit in memory. When a document is

open, you can use the scroll bars to move, both vertically and

horizontally, through the document. The Editor brings new portions of

the document into memory as they* re needed.

To create a new document, choose New from the File menu.

There are several ways to open existing documents:

- To open an existing document, choose the uppermost Open command
from the File menu. This opens a standard file selection box from
which you select the file to be opened. All files with type
’TEXT* can be opened from this menu.

- You can also open files (including non-text files) by selecting
the name of the file in an open document, and then choosing the

other Open command from the File menu.

- Finally, you can open a document by typing Command-K followed by

the name of the file to be opened (including volume name if

needed), and pressing Return. This technique is not listed in a

menu, and it gives no visual feedback until the file is opened or

not found.

As many as four such documents can be on the desktop at a time. When

you quit the Editor or transfer to another application, the Editor

gives you a chance to save each document that has been altered.

Editor Documents

Editor documents consist of lines of text that are separated by Return

characters. The Editor has no tools for manipulating or organizing
pages, paragraphs, sentences, or pictures.

When you type long lines of text, characters may be placed past the

right edge of the window. To see these characters, use the horizontal
scroll bar. It is possible to type a line longer than can be seen

using the scroll bar. The text on such lines is not lost, but neither
is it visible. To see the whole line, insert a Return into the middle

of the line, breaking the line into smaller pieces.

If you choose Show Invisibles from the Format menu, the invisible

characters (Space, Tab, and Return) are replaced by visible symbols.

Choose Hide Invisibles to restore normal display.

Editor Documents 21

The Editor displays an entire document in text of a single size and

font. The Monaco font, a monospaced font, is the default. Different
documents on the desktop can have different fonts and font sizes.

Editing

Editing involves inserting text at the insertion point and removing,

moving, copying, or replacing a selection. Any character or sequence

of characters in a document can be selected and edited.

You can replace the selection by typing or pasting. You can remove,

move, or copy the selection using commands from the Edit menu or their

keyboard equivalents. Cut or copied selections can be pasted into

another place in the document, into another window (such as the Find or

Change window), or into another document altogether.

You can find and change text using the Find and Change commands in the

Search menu. These commands search for a specified string starting at

the current insertion point. If the string is found, it*s either
selected and displayed or replaced. If not, a box is displayed to

notify you that the string wasn’t found. When you choose Find, the

currently selected string is used as the default string to find. You
can close the Find or Change boxes by choosing Hide Find or Hide Change

from the Search menu.

Tabs and Alignment

The Editor has several features that help organize programs visually.

Tab stops allow you to align columns of text at regular intervals

across the page; the Set Tabs command in the Format menu lets you set

the distance between tab stops.

The Auto Indent command in the Format menu lets you turn Auto Indent on

and off. If Auto Indent is on, the insertion point Is automatically
lined up with the leftmost edge of the previous line each time you
press Return. To back the cursor up to the left edge of the screen,

use the Backspace key. If Auto Indent is off, the insertion point is

placed at the left margin.

The Align command in the Edit menu aligns the left margins of all the

lines in a selected block of text. The Move Left and Move Right
commands, also in the Edit menu, move all the lines in a selected block
of text one space left or right. If a proportional font is selected,

the width of one space is usually quite small. The easiest way to move

a block of text several spaces is to press the keyboard equivalent
several times in succession.

22 Macintosh 68000 Development System

Document Format

Text created by the Editor is saved as a document file. A document
file is a text-only file that can be used by other applications that
use text -only files. For example, the Text Only option of MacWrite
(see Save As in the MacWrite manual) creates text-only files that can
be used by the Editor.

A text-only file is a stream of ASCII characters. It contains Tab
characters and Return characters, but no other formatting information.

Printing Documents

There are two ways to print documents:

- From the Editor, choose the Print command in the File menu. This
prints the current document and returns to the Editor.

- From the Finder, select the documents you wish to print, then
choose Print from the File menu. This prints the selected files
and returns to the Finder.

Printing from the Editor uses the current printing format. To set the
printing format, choose Printing Format in the Editor’s File menu.
After choosing this command, you are presented with a dialog box that
lets you specify the size of paper you are using. Printing from the
Finder displays the Printing Format box before the first document is
printed. The settings you choose hold for all subsequent documents.

A second dialog box, displayed for each document printed, lets you
choose the print quality (High, Standard, or Draft), which pages to
print, how many copies to print, and whether the paper is continuous or
separate sheets.

These two boxes are standard printing dialog boxes, and are discussed
in some detail in the other manuals (for example, MacWrite).

Chapter 3

The Assembler

About This Chapter 25

About This Chapter

This chapter describes the Macintosh Assembler. The Assembler

translates one or more text files into files that contain relocatable
code and symbol table information. Once all the portions of a program
have been assembled, they can be linked together into an application.

Even an application generated from a single source file must be linked

before it becomes an executable application.

The first part of this chapter describes the Assembler and how to use

it. The second part of the chapter tells the syntax of statements

accepted by the Assembler. The next part of the chapter is a reference

for commands to the Assembler.

This chapter doesn’t give extensive examples. An appendix contains a

program listing that contains a variety of Assembler statements. Refer

to this listing for examples of usage.

Files Required

If you wish to move the Assembler to a different disk, you must move
the file Asm to that disk. If you wish to transfer from the Assembler

to other applications, those applications must also be on the disk.

File Naming Conventions

Files used by the Assembler can be divided into two groups : those used

as input to the Assembler, and those produced by the Assembler. The

first two file extensions designate Assembler control files. .D files,

described below, are also Assembler input files.

.Asm is the recommended extension for assembly-language source

programs. Text files of any name can be assembled.

.Files is the extension for a file that contains a list of .Asm files

to be separately assembled.

The next file extension identifies files created by the PackSyms

application.

.D is the recommended extension for symbol files. They may

be text files containing lists of equates, or packed symbol

files; the assembler knows how to handle both. Refer to the

section on packed symbol files at the end of this chapter.

The final four file extensions are given by the Assembler to the files

it creates.

.Rel is the extension automatically assigned to every relocatable

module generated by the Assembler.

26 Macintosh 68000 Development System

• Lst designates listing files produced by the Assembler.

•Err designates a file that contains the errors encountered during
assembly of a program.

•Sym designates a file of symbol table information. Refer to the
.DUMP directive, below.

Invoking the Assembler

There are several ways to invoke the Assembler:

- From the Finder, select from one to fpur files then open the
application named Asm. The selected files are automatically
assembled, then control returns to the Finder.

- Choose Asm from the Transfer menu of another application.

- Call Asm from an Executive control file, as described in
Chapter 5.

Using the Assembler

The following sections contain an overview of the operation and
features of the Assembler. They* re intended to provide enough
information that you can use the Assembler menus easily once you've
read this chapter.

Assembler Source Files

Assembler source files are text-only files, as created by the Editor.
They should be named with the extension .Asm. A source file that
contains a list of .Asm files to be separately assembled should be
named with the extension .Files.

A text-only source file consists of a series of lines of text,
separated by Return characters. These lines may be blank lines,
comment lines, assembly-language instructions, or instructions that
control the Assembler (assembler directives). The exact format of
source file lines is described in later sections.

Using the Assembler 27

Selecting Listing Options

There are two ways to select listing options for your program: by

choosing commands in the Options menu, or by placing printing control
directives into your source file. The printing control directives,

described later in this chapter, override commands given from the

Options menu.

Before you actually assemble your program, you should select the type

of program listing you want, if any. From the Options menu, you can

choose No Listing, List to File, or List to Display.

In the listings generated by the Assembler, addresses that aren't
resolved until linking are displayed as lowercase x's. Certain

instructions are marked by capital letters enclosed in parentheses.

The following letters are used:

P PC relative instruction
R Relocatable instruction
X Instruction will be modified if it crosses a

segment boundary. The opcode displayed in the listing

is not necessarily the final opcode.

This menu also contains two options that let you choose what will be

placed in the .Rel file produced by the Assembler. If Normal Output is

chosen, the minimum amount of information is written to the .Rel file.

If Verbose Output is chosen, information is written to the .Rel file

that allows a Linker listing to be generated. If Verbose Output is

turned on, the .Rel file is larger, the assembly takes longer, and

linking takes longer.

Selecting a Source File

If the Assembler is selected from the Editor's Transfer menu while a

document having the extension .Asm is the current window, that document

is automatically assembled. When you do this, No Listing and Normal

Output are always selected.

Otherwise, choose Select File from the File menu; then select the

source file from the dialog box. If the list of possible source files

is disturbingly long, you can select Filter by Time in the File menu.

When Filter by Time is on, only files that have been modified since

last assembled are displayed in the dialog box.

As the assembly proceeds, the name of the current source file is

displayed in a box on the screen. Included files are displayed in

parentheses; the number of parentheses indicates the level of nesting.

Long file names may not fit entirely into the box.

28 Macintosh 68000 Development System

Types of Source Files

There are two types of files that can be assembled: .Asm files and
•Files files. .Asm files contain lines of source and the names of
other files to be included into that assembly. When you assemble a
•Asm file, one .Rel file is produced. Here's a typical .Asm file:

MDS2:MyProgram.Asm
; File MyProgram . Asm

XDEF Start

ES

I NCLUDE
INCLUDE

MacTraps.D
NyEquates.D

; This is where the main body of code goes.

END

EE

reference for Linker

use System Traps
use my Equates

Start of code for Linker

End of code for Assembler

Is

•Files files contain names of separate assemblies to be performed.
When you assemble a .Files file, multiple .Rel files are produced. For
example, if you change a value in a .D file that’s used by three
different library modules, you can reassemble all three modules using a
file such as the following:

In Search of Source Files

The Assembler has a set of rules that determine where it looks for
files to be assembled. These rules make use of the initial volume (the
volume from which the Assembler was run) and the default volume (the
volume that contains the file being assembled). They are as follows:

- If the file name doesn’t include a volume name, the Assembler
tries to open the file first on the default volume, and then on
the initial volume. If the file is not found, an error is

reported.

- If the file name includes a volume name, the Assembler tries to

open the file first on the specified volume, next on the default
volume, and finally on the initial volume. If the file is not
found, an error is reported.

Using the Assembler 29

- In the two steps above, if the file name has no extension, the

Assembler tries to open filename • Asm before searching the next
volume

.

What the Assembler Produces

The assembled product is placed in a .Rel file. This file contains
relocatable code and symbol table information and must be linked by the

Linker before an executable application is produced.

If List to File is chosen from the Options menu, an assembled listing
is placed in a .Lst file. If List to Display is chosen, the assembled
listing is instead displayed on the screen. To temporarily stop the

listing, hold down the Command key while you type an S. The cursor
blinks while listing is suspended. To resume the listing, type
Command-S again.

To stop the assembly permanently, click on the Stop button or hold down
the Command key and type a period (.)•

Errors encountered during assembly are written to a .Err file.

Assembler errors are explained in an appendix.

Assembler Syntax

An Assembler source file consists of a series of lines of text, as

entered in the Editor. These lines may be blank lines, comment lines,
or instruction lines.

Instruction lines contain some or all of the following: label,

instruction (assembly-language or assembler directive), and comment

fields. The following are valid instruction lines:

=1 1
= E MDS2:Sample Instructions

Lobe 1

Lone_l abe

1

MOUE #0,D0
;
Comments are nice. ^

1 ndented_too

:

BSR Labe 1
j Indented labels haoe colons.

AND D1,D2
; Not all 1 ines haoe labels. . . jljiji

DC . B 'Hello'
@1 RTS

;
Some haoe local labels

04: BSR @1
j
which may even be indented! ^&MMMm

The Assembler does not distinguish between uppercase and lowercase,

except within strings.

30 Macintosh 68000 Development System

Labels

If a label does not begin in column 1, it must be followed by a colon.
The first character in a label must be a letter, a period (.), or an
underscore (_). Subsequent characters must be letters, numbers,
periods, underscores, or dollar signs ($). Labels that are the same as
directives or instructions are not allowed.

The Assembler also supports local labels. A local label consists of an
"at" symbol (@) followed by a decimal digit. If a local label is

indented, it must be followed by a colon.

The scope of a local label extends, in both directions, to the nearest
non-local label. Any single local label can be used repeatedly within
a file, but not within the scope of another instance of the same local
label.

Current Program Location

The current program location is indicated by an asterisk (*). For
example

:

BlkLen EQU BlkEnd-* ; Get length of following block

Instructions

An instruction can be a 68000 instruction, an assembler directive, or a
macro instruction. 68000 instructions are described in the 68000
Reference Manual. Assembler directives and macro instructions are
explained below. If the instruction requires an operand, at least one
space or tab separates the instruction and the operand.

Comments

Except when it appears within a string (see below), a semicolon marks
the beginning of a comment. The semicolon and the remainder of the
line are ignored by the Assembler. In addition, any line with an
asterisk (*) in column 1 is treated as a comment.

68000 Instruction Syntax

The 68000 instructions and addressing modes are described in the 68000
Reference Manual. The processor registers are named as follows:

D0. .D7

A0..A7
A7 or SP

SR
CCR

Data Registers 0 through 7

Address Registers 0 through 7

Stack Pointer
Status Register
Condition Code Register

Assembler Syntax 31

PC Program Counter

A group of address and data registers, used by the MOVEM command, is
represented like this:

Syntax Means

D0-D1/A3 D0, Dl, and A3
D2-D4/A1-A2/D7 D2 , D3 , D4, A1

,
A2

, and D7

Any combination of individual data and address registers and ranges of
data and address registers can be used, in any order.

Addressing Modes

The syntax of the addressing modes is shown below. The notation An
refers to address register A0 through A7 ; Dn refers to data register D0
through D7 . Expressions, designated in the examples as Expr, are
explained in the next section.

Syntax Addressing mode

An or Dn Register Direct
(An) Register Indirect
(An)+ Postincrement Register Indirect
“(An) Predecrement Register Indirect
Expr (An) Register Indirect with Offset
Expr(An,An) Indexed Register Indirect with Offset
Expr(An

, Dn) Indexed Register Indirect with Offset
Expr Absolute or Relative
Expr (PC) Relative with Offset
Expr(PC, An) Relative with Index and Offset
Expr (PC , Dn) Relative with Index and Offset
Expr(Dn) Relative with Index and Offset (see comment)
//Expr Immediate

Expr(Dn) is actually assembled as

Expr-PC (PC,Dn)

Both the sources and destinations of 68000 instructions use these
addressing modes. The 68000 Reference Manual describes which
addressing modes can be used with each instruction. Expr(Dn) can be
used wherever Expr(PC,Dn) is allowed.

32 Macintosh 68000 Development System

Variants on 68000 Instructions

Many 68000 instructions can be performed on operands of different

sizes: byte, word, and long word. The 68000 Reference Manual lists

the mnemonics for the 68000 instructions. To specify the length of the

instruction, add the following extensions to the mnemonics:

•B Operands are one byte long

•W Operands are one word long (2 bytes)
•L Operands are long words (4 bytes)

For example

:

MOVE • L Test , A0 ; Move long word to A0

If you don’t use a size extension, a default size is used (depending on

the instruction). .B, .W, and .L are also used by the data allocation
assembler directives described later in the chapter.

Branch instructions have two forms: short and long. By default, the

Assembler uses the long form. To specify a short branch, use the form:

Bcc.S Short branch

Jump instructions have two forms: word and long word. By default, the

Assembler uses the word form. To specify a long jump, use the form:

JMP . L Long j ump

Broad jumps are not allowed.

You can also specify the length of the index register in the indexed
addressing modes. By default, the low word of the register is used as

an index. For example, to specify the length in relative with index

mode, use one of the following forms:

Expr(PC ,Dn.W)

Expr(PC,Dn.L)

Note: The lengths that are allowed with particular instructions varies

from instruction to instruction.

Code Optimization

Some code alteration or optimization is performed by the Assembler.
ADD and SUB are changed to ADDQ and SUBQ, respectively, if the source

operands are immediate (#) and within the range 1-8.

The following table shows how the Assembler resolves jumps and branches
to labels in the same segment and to labels in another segment.

Assembler Syntax 33

Instruction Same segment Different segment

JMP Label
JSR Label
BRA Label
BRA. S Label
BSR Label
BSR.S Label
Bcc Label
Bcc.S Label

JMP of f set (PC)
JSR off set(PC)
JMP off set (PC)
BRA. S of fset(PC)
JSR offset(PC)
BSR.S of fset(PC)
Bcc offset(PC)
Bcc.S off set (PC)

JMP off set(A5)
JSR off set(A5)
JMP of f set(A5)

error
JSR offset(A5)

error
error
error

When the destination is in another segment, the operation is performed
as a positive offest to A5 (the location of the destinations jump
table entry).

Expressions

Addressing modes and assembler directives often use arithmetic and
logical expressions. Numbers and strings, and symbols that represent
numbers, strings, and relocatable addresses, can all be used in
expressions.

Expressions are evaluated as 32-bit signed integers.

Numbers

Four types of numbers can be used in expressions: hexadecimal,
decimal, octal, and binary. Here are examples:

$3F0

2001
~765

%1 1010011

Hexadecimal numbers are preceded by a $

Decimal numbers are the default
Octal numbers are preceded by a

A

Binary numbers are preceded by a %

Strings

A string is one or more ASCII characters enclosed in single quotes. To
put a single quote in a string, use two consecutive single quotes. The
exact format of a string that is allocated in memory is defined by the
STRING__FORMAT directive. Refer to the STRING__FORMAT section for more
details. Here are some sample strings:

1HELLO

*

’don 1

*

t

1

34 Macintosh 68000 Development System

Symbols

A symbol is a name for a string, number, relocatable address, or macro.

Strings and numbers are assigned to symbols by EQU and SET directives.
Symbols are relocatable if they are created as labels, or if equated or

set to labels. Macro symbols are set by macro definition statements.

The first character in a symbol must be a letter (A-Z, a-z), a period

(.), or an underscore (_)• Subsequent characters may be letters,

numbers (0-9), periods, underscores, and dollar signs ($).

All characters in a symbol are significant.

Operations

An operation is an action taken on one or more values. There are

arithmetic, shift, and logical operations. They are:

Type Operation Operator Comment

Arithmetic Addition +

Subtraction -

Multiplication *

Division / Integer result

Negation -

Shift Shift Right » Zeros shifted in

Shift Left « Zeros shifted in

Logical And &

Or i

Only addition and subtraction can be used on relocatable values.

Precedence

Multiple operators within an expression are evaluated in this order:

1. Operations within parentheses (innermost first)

2. Negation

3. Shift operations

4. Logical operations

5. Multiplication and division

6. Addition and subtraction

Operators of the same precedence in an expression are evaluated from

left to right.

Assembler Directives 35

Assembler Directives

The following directives are described in this section:

Assembly Control Directives

INCLUDE Include source file
STRING_FORMAT Set string format
IF. .ELSE. .END IF Conditional assembly
MACRO Define a macro
•MACRO Define a Lisa-style macro
END End of source
•DUMP Create a .Sym file

Symbol Definition Directives

EQU
SET
REG
.TRAP

Assign a permanent value to a name
Assign a temporary value to a name
Assign a register list to a name
Assign a name to a trap number

Data Allocation Directives

DC

DS
DCB
.ALIGN

Define constant
Define storage
Define constant block
Align to word or long word boundary

Linker Control Directives

XDEF
XREF
RESOURCE

Defined externally
Referenced externally
Begin resource type definition

Printing Control Directives

•NoList
.Lis tToFile

.ListToDisp

.Verbose

.NoVerbose

Turn off listing
Turn on listing to file
Turn on listing to the display
Write information for Linker listing
Turn off information for Linker listing

The printing control directives are self-explanatory. Refer to the
Selecting Listing Options section, earlier in the chapter, for more
details on normal and verbose assembly.

In the descriptions below, the terms label, value, expression, and

comment are used as defined earlier in the chapter. [Optional fields
are enclosed in square brackets.]

36 Macintosh 68000 Development System

Assembly Control Directives

INCLUDE - Include Source File

Format: [label] INCLUDE Filename [comment]

INCLUDE is used to combine multiple source files in a single assembly.
INCLUDE causes Filename or Filename. Asm to be used as the source file
instead of the current file. When END is encountered in the file,
assembly returns to the file in which the INCLUDE was used. Filename
may contain a volume name. Here is a sample file that uses INCLUDE:

;
File MyProgram . Asm

MDS2:MyProgram.flsm

£
XDEF Start

; reference for Linker
(Pi

INCLUDE MacTraps.D
;
use System Traps

1 NCLUDE MyEquates .

D

; use my Equates

Start
; Start of code for Linker

; This is where the main body of code goes.

END
; End of code for Assembler <>

ou inwmmmmmrnma

INCLUDE directives can be nested up to five levels deep. When an
assembly is taking place, the name of the current input file is
displayed. Included files are displayed in parentheses; the number of
parentheses reflects the number of levels of nesting.

STRING FORMAT - Set String Format

Format: [label] STRING__FORMAT value

This directive determines the format of the strings that the Assembler
generates.

Strings used as arguments to PEA or LEA instructions are allocated just
after the code. If STRING_FORMAT is not used in the program, these
strings are preceded by a length byte. Otherwise, bit 0 of the last
STRING__FORMAT in the program determines the format of these strings.
Use these values

:

STRING_FORMAT = 0 Text followed by a 0 byte
STRING_FORMAT = 1 Text preceded by a length byte

Strings used as arguments to DC.B, DC, DC.W, and DC.L are allocated at
the point at which they are defined. By default, they are written
without trailing 0 bytes or leading length bytes. Bit 1 of
STRING__FORMAT is used to determine the format of these strings. Use
these values:

Assembler Directives 37

STRING_FORMAT = 0 Text with no length or trailing 0 byte
STRING_FORMAT = 2 Text preceded by a length byte

With the DC.B directive, no padding of strings ever takes place. With
the DC (word), DC.W, and DC.L directives, zeros are placed before the

string to align the string to the nearest word boundary and at the end
to fill to the nearest word or long word boundary.

The format of both types of strings is set by each STRING_FORMAT
statement used. For example, the statement

STRING FORMAT = 3

causes all strings to be preceded by a length byte. Here are some

examples of the use of strings. The first two do not cause special
string memory to be allocated; the next two do.

MOVE #
* JUNK 1

, D0 ; Move ASCII *JUNK* into D0

SUB //*A*-*a*,D0 ; Use , A , - , a* as a constant
PEA *NewString* ; Push address of *NewString*

; *NewString* placed at end of code;

; form determined by STRING_FORMAT
DC.L *Try Again* ; Place string data in code

; using current STRING_FORMAT

IF. .ELSE. .ENDIF - Conditional Assembly

Format

:

[label] IF condition [comment]

[ELSE comment

]

ENDIF [comment]

IF. .ELSE. .ENDIF are used to include or exclude sections of code at

assembly time based on the value of a condition.

IF specifies to the Assembler that the subsequent block of code should
be assembled if and only if the condition following IF is true. The

block of code is terminated by an ELSE (if there is one), or an ENDIF.
If ELSE is used, it specifies to the Assembler that the subsequent
block of code should be assembled if and only if the condition
following IF is false. An ELSE block is terminated ENDIF.

A condition is true if it evaluates to a nonzero value; otherwise it is
false. Two types of conditions can be used: expressions or the

relationship between two expressions. Expressions cannot be
relocatable. Non-string expressions can be compared using >, <, >=

,

<= , =, and <>. Strings can be tested for equality using = and <>.

38 Macintosh 68000 Development System

Conditionals can be nested.

MACRO - Macintosh-Style Macros

When your source is assembled, each macro call is replaced by the text
(usually a list of instructions) defined as that macro. The parameters
used in the macro call are placed, character-for-character , at
designated positions in the list of instructions. All characters
except Return and comma (,) can be passed to a macro in the parameter
list •

Macros can be nested up to eight levels deep.

Here is the format of a Macintosh-style macro definition:

Format: MACRO name [argument(s)]
=

macro body

A macro definition is delimited by the MACRO directive and a vertical
bar (|). It consists of a macro name, an optional list of arguments,
followed by ,,*H

, and a macro body that makes use of those arguments.

The macro body is simply text. This text is exactly like normal source
text, but with one exception: Arguments, which are to be replaced by
parameters specified in the macro call, are enclosed in braces ({}).

Each argument has a unique symbol within the macro. Multiple arguments
are separated by commas, with no intervening spaces.

For example

:

MACRO MODS R1,R2
DIVS {R1},{R2}
SWAP {R2

}

The macro MODS has two arguments, R1 and R2 . It can be called, for
example, with the macro call:

MODS D1,D2

When the program is assembled, this call causes the following
instructions to be placed in the code:

DIVS D1,D2
SWAP D2

Macro calls are not necessarily entire instructions; they can be used
anywhere. The following example shows a macro that is used as part of
an instruction:

MACRO SegRef LabelName = {LabelName } (A5)

|

Assembler Directives 39

SegRef can be used like this:

LEA SegRef Label, A0

It causes the following instruction to be placed in the code:

LEA Label(A5),A0

It is possible for a macro to use just part of a string received as an

argument. A partial argument is designated by following the argument’s
name with |N:M where N is the position in the string of the first

character to be used (0 is the first position), and M is the number of

characters to use. For example, if you define

MACRO LAST2 STR = DC.B 1

{ STR | 2 : 2

}

f

|

Then using the macro

LAST2 ABCD

is equivalent to using the instruction

DC.B ’CD 1

.MACRO .ENDM - Lisa-Style Macros

Format: .MACRO name [argument(s)] [comment]
macro body

•ENDM [comment]

A Lisa-style macro is delimited by the .MACRO and .ENDM directives. It

consists of a macro name and a macro body that contains optional
arguments. When the Assembler encounters the macro name, it

substitutes the macro body for the macro name in the assembly text.
Wherever an argument, %n, occurs in the macro body (n is a digit from 1

through 9), the text of the nth parameter is substituted. Null strings
are substituted for omitted parameters.

Here is a sample Lisa-style macro:

.MACRO Help
MOVE %1,D0
ADD D0,%2

.ENDM

When this macro is called by the instruction

Help Me, Rhonda

The following text is assembled:

; get first parameter

; and add it to second parameter

40 Macintosh 68000 Development System

MOVE Me ,D0

ADD D0, Rhonda

END - End of Source

Format: [label] END

The end of a source file may optionally be indicated by an END
directive. When END is used, all subsequent lines in the file are
ignored by the Assembler. If END is omitted, the physical end of file
indicates the end of a source file.

. DUMP - Make .Sym File

Format: [label] .DUMP Filename

The .DUMP directive instructs the Assembler to create a symbol table
(.Sym) file and to place it in the file named Filename . Sym. .Sym files
are used by PackSyms to create packed symbol files, as explained at the
end of the chapter.

Symbol Definition Directives

EQU - Assign Permanent Value

Format: symbol EQU expression [comments]

This directive assigns an expression to the specified symbol. The

symbol cannot be redefined later in the program. The expression can be
any valid operand in any addressing mode. It may contain undefined
symbols, register references, and so on. For example,

LookTable2 EQU Table2(A0)

is a legal form, as long as LookTable is always used in the proper
context. The expression can’t contain more than one undefined
identifier. For example, although

A EQU B

is a valid statement,

A EQU B-C

is not

Assembler Directives 41

SET - Assign Temporary Value

Format: symbol SET expression [comments]

Like EQU, this directive assigns a value to the specified symbol.
However, the symbol can later be redefined by other SET directives.
The expression is the same as an expression used with EQU, above.

REG ~ Assign Register List

Format: symbol REG register list [comments]

This directive assigns a register list to the specified symbol. The
register list represented by the symbol can then be used in the MOVEM
command. The syntax of a register list is defined in the Assembler
Syntax section of this chapter.

.TRAP - Assign Name to Trap Number

Format: [label] .TRAP name $Axxx

This directive assigns a name to the specified trap number so that the
name can be subsequently used as a 68000 instruction. The name must be
a valid symbol, and the trap number must have a corresponding entry in

the trap dispatch table. This directive is primarily used in the

system trap files.

Data Allocation Directives

All .Rel files created by the Assembler have two parts: the code area
and the data area. Everything in a source file that produces a value
is placed into the code area. Code areas are then loaded into the

proper code segment by the Linker. Data areas defined by DS directives
are combined into a global block. This block is located by the Linker
downward from -$100(A5).

This a good way to create permanent storage for handles.

The starting address of the global block can be set using the /GLOBAL
Linker directive.

DC - Define Constant

Format

:

[label] DC . B value(s) [comment]

[label] DC value(s) [comment

]

[label] DC.W value(s) [comment]
[label] DC.L value (s

)

[comment]

42 Macintosh 68000 Development System

The DC directives place data in the code area of the program. These
four forms of the DC directive generate data that is byte aligned
(DC.B), word aligned (DC or DC.W), and long word aligned (DC.L).

A value is an expression that evaluates to the data to be stored.
Multiple values are separated by commas.

With the DC.B directive, no padding of strings ever takes place. With
the DC (word), DC.W, and DC.L directives, zeros are placed before the
string to align the string on a word boundary and at the end to fill to
the nearest word or long word boundary. The format of the string is
determined by the STRING_FORMAT directive.

PS - Define Storage

Format

:

[label] DS.B length [comment

]

[label] DS length [comment

]

[label] DS.W length [comment

]

[label] DS.L length [comment]

The DS directive is used to reserve memory locations. The length is an
expression specifying the number of bytes, words, or long words to be
reserved. The expression may not contain values that are not yet
defined

•

These memory locations are always located relative to A5. When you
reference a label defined using DS, you must explicitly reference A5.
For example

:

DS.L MenuHandle
; reserve handle space

MOVE.L (SP)+, MenuHandle (A5)
; get handle from stack

Word alignment is enforced for DS (word), DS.W, and DS.L. Labels
always refer to the first address in the defined area after alignment.

DCB - Define Constant Block

Format

:

[label]

[label]
[label]

[label]

DCB.B length, value
DCB length,value
DCB.W length,value
DCB.L length,value

[comment]
[comment

]

[comment

]

[comment]

The DCB directive is used to reserve blocks of memory, at the current
position in the program, that are to be initialized to a certain value
Length specifies the number of bytes (DCB.B), words (DCB or DCB.W), or
long words (DCB.L) in the block. The expression specifying the length
may not contain forward references. Value specifies the initial value
of the storage units in the block; it may contain forward references.

Word alignment is enforced for DCB, DCB.W, and DCB.L. Labels always
refer to the first address in the defined area after alignment.

Assembler Directives 43

. ALIGN - Align to Word or Long Word Boundary

Format: [label] .ALIGN value [comment]

This directive causes the proper number of bytes to be reserved such
that the next statement is aligned on a byte, word, or long word.

The value is an expression that determines the alignment, as shown
below:

value = 1

value = 2

value = 4

Align to byte boundary (No-op)
Align to word boundary
Align to long word boundary

Linker Control Directives

The XDEF and XREF directives should be used to specify all routines
that are either used or defined externally. These directives allow
independently assembled modules to share routines with one another.

XDEF - External Definition

Format: XDEF symbol(s) [comment]

XDEF tells the Assembler that the specified symbols, defined in the

current module, are used externally. The Assembler then generates
information that can be used by the Linker to share these symbols with
other code modules. Modules that wish to use the symbol must use XREF
to gain access to it. Multiple symbols are separated by commas.

The label used as the starting label in a linker control file must
always be referenced using XDEF.

Only addresses that are referenced by XDEF are placed in the .Map file.

Thus you should use XDEF for each routine or label that you wish to be
symbolically displayed by MacDB.

XREF - External Reference

Format: XREF symbol(s) [comment]

XREF tells the Assembler that the specified symbols, used in the

current module, are defined in other modules. A code module must use
XDEF for each routine or label used by other modules. The Assembler
then generates information that can be used by the Linker to connect
the real symbols to the module. Multiple symbols are separated by
commas

•

If you use XREF with a symbol that is also defined within the module,
the Assembler gives you a warning and allows the XREF.

44 Macintosh 68000 Development System

RESOURCE - Begin Resource Type Definition

Format: RESOURCE type ID [name [attr]]

The RESOURCE directive is explained in full detail in the chapter on
the Linker* This directive should not be used in the main portion of
your application; it should only be used in files that are linked after
the /RESOURCES Linker directive.

The type is an expression that should evaluate to a four-character
string. It can be one of the standard resource types or a new type
that you are defining. The resource ID is a nonrelocatable integer
expression. The specified integer must be unique within the specified
type. The optional name is a string that must be unique within that
resource type. The attr field is a nonrelocatable integer that is used
to specify the value of the resource* s attribute byte.

Note that the parameters are not separated by commas.

Creating Packed Symbol Files

The PackSyms program lets you compress the symbols used by your program
into a packed form. This packed symbol file can then be used as input
to the Assembler. Using packed symbol files saves disk space and
memory space, and makes assembly faster.

The first step in generating a packed symbol file is to use the .DUMP
assembler directive to place the application * s symbols in a • Syra file.
Here is a sample file that creates a .Sym file:

=M= ==—^ MDS2:MyEquates.Rsm — 1

;
File MyEquates . Asm

1 NCLUDE SysEqu .

D

o

; Vou can INCLUDE packed files
1 NCLUDE Too 1 Equ .

D

; as well as text files to create jjjiji

1 NCLUDE MyEquates . Txt ; one big packed symbol file.
.DUMP MyEquates

; Now dump to MyEquates . Sym

.

END
; End of source. liiliL

o

When assembled, this file generates the file MyEquates . Sym. .Sym files
are text files that can be edited using the Editor.

Once you have created a .Sym file, you are ready to run PackSyms. Its
menu bar contains three menus: Transfer, File, and Options. First
choose the display option you want from the Options menu. Next, choose
Select Input from the File menu, and choose the .Sym file to be added
to the packed symbol file. Repeat this step for each .Sym file to be
added. When all desired .Sym files have been added, choose Select

Creating Packed Symbol Files 45

Output from the File menu, and enter the name of the file to contain
the packed symbol information. This file should have the extension .D.

The new .D file can then be used in an Assembler input file. For

example

:

MDS2:Myflpplication.flsm

File MyAppI i cat ion. Asm

I NCLUDE
I NCLUDE
I NCLUDE
END

MyEquates .

D

Module 1 .Asm
Modu I e2. Asm

;
get packed symbols

; and code

;
end of assembly

M.
0
a

About Packed Symbol Files

The Assembler identifies packed symbol files by type and not by
extension. For example, you can use a text file name MyEquates.

D

during program development and replace it with a packed symbol file
when the symbols stop changing. This replacement is entirely
transparent to the .Asm file, it speeds up assembly, and it frees up
disk space.

Chapter 4

The Linker

About This Chapter 49

About This Chapter

This chapter describes the Linker, the program that takes .Rel files
produced by the Assembler and connects them into an application.

The first part of this chapter describes the Linker. The rest of the
chapter describes the commands accepted by the Linker.

Files Required

If you wish to move the Linker to a different disk, you must move the
file named Link. If you wish to transfer from the Linker to the
Editor, the Assembler, the Executive, or RMaker

, those applications
must also be on the disk.

File Naming Conventions

.Link is the required extension for Linker control files. Linker
control files are text -only files, as created by the Editor.

•Map is the symbol table file, used primarily by MacDB. If
a Linker listing was requested, it is also in this file.

•LErr indicates a file that contains the errors encountered during
the linking process.

The executable object file (an application) formed by the Linker has no
extension.

The Structure of a Macintosh Application

This section contains information from the Inside Macintosh chapter
with the same name. Please refer to that chapter for more details.

Macintosh files have two forks: a resource fork and a data fork. The
resource fork contains a number of resources; the data fork may contain
anything. The simplest application created by the Linker has two
resources in the resource fork, and nothing in the data fork. The
first resource is the ’CODE * resource with ID 0. By definition, this
resource contains the jump table and information about the
application’s use of parameter and global space. The second resource
is the ’CODE’ resource with ID 1 . It contains the application’s first
code segment.

More complicated applications can be created using Linker commands,
described below. With these commands, you can add code segments and
other resources to the resource fork of the file, or you can place
information in the data fork of the file. You can also set the
directory information that specifies the file’s type and creator.

50 Macintosh 68000 Development System

Invoking the Linker

There are several ways to invoke the Linker

:

- From the Finder, select and open the application named Link.

- Choose Link from the Transfer option of another application.

- Call Link from an Executive control file, as described in

Chapter 5.

The Linker Control File

The Linker is controlled by a Linker control file with the .Link

extension. This file specifies the names of the files to be linked
together, how the program should be segmented, listing options, and

various parameters of the .Map file.

Each command in a Linker control file must be on a separate line.

Blank lines in the file are ignored.

Linker Commands

The following sections describe the commands that can be used in Linker

control files.

filename .Re

1

filename

! label

<

[

]

(

)

$

/Verbose

The next file to link is the file named filename .Rel

.

The next file to link is the file named filename .Rel

.

Make label the starting location for the program
(may only be used once). If label is omitted, the

program is assumed to begin with location 0 of the

first file. You must use XDEF to make label
external

•

Start a new segment.

Turn on code listing to .Map file.

Turn off code listing to .Map file.

Turn on listing of local labels to .Map file.

Turn off listing of local labels to .Map file.

End of Linker control file.

Turn on verbose linker output. This option turns

on listing of linked code.

Linker Commands 51

/NoVerbose

/UndefOK

/NoUnde

f

/Type

/Bundle

/Globals value

/Output filename

/Resources

/Data

Turn off verbose linker output.

Give warnings only for undefined symbols.

Give fatal errors for undefined symbols.

Set type and creator bytes in file directory.

Set bundle bit in file directory.

Set the start of the global space to value(A5).

Specify the name of the output file.

Begin resource portion of application.

Begin data portion of application.

Setting the File's Type and Creator

Each file's directory contains eight bytes that specify the file's type
('APPL', 'TEXT', and so on) and creator ('MPNT', 'EDIT', and so on),
and a bit that specifies to the Finder that the file uses the Bundle
resource (type 'BNDL') described in Inside Macintosh . An application
must have the type 'APPL' if it is to be launched by the Finder when
you open it. An application's creator bytes should be the signature
for that application. The creator bytes for a file that isn't an

application should be the signature of the application to be launched
when you open that file.

For example, the Editor has the type 'APPL' and the creator 'EDIT', and
documents created by the Editor have the type 'TEXT' and the creator
'EDIT'. When you open the Editor or a document created by the Editor,
the Editor is launched.

(By the Way

)

Application signature bytes, and type bytes for other
files, must be assigned (or approved) by Apple Technical
Support

.

To use the /Type command, follow the command by two four-byte strings,
as in

/TYPE 'APPL' 'MYAP*

If the creator string is omitted, it is set to 0. If this command is

not used, the type is set to 'APPL'. When an error occurs during
linking, the file is given the creator 'BADF'. This prevents it from
being launched by the Finder. Type strings are case sensitive.

To set the bundle bit in the file's directory entry, place the /Bundle
command in your Linker source.

52 Macintosh 68000 Development System

Setting the Global Storage Area

Data storage allocated by the DS assembler directive is normally placed
downward from -$100(A5). QuickDraw globals are placed in the area
immediately below A5. The /Globals directive lets you change the
address of the global storage area. For example, to place data at
-$200(A5) instead, use the directive:

/Globals -$200

The value used to specify the address must be negative.

Specifying the Output File

The /Output directive specifies to the Linker the name of the file in
which it places its output. This file can be an application file, a

resource file, or some other type of file. Note that /Output specifies
the name of a single output file, regardless of its position in the
Linker control file.

An example of a Linker control file is given below. A more complex
example is given later in the chapter.

MDS2:NemProgram.Link

; File NewProgram .Link

! Start

/Output TestProgram

[

MyProgram
Parser
Dispatcher

; starting location of the appl i cat ion

j output file is TestProgram

; listing on (assemble w /verbose on)

; first file is MyProgram . Re I

;
second file is Parser.Rel

;
third file is D i spatcher . Re I

; done I inking. .

.

tel {iilllllllj

k>l

S'a

Adding Resources and Data to the Code

The Linker provides directives that allow you to add resources to the
resource fork and to place data in the data fork of the file.
Alternately, you can use the Resource Compiler to generate the resource
portion of your application, as explained in the chapter on RMaker.

The code, resource, and data portions of an application must be given
to the Linker separately, and in that order. The beginning of the
resource portion is indicated by the /Resources directive, and the

Adding Resources and Data to the Code 53

beginning of the data portion is indicated by the /Data directive.
Here is a sample Linker control file that uses these directives to

place some resources after the code in the resource fork of the file

and to place data in the data fork of the file

:

;
Fi le Big. Link

' MDS2:Bi 9 Link==
H

! Start
]

; starting location of the appl i cat ion

; 1 i sting off

CodeModu 1 e

1

CodeModu 1 e2
<

CodeModu 1 e3

/Resources
RsrcModu 1 e

1

RsrcModu 1 e2

/Data
DataModu 1 e

1

;
code modules are linked first

;
this module is a separate segment

;
resource modules are 1 inked next

;
data modules are linked last

$

ouiiBiieieiii

;
done 1 inking

SSSHPi
a
a

All files linked by the Linker must be .Rel files, as generated by the

Assembler or RMaker. Resource .Rel files have a strictly defined
format; data .Rel files can contain anything.

Each resource in an Assembler source file should be initiated with the
RESOURCE assembler directive. The parameters are the resource type,
the resource ID, an optional resource name, and an optional attribute
byte. For example, to begin a menu resource with an ID of 4 and no
name, use the directive

RESOURCE ’MENU* 4

It*s a good idea to use a '.ALIGN 2' directive before the resource to

avoid undesired padding bytes at the beginning of the resource.

External symbols may not be defined in files linked following the
/Resources directive. /Resources should be followed by the data
contained in the resource. In the case of certain resources, such as
'DRVR' resources, the data in the resource is actually code.

An effective way to define resources is to create a macro for each
resource type. For example:

54 Macintosh 68000 Development System

MACRO DEFINEMENU NAME, ID , FLAGS =

.ALIGN 2

RESOURCE 'MENU' {ID}
DC .W {ID} ; Menu ID
DC.W $0 ;Menu width
DC . W $0 ;Menu height
DC.L $0 ;Menu definition procedure
DC . L {FLAGS} ; Enable flags
DC .B

1

{NAME}

MACRO MENUITEM TEXT, ICON .KEY =

DC . B {TEXT}
DC . B {ICON}
DC . B {KEY}
DC . B $0 ;Marking character
DC . B $0 ; Style

Then, when defining a menu, you could use calls such as the following

DEFINEMENU transfer*, Launch_Menu_ID+Edit_ID
, $FFFFFFED

MENUITEM 1 Edit 1

,

, > Y-

0,0
MENUITEM i _ i

» 0,0
MENUITEM ’Asm 1

, 0,0
MENUITEM * Link *

,

0,0
MENUITEM “

> 0,0
MENUITEM ’Exec *

,

0,0

DC.B 0 ;end of items

Refer to Inside Macintosh for the formats of the different types of
resources

.

Chapter 5

The Executive

£

u.

I]

I]

About This Chapter 57

About This Chapter

This chapter describes the Executive, an application that accepts a

text file as input, and uses the commands in the text file to launch
other applications.

Files Required

If you wish to move the Executive to a different disk, you must move
the file named Exec. If you wish to transfer from the Executive to the

Linker, the Editor, the Assembler, or RMaker, those applications must
also be on the disk.

File Naming Conventions

•Job is the required extension for Executive control files. Only
files with this extension can be selected using the Open Job
File option in Exec's File menu.

Invoking the Executive

There are several ways to invoke the Executive:

- From the Finder, choose and open the application named Exec.

- Choose Exec from the Transfer menu of another application.

- Call Exec from an Executive control file.

The Executive Control File

The Executive is controlled by an Executive control file with the .Job

extension. This file specifies the names of applications to be run and

what to do when the applications finish.

An Executive control file consists of a sequence of lines; each line

invokes an application. A line consists of four fields: the

application to be called, a string to be passed to the application as

input (usually a filename), the application to be called if the

original application is successfully completed (usually Exec), and the

application to be called if an error occurs in the original
application. Each field must be separated from the next by exactly one
Tab character.

58 Macintosh 68000 Development System

Here is a sample Executive control file:

Asm Foo. Files Exec Edit
Link Foo. Link Exec Edit

It assembles the files specified in Foo. Files, and, if successful,
links the files specified in Foo. Link. If either the assembly or the
linking fails, the Editor is invoked, and the Exec terminates, but can
be restarted or continued from the Execute menu.

Using the Executive

When you are using the Executive, all applications must be on the
startup volume, which must not be write-protected. In addition, the
volume containing the .Job file is established as the default volume
for files used by the application. Use volume names for files that
aren't on the same volume as the .Job file.

The default name for the Exec file is Exec. Job; it must be on the
startup volume. To use Exec. Job, choose the command Execute Exec. Job
from the Execute menu.

If you give your Exec file another name, you can place it on other
volumes. Exec files must always have the extension .Job. To use a
•Job file, select it using the Open Job File command in the File menu.

If an error occurs while an Exec file is running, a temporary file is
left on the disk. This file allows you to resume the Executive,
presumably after correcting the error. If you choose Resume from the
Execute menu, the Exec file starts at the line following the one in
which the error occurred. If you choose Resume and Re-do Last, the
Exec file starts at the line in which the error occurred.

You can stop an Exec file by typing a period while holding down the
Command key.

Chapter 6

The MacDB Debugger

About This Chapter 61

About This Chapter

This chapter describes MacDB, an application that helps you debug
Macintosh applications. MacDB provides sophisticated debugging
capabilities at the machine-language level. Its features include

- Multiple memory display windows. Memory can be displayed in
multiple windows as characters, words, long words or strings, or

it can be disassembled symbolically. System traps are displayed
symbolically too.

- Versatile memory address display. Addresses can be displayed in

hexadecimal or as symbols , and you can use these symbols in

expressions (for example, you can set the PC to START).

- One or more register display windows. All registers and memory
locations can be changed easily.

- Multiple breakpoints can be set and cleared.

- Instructions can be executed one at a time.

- Memory search for patterns.

- Special trace and break capability for system trap instructions.

- Display and checking of the heap.

- Display of linked lists.

Setting Up MacDB

The use of MacDB requires two Macintoshes (or a Lisa running MacWorks
and a Macintosh) that are connected together: The target machine runs
the program to be debugged, and the debug machine runs MacDB.

If you are using two Macintoshes, connect the two machines together
using the cable supplied with the Development System. The debug
machine must be connected at port B, the printer port. The target
Macintosh can be connected at either port.

If you are connecting a Macintosh to a Lisa, use a Macintosh
ImageWriter cable. The debug machine must be connected at port B, the

printer port. If the target machine is the Lisa, it too must be
connected at port B. The cable connections required by the Macintosh
and the Lisa are shown in an appendix.

Next, run one of the Nub applications on the target machine. Use
MacNub A if the target Macintosh is connected by port A, and MacNub B

if it is connected by port B. Use WorksNub if the program to be
debugged is running on a Lisa under MacWorks.

62 Macintosh 68000 Development System

Running a Nub installs and initializes a small program in the system
heap of the target machine. Now run the application to be debugged.

On the debug machine, run the MacDB application.

It is helpful to actually run MacDB while you read the following
sections. If you have two machines, you can try out MacDB by running
the Window sample program application on the target machine.

One useful technique is to make the Nub the target machine*s startup
application using the Set Startup command in the Finder* s Special menu.
This guarantees that the Nub is already there just in case your
application bombs.

Theory of Operation

MacNub is a small program that runs in the system heap of the target
machine. When run, it places itself in the system heap, puts pointers
to itself in most of the hardware exception vectors in $0000 through
$00FF, then returns control to the Finder. It then remains dormant
until one of "its" exceptions occurs. Here is the list of exceptions
to which MacNub responds

:

Exception number Assignment

2

3

4

5

6

7

8

9

10

11

24

28

29

30
31

46

Bus Error
Address Error
Illegal Instruction
Zero Divide
CHK Instruction
TRAPV Instruction
Privilege Violation
Trace
Line 1010 Emulator
Line 1111 Emulator
Spurious Interrupts
Level 4 Interrupts
Level 5 Interrupts
Level 6 Interrupts
Level 7 Interrupts
Trap $E (breakpoints)

68000 exception processing is described in the 68000 Reference Manual.

The simplest way to generate an exception on the target machine is to
press the interrupt button (the rear button on the programmer *s

switch). Another good technique is to place the line

DC.W $FF01 ;generate a line $F exception

at the beginning of your program, or wherever you want MacDB to first
get control. (Actually any value $F000 through $FFFF can be used.)

Theory of Operation 63

When one of these exception events occurs in the target machine, the
Nub gets control and sends an interrupt to the debug machine. The
debug machine (if running MacDB) displays a box that lets you select
whether to Debug or Proceed.

If you select Proceed, the target machine continues execution at the
current value of the PC. If the PC points to an instruction that
caused an exception (such as the $FF01 used above), the exception will
happen again. You must manually advance the PC before selecting
Proceed

•

If you choose Debug, MacDB requests from the target machine all the
information necessary to update its windows. Normal operation of the
target machine is suspended until you choose Proceed from the Run menu.

The MacDB Windows

Here is a typical MacDB display, and a brief description of the default
contents of each of the windows.

Debug Run Bkpts Window format Symbols

Registers

DO _ HiTiTriTT»T«T»1

D 1 a oooc* r00R8
D2 = FFFF 0000
D3 = 6001 0024
04 = 0000 0024
05 = 0000 00FF
06 ss 0000 FFFF
D7 = FFFF FF03

R0 = 0001 R6D4
fll = 0000 5RC8
R2 = 0000 5RB6
R3 = 0001 R644
R4 = 0000 557R
R5 = 0001 R6D8
R6 = 0001 R520
R7 = 0001 R41E

PC = 0000 txm i

o

m
SR B 2000mM

JSR $34<PC)
JSR $4E<PC)

JSR $56 (PC >

DrauiMenuBar
JSR $86 (PC)
JSR $9E(PC>
MOUE.L $5D4(PC>
TEIdle
SystemTask
CLR -(R7) 1R41E
MOYE «$FFFF,-(R7> 1R41EI

< IN ITT

(IHITf
(SETUF

(SETUF
(SETUF
(R7>

PER $2EE(PC >

GetNextEvent
MOUE (R7)+,D0
BEQ.S *$-18
JSR $9C(PC

)

BEQ.S *$- IE

RTS

(RB0U7|

1R41E
(START!

(SETUF
(START

INITMRNRGERS: PER $-4(R5) 1R6D4
I N I TMRNR+4
INITMRNR+6
I N I TMRNfl+8
I N I TMRNR+E
I N I TMRNR+ 10

I N I TMRNR+ 12

Ini tGraf
Ini tFont
MOUE.L #$FFFF,D0
FlushEvents

I n i tU i ndow
Ini tMenus

Breakpoints

3§

7> 1R41E:
1R422:
1R426

:

1R42R

:

1R42E

:

1R432:
1R436:
1R43R:
1R43E

:

1R442

:

1R446

:

0000
0000
FFFF
6001
0000
0000
0000
FFFF
0000
0001
0000

0000
00R8
0000
0024
0024
00FF
FFFF
FF03
533R if—

1

1

R5D4 |S£|

533R

Examine 1
1R6C4 : FFFF FFFF i
1R6C8 : FFFF FFFF
1R6CC: 0000 0000 1
1R6D0 : 0000 0000

0> 1R6D4 : 0000 533R H
5> 1R6D8 : 0001 R6D4

1R6DC : 0000 0018
1R6E0 : 0000 0000 m
1R6E4 : 0000 0000
1R6E8 : 0000 0BR0 fe&f

P

- The PC window displays memory starting at the current value of the
program counter (PC). The value of the PC is indicated by the
"at" symbol (@) to the left of the first address displayed.
Addresses at which breaks have been set are marked by asterisks
(*). By default, memory in the PC window is displayed as
disassembled instructions. In this example, a .Map file has been
loaded to provide symbolic display of addresses. The program
counter is set to START, and a break is set at START+2A.

- The Registers window displays the values of the registers.
Although not visible in this example, the previous value of a
changed register is displayed in brackets ([]) to the right of the

64 Macintosh 68000 Development System

current value. In the example, the D0 "cell" is selected to be
changed. Cells are described below.

- The upper Examine window displays the contents of the stack in

long word format. The display of this window is "anchored" to A7

.

This is indicated by the anchor symbol and the seven in the upper
right of the window. The , 7> l to the left of the first address in
this window shows that address register 7 points to this address.

- The lower Examine window is not anchored to a specific register.
The window happens to contain the addresses contained in A0 and
A5 •

- The Breakpoints window displays the addresses at which breakpoints
are set. In the example, there is a breakpoint set at address
START+2A.

Features of MacDB Windows

MacDB windows behave much like most Macintosh windows; however, they
have a few unique features.

Close Box

== Enalminem
7> 19760: FFFF FFFF

19764: 0000 oonc
19768: 0000 0000
1976C

:

0000 FFFF
19770: 0000 0000
19774: 0000 4080
19778: 0000 5F3C
1977C

:

0000 4080
19780: 0040 975C
19784: 0001 977E
19788: 0000 0000

0

IS
a

Start Box
Anchor Box

Title Bar
Align Box
Scroll Arrow

Scroll Bar

Scroll Box

Scroll Arrow
Size Box

The active window in a Macintosh application is the window with the
highlighted title bar. As with other applications, there is only one
active window at a time; however, unlike most others, it is not

The MacDB Windows 65

necessary to select a window before selecting something within the
window: A single click activates the window and performs an action.
For example, if you click on a scroll arrow in an inactive window, the
window becomes active and scrolls.

The Close Box

The close box is used to remove a window from the screen. The original
PC, Registers, and Breakpoints windows cannot be closed. Duplicates of
windows, made with the Duplicate command in the Window menu, can all be
closed

.

The Title Bar

The title bar is used to drag the window around on the screen. To
change a window* s title, use the Title command in the Window menu.

The Start Box

The start box, the grey region below the title, is used to set the
address of the first location displayed in the window. For example, if

you click on the value shown for the PC in the Registers window and
then click on the start box of an Examine window, the window is updated
to display memory starting at the current value of the PC. The
selecting of values within windows is discussed below in the section on
cells

.

The Anchor Box

The anchor box, to the right of the start box, displays the number of

the register, if any, to which that window is anchored. For example,
the upper Examine window is by default anchored to A7 , indicated by the
anchor and the 7 in the anchor box. Whenever this window is updated,
the address contained in A7 is the first address displayed. Note that
the 7 could mean A7 or D7

•

Anchors are set and cleared using the Anchor and No Anchor commands in
the Window menu. They cannot be set for Register or Breakpoints
windows

•

The Align Box

It is not always possible for MacDB to determine whether memory data,
such as disassembled instructions, should be aligned on word or long
word boundaries. When you click the align box, just above the upper
scroll arrow, the starting address of the window decreases by one word.

66 Macintosh 68000 Development System

The Scroll Arrows

The scroll arrows work in the usual manner. Clicking a scroll arrow
causes the window to scroll one line in the indicated direction.
Scrolling continues until the mouse button is released.

The Scroll Bar

Clicking the scroll bar, either above or below the scroll box, causes
the next windowful of memory addresses to be displayed. Clicking
repeatedly on the scroll bar is considerably faster than scrolling line

by line, and you still see every address in the displayed range.

The Scroll Box

The scroll box works in the usual manner. Because there are many
memory addresses, it is a very good tool for moving quickly through
memory, but a fairly poor one for finding a specific address.

The Size Box

The size box works in the usual manner. It is used for increasing or

decreasing the size of the window either horizontally or vertically.

Values in Cells

Most of the things that appear within windows are addresses or values.
As such they are useful as input to various MacDB calls described
below. All addresses and values can be selected by clicking on them.

When a cell is selected, it is inverted on the screen. Only one cell
can be selected at a time.

Changing the Value in a Cell

To change the value in a register or memory cell in the target machine,
just select the value to be changed and then enter a new value or

expression. A box appears to let you cancel or accept the new value.

Expressions can contain hexadecimal values, the operators + - * /, and

symbols that are currently defined (as explained below). Hexadecimal

values must be preceded by $ if they might be confused with symbols.

The operators * and / are of equal and higher precedence than the

operators + and -, which are also of equal precedence.

Most address cells can be selected, but not changed. The first address
cell in a window can be changed.

Handy Hints 67

Handy Hints

You* 11 find while debugging that the disk drive does not stop spinning.
If you execute an infinite loop, the system will realize that the disk
isn't in use, and it will turn the drive off. Try entering and running
the instruction $60FE (BRA *-2). Return control to MacDB by pressing
the interrupt button on the programmer's switch.

Another useful technique is to no-op out undesirable instructions. The
opcode for a no-op is $4E71.

MacDB Menus

Debug Menu

128K/512K Mac

This message tells you the amount of RAM in the target (the other)
machine

.

Heap Check On/Off

Select this command if you wish the validity of the heap to be checked
after each command executed by MacDB. If the command is selected, and
errors are found in the heap, the range of addresses containing the
fault is displayed in a box.

Wait

Wait instructs MacDB to wait for an interrupt from the target
Macintosh. Execution of the target program does not resume if it was
previously halted (see the Proceed command, below).

Quit

Quit leaves MacDB and restarts the Finder.

68 Macintosh 68000 Development System

Run Menu

Trace

Trace causes MacDB to execute the instruction that is currently
indicated by the PC. Once the instruction has completed, control
returns to MacDB and all the windows are updated.

System traps are treated as a single instruction. If you wish to trace
the execution of a system trap, use the Trace Into ROM instruction,
described below.

Proceed

Proceed causes execution of the program to resume where it was
interrupted. This normally allows the program to continue as though it
had not been interrupted. If the PC still points to the instruction
that caused the exception, you must manually advance the PC.

Normal execution cannot be resumed if the interrupt was caused by a Bus
Error or an Address Error.

Go Till

Go Till places a temporary breakpoint at the indicated address.
Execution continues until this breakpoint is encountered or some other
exception occurs. At this point the temporary breakpoint is removed.
You cannot place temporary breakpoints in ROM.

Go To

Go To causes execution to begin at the specified address. Control
returns to MacDB when a breakpoint or some other exception occurs.

Trace Into ROM

The Trace Into ROM command is usually dimmed. When the PC indicates a

system trap, Trace Into ROM is enabled. If you choose Trace Into ROM,
MacDB dispatches the call and returns with the PC pointing to the first
instruction in the ROM routine. You can then use the Trace command to

execute the instructions in the ROM routine.

MacDB Menus 69

Bkpts Menu

When you set a breakpoint, MacDB saves the instruction at the

breakpoint address and replaces it with a TRAP #$E instruction. When
this address is executed, the exception caused by the TRAP instruction
gives control to the Nub, which then calls MacDB. The instruction that
was originally at that address is not executed.

Because breakpoints are implemented by altering memory locations, they
cannot be set in ROM. No warning is given if you try to set a

breakpoint in ROM.

The presence of a breakpoint is indicated in two ways: Its address is

displayed in the Breakpoints window, and any occurrence of an address
that contains a breakpoint, in any window, is marked by an asterisk.
If the PC is at an address that contains a breakpoint, the PC symbol

(@) is displayed instead.

Set

This command sets a breakpoint at the indicated address. The address
is added to the Breakpoints window, and all references to that address
in other windows are marked with an asterisk.

Clear

This command removes the breakpoint at the indicated address, if there
is one. The address is removed from the Breakpoints window, and all
references to that address in other windows are unmarked.

Clear All

This command clears all currently defined breakpoints.

Window Menu

New

New creates a new Examine window and places it on the screen. It is

useful if you want to look at several parts of memory at the same time.

Duplicate

This command makes a copy of the active window. All settings of the

original window are duplicated. A duplicate window always has a close
box.

70 Macintosh 68000 Development System

This feature is particularly useful if you want to freeze a copy of a
window for comparison with another (see Frozen/ Thawed , below).

Symbolic/Hex Address

These two commands determine the format of the addresses displayed in
the active window. Symbolic addresses can only be displayed if one or
more .Map files have been opened (see the Open command in the Symbols
menu). In this mode, addresses are displayed as offsets from the
nearest defined label.

When Hex Address is selected, all addresses are displayed in
Hexadecimal.

This command does not affect the symbolic display of system traps.

Frozen/Thawed

This command allows the active window to be "frozen" for future
reference and comparison with unfrozen windows. A frozen window has a
thick black line as its left border.

Although a frozen window may be moved about on the screen, and the data
in the target machine may change, the contents of its window will not
change until it is thawed (or closed).

Anchor/No Anchor

The Anchor command lets you "anchor" the addresses displayed in a

window to one of the registers. The first address displayed in an
anchored window is the contents of the register to which it is
anchored. The register to which a window is anchored is denoted by an
anchor symbol followed by a register number in the window* s anchor box
(see preceding figure).

A window may be anchored to any register displayed in the Registers
window with the exception of SR.

Title

This command allows you to change a window* s title.

MacDB Menus 71

Format Menu

The Format menu allows you to select the format of the information
displayed in the active window. You can select the format of each
window except the Registers window.

Inst

This command causes the data in the active window to be displayed as

machine-language instructions. Useful effective addresses are

displayed to the right of the instructions. If a .Map file has been
loaded, effective addresses are displayed symbolically.

MacDB cannot always tell if instructions should be disassembled
starting on a word or long word boundary. If you click on the align
box, just above the upper scroll arrow, the starting address of the

window is decreased by two.

Char

This command causes the data in the active window to be displayed as

hexadecimal bytes. The ASCII character corresponding to each byte is

displayed in brackets to the right of the value. If the value's ASCII
character is not printable, a period is displayed.

Word

This command causes the data in the active window to be displayed as a

sequence of hexadecimal words. To the right of each word is its ASCII
representation. If a byte is not a printable ASCII character, a period
is displayed.

Lone

This command causes the data in the active window to be displayed as a

sequence of long words. To the right of each long word is its ASCII
representation. If a byte is not a printable ASCII character, a period
is displayed. If the long word is the address of a defined symbol, the

symbol is displayed to the right of the ASCII representation.

Pascal String

This command causes the data in the active window to be displayed as a

sequence of Pascal strings (a length byte followed by a string). The
first byte in the window is assumed to be a length byte. Subsequent
characters are displayed until that many characters have been
displayed, or until an invalid character is found. The next byte is

then assumed to be a length byte.

72 Macintosh 68000 Development System

List

This command attempts to display the active window as a linked list.
The first line in the window reads

Offset = nnnn nnnn

nnnn nnnn is the offset into the record where the link to the next
record is found. To change the offset, just select the current offset
value and type in a new value.

The starting address of the window is the first byte of the first
record. As many consecutive bytes of the record as will fit across the
window are displayed. The offset is then added to the address of that
line, and the contents of the calculated address is the starting
address of the second record, which is displayed on the next line in
the window. Records are displayed until the window is full, or until
an invalid pointer is found.

If all the records do not fit in the window, you can scroll downward to
see subsequent records. You cannot scroll upward in the window. To
move upward, you can reselect the starting address for the window.

Search

Search allows you to search memory for occurrences of a specified
pattern within a specified range of memory addresses. When you choose
the command, you are allowed to set the start address of the search,
the end address of the search, a mask value, and a value.

Each address in the memory range is logically ANDed with the mask and
then compared with the specified value. If they match, then that
address and its contents are displayed.

If all the matching patterns do not fit within the window, you can
scroll downward to see subsequent occurrences of the pattern. You
cannot scroll upward in a Search window. To move upwards, you can
enter a new start address, or you can select an address elsewhere on
the screen, and then click in the start box, just below the window !

s

title

.

You can use the mask to set the size of the pattern you are looking
for. To search for a specific byte, set the mask to $FF. To search
for a specific word, set the mask to $FFFF. To search for a long word,
set the mask to $FFFFFFFF.

A-Traps

This command lets you monitor the execution of system traps in the
target application. Four lines appear at the top of the window. These
let you set the range of traps to be monitored, whether a break should

MacDB Menus 73

occur when a trap in the range is encountered, and whether the trap

monitor feature is currently active.

Trap numbers are in the range $A000 through $AFFF. Set first to

indicate the lowest trap number to be monitored. Set last to indicate
the highest trap number to be monitored. If first is equal to last,

just that single trap is monitored. If you wish a break to occur when
a trap in the specified range is encountered, set the Break option to

True (by clicking on False). The setting of the auto-pop bit in the

monitored traps is ignored.

If you wish to temporarily disable the monitoring of traps, set Enable

to False by clicking on True.

Once all your settings are correct, choose Proceed in the Run menu.

This allows the target program to execute, but all traps in the desired
range are displayed within the window. If the Break option is set to

true, then control returns to MacDB when each trap in the range is

encountered (before it is executed).

Note that you can have multiple windows each monitoring a different
range of trap instructions.

Clicking Debug interrupts the target machine at the next trap.

MemBlock

This display format allows you to examine memory blocks within a heap
zone. When you choose this command, the starting address of the window
is automatically set to the first memory block in the current heap zone

(immediately following the zone header).

Each line in the window displays an eight-byte memory block header,
enclosed in square brackets, followed by as much of the memory block as

will fit across the window. In the case of nonrelocatable blocks, the

memory block immediately follows the header in memory. In the case of

relocatable blocks, the second long word in the header is a pointer to

the block's master pointer. Such pointers are preceded by asterisks.

Subsequent lines in the window display the headers for subsequent
memory blocks. You can scroll up and down through heap zones.

Symbols Menu

This menu is used to assign symbols to memory addresses and to clear
such assignments. Symbols are stored in .Map files.

74 Macintosh 68000 Development System

Value

Value lets you discover a symbol’s value or a value’s symbol. Either
select an address in memory or a symbol before choosing the command, or
be prepared to enter an address or symbol after choosing this command.
It will display the symbol and its value.

If there is no .Map file loaded, or the specified address is outside of
the program space, the value is displayed in hexadecimal.

Open and Purge

These commands let you control the display of symbols in MacDB.

Each window (except Registers) can have a set of symbols assigned to
it. When you first Open a .Map file, the symbols in the .Map file are
assigned to all windows. These windows are treated as a group; opening
a .Map file for any of them assigns new symbols to all of them.

Purge clears the symbols assigned to the selected window and removes
that window from the group. If you Open a .Map file with a purged
window selected, the symbols are assigned to that window; it does not
affect the symbols in other windows.

MacDB is able to keep track of the symbols used by multiple segments,
but they are bound to the segments that are in memory when the .Map
file was opened. You must open the .Map file again if the loaded
segmen t s change

•

About Symbols

When you start up MacDB, only trap symbols are displayed.

When you open a .Map file, the symbols in the .Map file are read into
memory. Only symbols that were referenced using the XDEF directive are
placed into a .Map file.

If you want to use equates that are not addresses, you must use a trick
to get them into a form that MacDB recognizes. Each entry in a .Sym
file looks like this:

LABEL $08 $xxxxxxxx

and each entry in a .Map file looks like this:

LABEL= s:xxxxxxxx

in which s is the segment number, and xxxxxxxx is the value. Thus if
you change all instances of the string ’ $08 $ * in a .Sym file to
'= 0:’, and save it as a .Map file, the file can be opened and used by
MacDB.

Chapter 7

The MacsBug Debuggers

About This Chapter 77

About This Chapter

This chapter describes the MacsBug family of debuggers.

The first part of the chapter describes the various versions of MacsBug
and how they work. The next part of the chapter describes the syntax
of commands accepted by MacsBug. The end of the chapter describes the
commands themselves.

About MacsBug

MacsBug is a line-oriented single-Macintosh debugger. It shares memory
with the application being debugged, thus MacsBug may not fit in memory
with very large applications.

The features of MacsBug include

- The ability to display and set memory and registers.

- The ability to disassemble memory.

- Stepping and tracing through both RAM and ROM.

- Monitoring of system traps.

- Display and checking of the system and application heaps.

MacsBug gets control when certain 68000 exceptions occur. You can then
examine memory, trace through the application, or set up break
conditions and execute the application until those conditions occur.

Setting Up MacsBug

MacsBug is not selected like a normal application. If there is a file
named MacsBug on the startup disk when the system is turned on or

restarted, MacsBug is installed into the system, and the message
"MacsBug installed" is displayed right below "Welcome to Macintosh".
The startup application is then launched as usual. To use a particular
version of MacsBug, place it on a startup disk and name it MacsBug.

MacsBug is placed in memory just below the main screen buffer. The

amount of memory required by MacsBug depends on the version in use.

Five versions of MacsBug are included in the Macintosh 68000
Development System. They are described below.

78 Macintosh 68000 Development System

MacsBug

This version of MacsBug runs on a 128K Macintosh. When invoked, it
saves part of the screen and provides ten lines of debugging display.
When exited, it restores the screen.

MacsBug uses about 18K of memory. It will not run under MacWorks

.

MaxBug

This version of MacsBug should be used on 512K Macintoshes. When
invoked, it saves almost the entire screen and provides a 40-line
display. When exited, it restores the screen. This version of MacsBug
displays trap names instead of trap numbers.

MaxBug uses about 40K of memory. It will not run under MacWorks.

TermBugA and TermBugB

These versions of MacsBug send display information to an external
terminal rather than to the Macintosh screen. TermBugA should be used
if the terminal is connected to the modem port, and TermBugB should be
used if the terminal is connected to the printer port.

Communication over the serial ports is at 9600 baud, 8 data bits, 2

stop bits, no parity bits, using the XOn/XOff protocol.

TermBugA and TermBugB use about 12K of memory. They will not run under
MacWorks

.

LisaBug

LisaBug is functionally equivalent to MaxBug. You should use it when
you are using a Lisa running MacWorks. LisaBug will not run on a
Macintosh.

Theory of Operation

When installed, MacsBug puts pointers to itself in many of the hardware
exception vectors in addresses $0000 through $00FF. It then remains
dormant until one of "its” exceptions occurs. Here is the list of
exceptions to which MacsBug responds:

Exception number Assignment

2 Bus Error
3 Address Error
4 Illegal Instruction
5 Zero Divide

Theory of Operation 79

6 CHK Instruction
7 TRAPV Instruction
9 Trace

10 Line 1010 Emulator
11 Line 1111 Emulator
28 Level 4 Interrupts (not with LisaBug)
29 Level 5 Interrupts (not with LisaBug)
30 Level 6 Interrupts (not with LisaBug)
31 Level 7 Interrupts
47 Trap $F Instruction

68000 exception processing is described in the 68000 Reference Manual.

Invoking MacsBug

The simplest way to generate an exception is to press the interrupt
button (the rear button on the programmer's switch). When you are
using LisaBug, press on the numeric keypad.

Another way to generate an exception is to add a line such as

DC .W $FF01
; generate a line 1111 exception

at the point in your program where you want MacsBug to first get
control. (Actually any value $F000 through $FFFF can be used.)

Another good technique is to place the system trap

__Debugger ; invoke system trap $A9FF

into your program at the point where you want MacsBug to get control.
This trap is defined in the file ToolTraps .Txt (and MacTraps.D).

In addition, you can invoke system trap $ABFF. This trap is designed
for use with the Lisa Workshop development system; it's explained at
the end of the chapter.

When MacsBug gets control, it disassembles the instruction indicated by
the PC and displays the contents of the registers. If the exception
was caused by an $Fxxx, $A9FF, or $ABFF instruction, MacsBug displays
the message 'USERBRK', advances the PC to the next instruction, and
then disassembles the instruction and displays the registers.

It then displays the greater-than symbol (>) as a prompt, indicating
that it is ready to accept a command.

MacsBug, MaxBug, and LisaBug replace part of the screen with the
debugging display. To see the application screen while the debugger is

active, press the tilde/opening quote key in the upper left of the
keyboard. To restore the debugger* s display, press any character key.

80 Macintosh 68000 Development System

Syntax of Macs Bug Commands

Commands consist of one or two command characters followed by a list of

zero or more parameters (depending on the command)* Parameters can be
numbers, text literals, symbols, or simple expressions*

Numbers

Numbers can be entered in decimal or hexadecimal notation. Decimal
numbers are preceded by an ampersand (&) and hexadecimal numbers are
optionally preceded by a dollar sign ($). Numbers may be signed (+ or

-); if they are, the sign should precede the notation symbol. Here are
some numbers in several different formats. The formats shown are the
same as those displayed by the Convert command (described below).

Number Unsigned Hex Signed Hex Decim,

$FF $000000FF $000000FF &255
-$FF $FFFFFF01 -$000000FF -&255

&100 $00000064 $00000064 & 1 00
+10 $00000010 $00000010 &16

Text Literals

A text literal is a one- to four-character ASCII string bracketed by
single quotes (*). If a string is longer than four characters, only
the first four characters are used. When used by MacsBug, text
literals are right justified in a long word. Here are some examples:

String Stored as

'A' $00000041
1 Fred * $46726564
1 1234 1 $31323334

Symbols

Symbols are generally used to represent the registers. The symbols are

RA0 through RA7
RD0 through RD7

PC

TP

Address registers A0 through A7

Data registers D0 through D7

Program counter
Last address referenced ("Dot”)
Current QuickDraw port (thePort)

Syntax of MacsBug Commands 81

Expressions

Expressions are formed by operators acting on numbers, text literals,
and symbols. The operators are

+ addition (infix), assertion (prefix)
subtraction (infix), negation (prefix)

@ indirection (prefix)

The indirection operator uses the long integer at the location pointed
to by the operand. Here are some valid expressions:

RA7+4
1A700-010C
TP+&24
-RA0+RA1

-

1 FRED 1 +@@4C50

MacsBug Commands

MacsBug commands can be divided into six groups: memory, register,
control, A-Trap, heap zone, disassembly, and other miscellaneous
commands

•

A Return character repeats the last command, unless specified otherwise
in the descriptions below.

Parameters are represented by descriptive words and abbreviations such
as ’ADDRESS*, ’NUMBER 1

, and *EXPR*. All parameters can be entered as
expressions

•

Memory Commands

DM ADDRESS NUMBER (Display Memory)

Displays NUMBER bytes of memory starting at ADDRESS.

NUMBER is rounded up to the nearest 16 bytes. If NUMBER is omitted, 16
bytes are displayed. If ADDRESS and NUMBER are omitted, the next 16
bytes are displayed.

Subsequent presses of the Return key display the next NUMBER bytes.

The dot symbol is set to ADDRESS.

If NUMBER is set to certain four character strings, memory is instead
symbolically displayed as a data structure that begins at ADDRESS. The
strings and the data structures they represent are

*IOPB' Input/Output Parameter Block for File I/O
’WIND' Window Record

82 Macintosh 68000 Development System

* TERC 1 TextEdit Record

Refer to Inside Macintosh for a description of these data structures.

You can prematurely terminate a DM command by pressing the Backspace
key.

SM ADDRESS EXPR1 .. EXPRN (Set Memory)

Places the specified values, EXPR1 through EXPRN, into memory starting
at ADDRESS. The size of each value depends on the "width" of each
expression.

The width of a decimal or hexadecimal value is the smallest number of

bytes that holds the specified value (four-byte maximum). Text

literals are from one to four bytes long; extra characters are ignored.
Indirect values are always four bytes long. The width of an expression
is equal to the width of the widest of its operands.

The dot symbol is set to ADDRESS.

Register Commands

Dn EXPR (Data Register)

Displays or sets data register n. If EXPR is omitted, the register is

displayed. Otherwise, the register is set to EXPR.

An EXPR (Address Register)

Displays or sets ADDRESS register n. If EXPR is omitted, the register
is displayed. Otherwise, the register is set to EXPR.

PC EXPR (Program Counter)

Displays or sets the program counter. If EXPR is omitted, the program
counter is displayed. Otherwise, the PC is set to EXPR.

SR EXPR (Status Register)

Displays or sets the status register. If EXPR is omitted, the status
register is displayed. Otherwise the status register is set.

TD (Total Display)

Displays all registers

MacsBug Commands 83

Control Commands

BR ADDRESS COUNT (Break)

Sets a breakpoint at ADDRESS. COUNT is the number of times that the
breakpoint should be executed before breaking. If COUNT is omitted,
the program is stopped the first time the breakpoint is hit. If

ADDRESS is omitted, all breakpoints and current counts are displayed.

A maximum of 8 different breakpoints can be set.

CL ADDRESS (Clear)

Clears the breakpoint at ADDRESS. If ADDRESS is omitted, all
breakpoints are cleared.

G ADDRESS (Go)

Executes instructions starting at ADDRESS. If ADDRESS is omitted,
execution begins at the address indicated by the program counter.
Control does not return to MacsBug until an exception occurs.

GT ADDRESS (Go Till)

Sets a one-time breakpoint at ADDRESS, then executes instructions
starting at ADDRESS. This breakpoint is automatically cleared after it

is hit.

T (Trace)

Traces through one instruction. Traps are treated as single
instructions

•

S NUMBER (Step)

Steps through NUMBER instructions. If NUMBER is omitted, just one
instruction is executed. Traps are not considered to be single
instructions

•

SS ADDRESS 1 ADDRESS 2 (Step Spy)

Calculates a checksum for the specified memory range, then does a Go.
It then checks the checksum before each instruction is executed, and

breaks into MacsBug if the checksum doesn't match. If ADDRESS1 and
ADDRESS2 are omitted, this feature is turned off.

84 Macintosh 68000 Development System

ST ADDRESS (Step Till)

Steps through instructions until ADDRESS is encountered. Unlike Go
Till, this command does not set a breakpoint. Thus it can be used to
step through, and stop in, ROM.

MR NUMBER (Magic Return)

When debugging, you generally trace through a program one instruction
at a time. MR lets you trace through to the end of a routine instead.

When you use MR, it replaces the return address that is NUMBER bytes
down in the stack with an address within MacsBug; then it does a Go
(described above). The RTS that would have used that address returns
to MacsBug instead of the caller. MacsBug restores the original return
address, and then executes the RTS as if called by the Trace command.
The prompt is then displayed, ready to trace the instruction after RTS.

The usual way to use this routine is to trace until just after a JSR
(return address 0 bytes down in the stack), and then do an MR (0 is the
default NUMBER). The rest of the routine is executed, and control
returns to MacsBug.

This command isn’t repeated when you press Return; a Trace command is

executed instead.

RB (Reboot)

Reboots the system.

ES (Exit to Shell)

Invokes the trap ExitToShell, which causes the startup application to

be launched

•

A-Trap Commands

The A-Trap commands are used to monitor "1010 emulator" traps. These
commands use up to six parameters (TRAP1, TRAP2 ,

ADDRESS 1 ,
ADDRESS2,

D1 , and D2) that specify which traps and other conditions should be

monitored. If no parameters are given, all traps are monitored.

TRAP1 and TRAP2 specify the range of the traps. Operating System traps
are in the range 0 through 255; Toolbox traps are between 255 and 511.

If only TRAP1 is specified, the command is invoked for trap TRAP1 . If

TRAP1 and TRAP2 are specified, the command is invoked for all traps in

the range TRAP1 through TRAP2. ADDRESS1 and ADDRESS2 specify the range
of calling addresses within which traps should be monitored. Finally,

MacsBug Commands 85

Dl and D2 specify the values of data register 0 within which traps

should be monitored.

These commands set up conditions for the monitoring of traps. You
generally use the Go command immediately after a trap command to await

the use of a specified trap. When a trap in the indicated range is

encountered appropriate information is displayed. Displayed trap

numbers are given in full word format (Axxx)

,

Unlike break commands, only one A-Trap command is active at a time.

AB TRAP1 TRAP 2 ADDRESS 1 ADDRESS 2 Dl D2 (A-Trap Break)

Causes a break when the condition specified by the parameters is

satisfied.

AT TRAPl TRAP 2 ADDRESS 1 ADDRESS 2 Dl D2 (A-Trap Trace)

Traces and displays each A-Trap, but doesn't break, when the condition

specified by the parameters is satisfied.

This command continues to display A-Traps until you press the interrupt

button.

AH TRAPl TRAP 2 ADDRESS 1 ADDRESS 2 Dl D2 (A-Trap Heap zone check)

TRAPl must be greater than $2E. This command does an HC command just

before executing each trap in the specified range. It displays the

first two memory blocks that might contain errors.

HS TRAPl TRAP 2 (Heap Scramble)

Scrambles the heap zone, by moving relocatable blocks, when certain
traps in the specified range are encountered. It always scrambles the

heap zone as a result of NewPtr, NewHandle, and ReallocHandle calls.

It scrambles the heap zone as a result of SetHandleSize and SetPtrSize
if the new length is greater than the current length.

This command is fastest if you set trapl to $18 and trap2 to $2D.

The heap zone is not scrambled as a result of traps other than those

named above.

AS ADDRESS 1 ADDRESS 2 (A-Trap Spy)

Calculates a checksum for the specified memory range, and then checks

it before each trap. Breaks into MacsBug if the checksum doesn’t
match.

86 Macintosh 68000 Development System

AX (A-Trap Clear)

Clears all A-Trap commands.

Heap Zone Commands

The heap zone commands act upon the current heap zone. When Macs Bug is
started up, the current heap zone is the application heap zone. You
can toggle the current heap zone between the application heap zone and
the system heap zone using the HX command.

Several commands cause MacsBug to scramble the heap zone. When MacsBug
scrambles the heap zone, it rearranges all the relocatable blocks.
This is useful for finding illegally used pointers to relocatable data
structures

•

HX (Heap Exchange)

Toggles the current heap zone between the system heap zone and the
application heap zone.

HC (Heap Check)

Checks the consistency of the current heap zone. If an inconsistency
is found, two blocks are displayed. The first appears correct, but
might have a bad length; the second is definitely garbled.

HD MASK (Heap Dump)

MASK is optional. Whether or not MASK is used, it displays each block
in the current heap zone in the following form:

BlockAddr Type Size [Flags MP_location] [*] [RefNum ID Type]

The blockAddr points to the start of the memory block. The type is F
for a free block, P for a pointer, and H for a handle to a relocatable
block. The size is the physical size of the block, including the
contents, the header, and any unused bytes at the end of the block.

For handles (type H)
, Flags (the high nibble of the master pointer) and

the master pointer location are given. Flags are: locked (bit 3),
purgeable (bit 2), resource (bit 1), and unused (bit 0). The asterisk
marks any immobile object (nonrelocatable blocks and locked relocatable
blocks)

•

For resource file blocks, three additional fields are displayed: the
resource’s reference number, ID number, and type.

If MASK is omitted, the dump is followed by a summary of the heap
zone’s blocks. It begins with the six characters *HLP PF

*

,

which

MacsBug Commands 87

represent the six values that follow them. These values are

H - number of relocatable blocks in the heap zone (handles)

L - number of relocatable blocks that are Locked

P - number of Purgeable blocks in the heap zone

- SPACE, in bytes, occupied by purgeable blocks

P - number of nonrelocatable blocks in the heap zone (pointers)

F - total amount of Free space in the heap zone

Here is a sample summary:

HLP PF 0084 0004 0002 0000079E 0017 000003B4

Note that block counts are single words, and values representing space

in bytes are long word quantities.

If MASK is used, the summary line displays the block counts of specific
types of blocks. Possible values for MASK are:

, H*
» p »

’F 1

l R'
1 xxxx 1

Relocatable blocks (handles)
Nonrelocatable blocks (pointers)
Free blocks
Resource blocks
Resource blocks of type 'xxxx'

If MASK is used, the heap summary takes this form:

CNT ### <// of blocks of MASK type> <# bytes in those blocks>

You can prematurely terminate an HD command by pressing the Backspace
key.

HP MASK (Heap Print)

If you are using TermBugA or TermBugB, this command can be used to dump

the heap zone to the other serial port. Communication is done at 9600

baud, 8 data bits, 2 stop bits, and no parity bits, using the XOn/XOff
protocol

.

HT MASK (Heap Total)

Displays just the summary line from a heap zone dump. MASK works just
as it does with the HD command.

88 Macintosh 68000 Development System

Disassembler Commands

ID ADDRESS (Instruction Disassemble)

Disassembles one line at ADDRESS. If ADDRESS is omitted, the next
logical location is disassembled. This sets the dot symbol to the
ADDRESS.

If it is Pascal code that was compiled with the {$D+} option on, and
symbols have been turned on with the PX command, each address is

automatically displayed as a routine name plus an offset.

IL ADDRESS NUMBER (Instruction List)

Disassembles NUMBER lines starting at ADDRESS. If NUMBER is omitted, a

screenful of lines is disassembled. If both NUMBER and ADDRESS are

omitted, a screenful of lines is disassembled starting at the next
logical location. This command sets the dot symbol to the ADDRESS.

If it is Pascal code that was compiled with the {$D+} option on, and
symbols have been turned on with the PX command, each address is

automatically displayed as a routine name plus an offset.

You can prematurely terminate an IL command by pressing the Backspace
key.

PX (Symbol Toggle)

Toggles whether or not symbols are displayed. By default, symbols are
off. This affects the IL, ID, and WH commands.

Miscellaneous Commands

F ADDRESS COUNT DATA MASK (Find)

Searches COUNT bytes from ADDRESS, looking for DATA after masking the

target with MASK. As soon as a match is found, the ADDRESS and value
are displayed, and the dot symbol is set to that ADDRESS. To search
the next COUNT bytes, simply press Return.

The size of the target (and default MASK) is determined by the width of

DATA, and can only be 1, 2, or 4 bytes. Default MASK has all bits on.

WH EXPR (Where)

Displays the number, address, and with MaxBug, the name, of the trap
specified by EXPR.

Macs Bug Commands 89

If EXPR is a name or is less than 512, it displays information for that

trap. If EXPR is greater than or equal to 512, the trap whose code is

closest to address EXPR is displayed. This is useful for finding out

what trap was executing when an error occurred.

CS ADDRESS1 ADDRESS2 (Checksum)

Checksums the bytes in the range ADDRESS 1 through ADDRESS2 and saves

that value. If ADDRESS2 is omitted, it checksums 16 bytes, starting at

ADDRESS1. If ADDRESS 1 and ADDRESS2 are both omitted, it calculates the

checksum for the last range specified, saves that value, and compares

it to the previous checksum for that range. If the checksum hasn*t

changed, it prints 'CHKSUM T 1

; otherwise it prints T CHKSUM F f
.

CV EXPR (Convert)

Displays EXPR as unsigned hexadecimal, signed hexadecimal, signed

decimal, and text.

RX (Register Exchange)

Toggles the display mode so that the registers are or are not dumped

during a trace command. The disassembly of the PC instruction is not

affected

.

Handy Hints

Stopping the Disk Drive

When you are using the debugger, the disk drives don !

t stop spinning as

they usually do. You can get a disk drive to stop by doing the

following

:

1. Enter DM PC and remember the first word that is displayed.

2. Enter SM PC 60FE, the instruction BRA *-2
,
which is an infinite

loop

.

3. Enter G and wait for the drive to stop spinning.

4. When the drive stops spinning, press the interrupt button.

5. Put the old word back into memory.

90 Macintosh 68000 Development System

Using No-ops

If you want to no-op out an instruction, replace the instruction with
the number $4E71, the no-op opcode.

Using MacsBug with the Lisa Workshop

If you are using the Lisa Workshop development system, you can invoke
MacsBug by declaring and calling the following procedure:

PROCEDURE MacsBug; INLINE $A9FF;

This procedure drops into MacsBug and displays the message 'USERBRK 1
.

It then does a normal exception entry into MacsBug.

If you want to display debugging information, declare and call this
procedure

:

PROCEDURE Macs BugPrint (str: str255); INLINE $ABFF;

When the $ABFF trap is encountered, MacsBug assumes that the top of the
user’s stack has a pointer to a Pascal string. It prints out the

string, displays the message USERBRK 1

, and does a normal exception
entry into MacsBug.

The Lisa Workshop Pascal compiler has an option that lets you
symbolically display the names of routines and functions in MacsBug.
If you compile your program using the {$D+} option, procedure names are

automatically placed in the code at the end of each procedure or
function. If you want to use the symbols, you should use PX to turn on
symbolic display.

Chapter 8

The Resource Compiler

About This Chapter 93

About This Chapter

This chapter describes RMaker, an application that is used to produce
resource files and to integrate resources into applications.

The first part of this chapter describes RMaker. The next part of the

chapter describes how to create an RMaker input file using predefined
resource types and user-defined resource types. The final part of the

chapter tells how to use RMaker to create a new resource file from the

input file.

About RMaker

RMaker is the Macintosh 68000 Development System* s Resource Compiler.

It is very similar to the RMaker program in the Lisa Workshop, but some
changes have been made to the syntax. Be careful if you are converting
resource files from one system to the other.

RMaker takes a text file as input and produces a resource file. The

text file contains an entry for each resource, as described below.

These entries can specify all information necessary to define the

resources, or they can cause existing resources to be read from other
files

.

For example, during program development, you* 11 typically use separate
application and resource files. Once the application is finished, you
should combine these files. Simply use the INCLUDE statement to read
in the application created by the Linker. It is already stored as

resources of type *CODE*.

RMaker Input Files

An RMaker input file is a text file that may be created using the

Editor. By convention, RMaker input files have the extension .R.

RMaker ignores all comment lines and blank lines (except in some cases

a blank line may be required). It also ignores leading and embedded
spaces (except in lines defined to be strings). Comment lines begin
with an asterisk. To put comments at the end of other RMaker lines,

precede the comment with two consecutive semicolons (;;).

Naming the Resource File

The first nonblank and noncomment line of the input file specifies the

name of the resource file to be created. If the filename has the

extension .Rel, a file is generated that can be linked using the Linker
(see the section on resources in Chapter 4). If the file is to be an

application, it should have no extension. If not, the file will be a

resource file and should have the extension .Rsrc. The line following
the resource’s filename should either specify the file type and creator

94 Macintosh 68000 Development System

bytes for the Finder or be blank. For example, the two lines

NewResFile .Rsrc
PNTGMPNT

specify the file named NewResFile .Rsrc as the output file, and the
bytes 1 PNTGMPNT 1 as the type and creator bytes. These bytes tell the
Finder that the file is a painting file, created by MacPaint. (The
Finder will try to launch MacPaint if you select and open this file!)

More typically, these two lines will look like this:

MyApplication
APPLMYAP

This designates the file MyApplication as the output file. The file is
an application (type f APPL f

) of type , MYAP'.

If you do not specify a value for these bytes, they are set to 0.

Appending to an Existing Resource File

If you wish to add the resources defined in your input file to those in
an existing resource file, simply precede the filename with an
exclamation point. For example

!01dResFile .Rsrc

tells RMaker to add the new resources to the file OldResFile .Rsrc

.

Adding Resources

The rest of the resource file consists of INCLUDE statements and "Type
statements".

INCLUDE statements are used to read in entire resource files. An
INCLUDE statement looks like this:

INCLUDE filename

Type statements consist of the word "Type" followed by the resource
type and, below that, one or more resource definitions. The resource
type must be capitalized to match a predefined resource type.

The following statement creates three resources of type ? STR '.

RMaker Input Files 95

TYPE STR

,1

This is a string

.2

Gnirts a si siht

,3

Hits is a grints

It is not necessary for all resources of a given type to be declared
together; however, all resources of a type must have unique resource
IDs. If you specify a resource ID that is already in use, the new
resource replaces the old one.

A resource looks like this

:

[resource name] , resource ID [(resource attribute byte)]
type-specific data

The square brackets indicate that the resource name and resource
attribute byte are optional. Don't place these brackets in your input
file. The comma before the resource ID is mandatory. The default
attribute byte is 0. Here are some sample resource definitions:

TYPE STR
NewStr ,4 (32)
This resource has a name and an attribute byte!!

,5

This one has only a resource ID.

MyNewStr ,6

This has a name and a resource ID.

The type-specific data is different for each resource type. As you
have probably guessed, the type-specific data for a 1 STR ' resource is
simply a string. The next section describes the type-specific data for
the resource types defined by RMaker.

Defined Resource Types

RMaker has 12 defined resource types: 1 ALRT 1

, ' BNDL
' , ' CNTL' ,

1 DITL*

,

1 DLOG 1

, ' FREF 1

,

1 GNRL 1

,
* MENU T

, 'PROC', * STR f

,

1 STR# 1

, and 'WIND*.
The format of the type-specific data for each type is shown by example,
below. The type 'GNRL' is used to define your own resource types. It
is explained later.

Syntax of RMaker Lines

There are just a few general rules that apply to lines read by RMaker.

- Leading and embedded blanks are ignored, except when necessary to
separate multiple numbers on a line, or when they are part of a
string

.

96 Macintosh 68000 Development System

- Numbers are decimal, unless specified otherwise.

- RMaker is sensitive to line breaks. Thus if a type description,

below, shows four values on a single line, you must put four

values on a single line.

Two special symbols can be used in resource definitions: the

continuation symbol (++) and the enter ASCII symbol (\).

++ goes at the end of a line that is continued on the next line.

\ precedes two hexadecimal digits. That ASCII character is

entered into the resource definition.

Look at the description of the * STR * type for examples of these

special symbols. As previously mentioned, blank lines are ignored. To

enter a blank line that isn’t ignored, use \20.

You will notice that some of the resources are listed as templates,

while others are not. A template is a list of parameters used to build
a Toolbox object; it is not the object itself.

ALRT Alert Template

TYPE ALRT
,128 ; resource ID

50 50 250 250 ; top left bottom right

1 ; resource ID of item list
7FFF ; stages word in hexadecimal

BNDL Application Bundle

TYPE BNDL
,128 ; resource ID

MPNT 0 . ; bundle owner
ICN# ; resource type

0 128 1 129 ; local ID 0 maps to resource ID 128; 1 to 129

FREF ; resource type

0 128 1 129 ; local ID 0 maps to resource ID 128; 1 to 129

Note: the number of mappings from local ID to resource ID is variable.

Simply include multiple mappings on a single line.

CNTL Control Template

TYPE CNTL
,130 ; resource ID

Stop ; title
244 40 260 80 top left bottom right

Invisible
: ; see note

0 ,; ProcID (control definition ID)

Defined Resource Types 97

0 ;; RefCon (reference value)
010 ; ; minimum maximum value

Note: Controls can be defined to be Visible or Invisible. Only the
first character (V or I) is significant.

DITL Dialog or Alert Item List

TYPE DITL
,129

5
; ; resource ID

; ; 5 items in list

staticText
20 20 32 100

Whoopie

; static text dialog item (see note)

; top left bottom right

; message

editText
20 120 32 200
Default message

; editable text dialog item (see note)

; top left bottom right

; message

radioButton
40 40 60 150
Hello

; radio button dialog item (see note)

; top left bottom right

; message

checkBox Disabled
75 40 95 150

GoodBye

; disabled dialog item (see note)

; top left bottom right

; message

button
75 160 95 200
Hi!

; button dialog item (see note)

; top left bottom right

; message

Note: Five types of dialog items are defined: Static text, Editable
text. Radio Buttons, Check Boxes, and Buttons. These items are assumed
to be enabled. Otherwise you may specify Disabled. Only the first
character of an item definition word is significant (S,E,R,C,B,D)

.

DLOG Dialog Template

TYPE DLOG

,3 ;; resource ID
This is a dialog box. ;; message
100 100 190 250 ; ; top left bottom right
Visible GoAway ;; box status (see note)

0 ;; procID (dialog definition ID)

0 ;; refCon (reference value)
129 ;; ID of item list ('DITL 1

, above)

Note: A dialog box can be Visible or Invisible. GoAway and NoGoAway
determine whether or not the dialog box has a close box. Only the
first characters (V,I,G,N) are significant.

98 Macintosh 68000 Development System

FREF File Reference

TYPE FREF

,128 ;; resource ID

APPL 0 ;; file type, local ID of icon

,129 ;; resource ID

TEST 127 myFile ;; file type, local ID of icon, filename

Note: If there is no filename, it can be omitted.

MENU Menu

TYPE MENU
resource ID

menu title
item 1

item 2

item 3

item 4 (draw a line)
item 5

MUST be followed by a blank line !

!

Transfer
Edit
Asm
Link
(“

Exec

PROC Procedure

TYPE PROC

,128 ;; resource ID

MyProcedure ;; filename

This type is used to create resources that contain code. It reads the

first code segment from an application file (the 'CODE 1 resource with
ID = 1), strips the first four bytes off of it (used by the Segment
Loader), and saves it as a resource of type 'PROC*. It is useful for

defining code types such as 'DRVR', 'WDEF', and 'PACK'. An example is

given below in the section on creating your own resource types.

STR String

TYPE STR

,1

This is a string

,23

This is a string ++
that shows the line ++

continuation characters

;; 'STR ' (space required)

; ; resource ID

; ; and a string

; ; resource ID

; ; and a long string

,25 (32)
I've got attributes!

;; resource ID, optional attribute byte

; ; and a string

Defined Resource Types 99

,27 ;; resource ID
Testing, \31 , \32, \33 ;; 'Testing, 1, 2, 3' the hard way

A Number of StringsSTR//

TYPE STR//

,1

4

This is string one
And string two
Third string
Bench warmer

; ; resource ID

; ; number of strings

;; and the strings..*

WIND Window Template

TYPE WIND
,128

Wonder Window
40 80 120 300
Invisible GoAway

0

0

; title

; top left bottom right

; window status (see note)

; ProcID (window definition ID)

; RefCon (reference value)

Note: A Window can be Visible or Invisible; GoAway and NoGoAway
determine whether or not the window has a close box. Only the first
character of each option (V,I,G,N) is significant.

Creating Your Own Types

There are two ways to create your own resource types. The first is to

equate a new type to an existing type. For example, you can create a

resource of type 'DRVR' like this:

TYPE DRVR = PROC ;; type 1 DRVR 1 is just like 'PROC 1

,17 (32) ;; resource ID, attribute byte
MyDriver ; ; filename

The file MyDriver should be a single-segment application, as created by
the Linker. Recall that the 'PROC' type reads in the resource of type
'CODE* with ID = 1 ; then it strips off the header bytes.

The other way to create your own type is to equate the new type to

'GNRL' and then to specify the precise format of the resource. A set
of element type designators lets you define the type of each element
that is to be placed in the resource.

Here are the element type designators

:

•P Pascal string
•S String without length byte

100 Macintosh 68000 Development System

.1 Decimal integer
•L Decimal long integer
.H Hexadecimal

.R Read resource from file, .R is followed by:

filename type ID

For example, to define a resource of type ’CHRG* consisting of the

integer 57 followed by the Pascal string ’Finance charges’, you could

use the following type assignment:

TYPE CHRG = GNRL

Finance charges

;; define type ’CHRG*

; ; resource ID

; ; a decimal integer

; ; a Pascal string

A more practical example: An application that has its own icon must
define an icon list and reference it using ’FREF* (described above).

Such an icon list can be defined as follows:

TYPE ICN# = GNRL
,128

.H

0001 0002 0003 0004

; icon list for an application

; resource ID

; enter 2 icons in hexadecimal

; each is 32 bits by 32 bits

007D 007E 007F 0080 ;; for 128 words total

The .R type designator is used to include an existing resource as part

of a new resource type. For example, to read an existing ’FONT 1

resource into a new resource of type ’FONT*
, use the following resource

definition

:

TYPE FONT = GNRL
,268

.R

System FONT 268

; define a new type

; resource ID

; read from the System file

; the ’FONT’ resource with ID=268

Using RMaker

Once you have created the input file to RMaker, the hard work is done.

Simply select and open the application RMaker. The standard file

selection window is automatically opened. Select the file you want to

compile, and off it goes.

By default, the standard file selection window displays all the text

files on the disk. If you want to display only the .R files, Cancel

the selection window, choose .R Filter from the File menu, then choose

Compile from the File menu to redisplay the file selection window.

Using RMaker 101

File Transfer

Resource Compiler

Output File MDS2:Window.RsrcSource File Window.R
Stat icText
15 20 36 300
This sample program was written

Data Size:

Map Size:

Total SizeStat i cText
35 20 56 300
just to prove it could be done!

WIND Resource # 1 spec i f i es th<
* for the window in which editir
call to GetNewWindow.

Type WIND
,

1

fl Samp I

e

50 40 300 450
Uisible NoGoRway

When RMaker is compiling a file, the name of the source file is

displayed in the upper left of the window, and the name of the output
file is displayed in the upper right. As the file is compiled, the

current size of the resource data, the size of the resource map, and
the total size are tracked on the right half of the screen. In

addition, as each line is compiled, it is displayed on the screen.

If there are no errors in the RMaker input file, a resource file with
the specified name is created.

Errors in the Input File

If an error occurs, the line containing the error is the last line on
the screen. RMaker then displays a box with an error message in it.

RMaker errors are listed in an appendix.

z

Appendix A

Sample Program Listing

The Window Sample Program 105

The Window Sample Program

File Window. Asm

Macintosh 68000 Development System — Programming Example

; This application displays a window within which you can enter and edit
; text. Program control is through three menus: the Apple menu, the File
; menu, and the Edit menu.

; The Apple menu has the standard desk accessories and an About feature.

; The File menu lets you quit the application.

; The Edit menu lets you cut, copy, paste, and clear the text in the window
; or in the desk accessories. Undo is provided for desk accesories only.
; Command key equivalents for undo, cut, copy, and paste are provided.
; Cutting and pasting between the application and the desk accessories is
; not supported. This requires use of the Scrap Manager.

; This program requires the use of a resource file called "Window. Rsrc"
; Window. Rsrc is created from "Window. R" using RMaker

INCLUDES

Include MacTraps.D ; Use System and ToolBox traps
Include ToolEqu.D ; Use ToolBox equates

; Use of Registers

; Operating System and Toolbox calls always preserve D3-D7, and A2-A4.

; Register use: A5-A7 are reserved by the system
; D1-D3 , A0-A1 are unused
; DO is used as a temp

ModifyReg EQU D4 ; D4 holds modifier bits from GetNextEvent
MenuReg EQU D5 ; D5 holds menu ID from MenuSelect , MenuKey
MenuItemReg EQU D6 ; D6 holds item ID from MenuSelect , MenuKey
AppleHReg EQU D7 ; D7 holds the handle to the Apple Menu

TextHReg EQU A2 ; A2 is a handle to the TextEdit record
WindowPReg EQU A3 ; A3 is a pointer to the editing window
EditHReg EQU A4 ; A4 is a handle to the Edit menu

EQUATES

; These are equates associated with the resources
; for the Window example

.

AppleMenu EQU 1 ; First item in MENU resource
Aboutltem EQU 1 ; First item in Apple menu

FileMenu EQU 2 ; Second item in MENU resource
Quit Item EQU 1 ; First item in File menu

EditMenu EQU 3 ; Third item in MENU resource
UndoItem EQU 1 ; Items in Edit menu
Cutltem EQU 3 ; (Item 2 is a line)
CopyItem EQU 4

Pasteltem EQU 5
Clearltem EQU 6

AboutDialog EQU 1 ; About dialog is DLOG resource #1
Buttonltem EQU 1 ; First item in DITL used by DLOG #1
ASample EQU 1 ; Sample Window is WIND resource #1

; These are modifier bits returned by the GetNextEvent call.

activeBit EQU 0 ; Bit position of de/activate in Modify
cmdKey EQU 8 ; Bit position of command key in Modify
shiftKey EQU 9 ; Bit position of shift key in Modify

106 Macintosh 68000 Development System

. XDEFs

; XDEF all labels that are to be symbolically displayed by debugger.

XDEF Start
XDEF InitManagers
XDEF OpenResFile
XDEF SetupMenu
XDEF SetupWindow
XDEF SetupTextEdit
XDEF Activate
XDEF Deactivate
XDEF Update
XDEF KeyDown
XDEF MouseDown
XDEF SystemEvent
XDEF Content
XDEF Drag
XDEF InMenu
XDEF About

; Main Program

Start

BSR
BSR
BSR
BSR
BSR

InitManagers
OpenResFile
SetupMenu
SetupWindow
SetupTextEdit

Initialize managers
Open the resource file
Build menus, draw menu bar
Draw Editing Window
Initialize TextEdit

EventLoop ; MAIN PROGRAM LOOP

SystemTask ;

7 PROCEDURE TEIdle (hTE : TEHandle)

;

MOVE . L TextHReg , - (SP

)

TEIdle

Update Desk Accessories

Get handle to text record
blink cursor etc.

FUNCTION GetNextEvent (eventMask : INTEGER;
VAR theEvent : EventRecord) : BOOLEAN

CLR -(SP) ; Clear space for result
MOVE #$0FFF,- (SP) ; Allow 12 low events
PEA EventRecord ; Place to return results
GetNextEvent ; Look for an event

MOVE (SP) +, DO ; Get result code
BEQ EventLoop ; No event . . . Keep waiting
BSR HandleEvent ; Go handle event
BEQ
RTS

EventLoop ; Not Quit, keep going
; Quit, exit to Finder

; Note: When an event handler finishes, it returns the Z flag set. If
; Quit was selected, it returns with the Z flag clear. An RTS is
; guaranteed to close all files and launch the Finder.

. InitManagers

InitManagers

PEA -4 (A5) ; Quickdraw' s global area
_InitGraf ; In it Quickdraw
InitFonts ; Init Font Manager

MOVE .

L

FlushEvents
#$0000FFFF, DO ; Flush all events

InitWindows ; Init Window Manager
InitMenus ; Init Menu Manager

CLR.L - (SP) ; No restart procedure
InitDialogs ; Init Dialog Manager
TEInit ; Init Text Edit
InitCursor

RTS
; Turn on arrow cursor

The Window Sample Program 107

OpenResFile

OpenResFile

; For development, we are keeping the resources in a separate file. The
; application can be sped up by adding the resources to the application'

s

; file, which makes the OpenResFile call unneccessary . Note: normally the
; explicit mention of MDS2 is considered bad style; the resource file
; should be on the same volume as the program. However, it must be done
; like this or Transfer looks on the wrong volume.

; FUNCTION OpenResFile (fileName: str255) : INTEGER;
CLR -(SP) ; Space for refNum
PEA 'MDS2 : Window .Rsrc' ; Name of resource file
OpenResFile ; Open it

HOVE (SP)+,D0 ; Discard refNum
RTS

SetupMenu

SetupMenu

; The names of all the menus and the commands in the menus are stored in the
; resource file. The way you build a menu for an application is by reading
; each menu in from the resource file and then inserting it into the current
; menu bar. Desk accessories are read from the system resource file and
; added to the Apple menu

.

; Apple Menu Set Up.

; FUNCTION
CLR.L
MOVE
GetRMenu

HOVE .

L

MOVE .

L

GetMenu (menu ID: INTEGER): MenuHandle;
-(SP) ; Space for menu handle
#AppleMenu, - (SP) ; Apple menu resource ID

; Get menu handle
(SP) ,AppleHReg ; Save for lat^r comparison
(SP),-(SP) ; Copy handle for AddResMenu

; PROCEDURE
CLR
InsertMenu

InsertMenu (menu : MenuHandle; beforelD: INTEGER);
-(SP) ; Append to menu

; Which is currently empty

; Add Desk Accessories Into Apple menu (Apple menu handle already on stack)

; PROCEDURE
MOVE .

L

AddResMenu

AddResMenu (menu: MenuHandle; theType: ResType)

;

#' DRVR' , - (SP) ; Load all drivers
; And add to Apple menu

; File Menu Set Up

; FUNCTION
CLR.L
MOVE
GetRMenu

GetMenu (menu ID : INTEGER) : MenuHandle;
-(SP) ; Space for menu handle
#FileMenu, - (SP) ; File Menu Resource ID

; Get File menu handle

; PROCEDURE
CLR
InsertMenu

InsertMenu (menu : MenuHandle; beforelD: INTEGER);
-(SP) ; Append to list

; After Apple menu

; Edit Menu Set Up

; FUNCTION
CLR.L
MOVE
GetRMenu

HOVE .

L

; PROCEDURE
CLR
_InsertMenu
DrawMenuBar

RTS

GetMenu (menu ID: INTEGER) : MenuHandle;
-(SP) ; Space for menu handle
#EditMenu, - (SP) ; Edit menu resource ID

; Get handle to menu
(SP) ,EditHReg ; Save for later

; Leave on stack for Insert
InsertMenu (menu : MenuHandle; beforelD: INTEGER);
-(SP) ; Append to list

; After File menu
; Display the menu bar

108 Macintosh 68000 Development System

SetupWindow

SetupWindow

; The window parameters are stored in our resource file. Read them from
; the file and draw the window, then set the port to that window. Note that
; the window parameters could just as easily have been set using the call
; NewWindow, which doesn't use the resource file.

; FUNCTION GetNewWindow (windowID: INTEGER; wStorage: Ptr;
; behind: WindowPtr) : WindowPtr;
CLR.L -(SP) ; Space for window pointer
MOVE tASample, - (SP) ; Resource ID for window
PEA WindowStorage (A5) ; Storage for window
MOVE . L #-l, - (SP) ; Make it the top window
GetNewWindow

MOVE . L (SP) , WindowPReg
Draw the window
Save for later

; PROCEDURE
SetPort

RTS

SetPort (gp: GrafPort)

;

Pointer still on stack
Make it the current port

SetupTextEdit

SetupTextEdit

; Create a new text record for TextEdit, and define the window within which
; it will be displayed. Note that if the window boundaries are changed in
; the resource file, DestRect and ViewRect will have to be changed too.

; PROCEDURE
CLR.L
PEA
PEA
TENew

MOVE .

L

RTS

TENew (destRect, viewRect : Rect) : TEHandle;
-(SP) ; Space for text handle
DestRect ; DestRect Rectangle
ViewRect ; ViewRect Rectangle

; New Text Record
(SP) +, TextHReg ; Save text handle

Event Handling Routines

HandleEvent

; Use the event number as an index into the Event table. These 12 events
; are all the things that could spontaneously happen while the program is
; in the main loop.

MOVE Modify , ModifyReg
MOVE What , DO
ADD DO, DO
MOVE EventTable (DO) , DO
JMP EventTable (DO)

; More useful in a reg
; Get event number
; *2 for table index
; Point to routine offset
; and jump to it

EventTable

DC. W
DC. W
DC. W
DC. W
DC. W
DC. W
DC. W
DC. W
DC. W
DC. W
DC. W
DC. W

NextEvent-EventTable
MouseDown-EventTable
NextEvent-EventTable
KeyDown-EventTable
NextEvent-EventTable
KeyDown-EventTable
Update-EventTable
NextEvent-EventTable
Activate-EventTable
NextEvent-EventTable
NextEvent-EventTable
NextEvent-EventTable

Null Event (Not used)
Mouse Down
Mouse Up (Not used)
Key Down
Key Up (Not used)
Auto Key
Update
Disk (Not used)
Activate
Abort (Not used)
Network (Not used)
I/O Driver (Not used)

The Window Sample Program 109

Event Actions

Activate

; An activate event is posted by the system when a window needs to be
; activated or deactivated. The information that indicates which window
; needs to be updated was returned by the NextEvent call.

CMP.L
BNE
BTST
BEQ

Message, WindowPReg
NextEvent
#ActiveBit , ModifyReg
Deactivate

; Was it our window?
; No

,
get next event

; Activate?
; No, go do Deactivate

; To activate our window, activate TextEdit, and disable Undo since we don't
; support it. Then set our window as the port since an accessory may have
; changed it. This activate event was generated by SelectWindow as a result
; of a click in the content region of our window. If the window had scroll
; bars, we would do ShowControl and HideControl here too.

; PROCEDURE TEActivate (hTE: TEHandle);
MOVE.L TextHReg, - (SP) ; Move Text Handle To Stack
TEActivate ; Activate Text

; PROCEDURE Disableltem (menu :MenuHandle; item: INTEGER)

;

MOVE.L EditHReg, - (SP) ; Get handle to the menu
MOVE #UndoItem, - (SP) ; Enable 1st item (undo)
Disableltem

SetOurPort used by InAppleMenu

; PROCEDURE
MOVE .

L

SetPort

SetPort (gp: GraphPort) ; Set the port to us, since
WindowPReg, - (SP) ; an accessory might have

; changed it

.

NextEvent

MOVEQ #0, DO
RTS

Say that it's not Quit
return to EventLoop

Deactivate

; To deactivate our window, turn off TextEdit, and Enable undo for the desk
; accessories (which must be active instead of us)

.

; PROCEDURE TEDeActivate (hTE: TEHandle)
MOVE.L TextHReg, -(SP) ; Get Text Handle
TeDeActivate ; Un Activate Text

; PROCEDURE Enableltem (menu : MenuHandle; item: INTEGER)

;

MOVE.L EditHReg,- (SP) ; Get handle to the menu
MOVE #UndoItem, - (SP) ; Enable 1st item (undo)
Enableltem

BRA NextEvent ; Go get next event

Update

; The window needs to be redrawn. Erase the window and then call TextEdit
; to redraw it

.

; PROCEDURE BeginUpdate (theWindow: WindowPtr)

;

MOVE.L WindowPReg, - (SP) ; Get pointer to window
_BeginUpDate ; Begin the update

; EraseRect (rUpdate: Rect)

;

PEA ViewRect
EraseRect

; Erase visible area

110 Macintosh 68000 Development System

; TEUpdate (rUpdate: Rect; hTE:
PEA ViewRect
MOVE . L TextHReg, - (SP)
_TEUpdate

TEHandle)

;

; Get visible area
; and handle to text
; then update the window

; PROCEDURE
MOVE . L
EndUpdate

BRA

EndUpdate (theWindow: WindowPtr)

;

WindowPReg, - (SP) ; Get pointer to window
; and end the update

NextEvent ; Go get next event

KeyDown

; A key was pressed. First check to see if it was a command key. If so,
; go do it. Otherwise pass the key to TextEdit.

BTST
BNE

#CmdKey, ModifyReg ; Is command key down?
CommandDown ; If so, handle command key

; PROCEDURE
MOVE
MOVE .

L

TEKey
BRA

TEKey (key: CHAR; hTE
Message+2, - (SP)
TextHReg, -(SP)

NextEvent

TEHandle) ;

Get character
and text record
Give char to TextEdit
Go get next event

CommandDown

; The command key was down. Call MenuKey to find out if it was the command
; key equivalent for a menu command, pass the menu and item numbers to Choices.

; FUNCTION
CLR.L
MOVE
MenuKey

Move
MOVE
BRA

MenuKey (ch:CHAR): Longlnt;
-(SP) ; Space for Menu and Item
Message+2, - (SP) ; Get character

; See if it's a command
(SP) +, MenuReg ; Save Menu
(SP) +, MenuItemReg ; and Menu Item
Choices ; Go dispatch command

-Mouse Down Events And Their Actions

MouseDown

; If the mouse button was pressed, we must determine where the click
; occurred before we can do anything. Call FindWindow to determine
; where the click was; dispatch the event according to the result.

; FUNCTION

CLR
MOVE .

L

PEA
FindWindow

MOVE
ADD
MOVE
JMP

FindWindow (thePt: Point;
VAR whichWindow: WindowPtr) : INTEGER;

“(SP)
Point, -(SP)
WWindow

(SP) +, DO
DO, DO
WindowTable (DO) , DO
WindowTable (DO)

Space for result
Get mouse coordinates
Event Window
Who' s got the click?
Get region number
*2 for index into table
Point to routine offset
Jump to routine

WindowTable

DC. W
DC. W
DC. W
DC. W
DC. W
DC. W
DC. W

NextEvent-WindowTable ;

InMenu-WindowTable ;

SystemEvent-WindowTable
Content-WindowTable ;

Drag-WindowTable ;

NextEvent-WindowTable ;

NextEvent-WindowTable ;

In Desk (Not used)
In Menu Bar
; System Window
In Content
In Drag
In Grow (Not used)
In Go Away (Not used)

The Window Sample Program 111

SystemEvent

; The mouse button was pressed in a system window. SystemClick calls the
; appropriate desk accessory to handle the event.

; PROCEDURE

PEA
MOVE .

L

SystemClick
BRA

SystemClick (theEvent: EventRecord;
theWindow: WindowPtr);

EventRecord
WWindow, - (SP)

NextEvent

Get event record
and window pointer
Let the system do it
Go get next event

Content

; The click was in the content area of a window. If our window was in
; front, then call Quickdraw to get local coordinates, then pass the
; coordinates to TextEdit. We also determine whether the shift key was
; pressed so TextEdit can do shift-clicking. If our window wasn't in
; front, move it to the front, but don't process click.

CLR.L -(SP)
FrontWindow

MOVE . L (SP) +, DO
CMP.L WindowPReg, DO
BEQ.S @1

; clear room for result
; get FrontWindow
; Is front window pointer
; same as our pointer?
; Yes, call TextEdit

; We weren't active, select our window. This causes an activate event.

; PROCEDURE SelectWindow (theWindow: WindowPtr);
MOVE.L WWindow, - (SP) ; Window Pointer To Stack
SelectWindow ; Select Window

BRA NextEvent ; and get next event

@1

; We were active, pass the click (with shift) to TextEdit.

; PROCEDURE GlobalToLocal (VAR pt: Point);
PEA Point ; Mouse Point
_GlobalToLocal ; Global To Local

; PROCEDURE TEClick (pt: Point; extend: BOOLEAN; hTE : TEHandle)

;

MOVE.L Point, -(SP) ; Mouse Point (GTL)
BTST #shiftKey, ModifyReg ; Is shift key down?
SNE DO ; True if shift down

; Note: We want the boolean in the high byte, so use MOVE.B. The 68000
; pushes an extra, unused byte on the stack for us.

MOVE.B
MOVE .

L

TEClick
BRA

DO,- (SP)
TextHReg,- (SP)

NextEvent

Identify Text
TEClick
Go get next event

Drag

; The click was in the drag bar of the window. Draggit.

; DragWindow (theWindow : WindowPtr;
MOVE.L WWindow, -(SP)
MOVE.L Point, -(SP)
PEA Bounds
DragWindow

BRA

startPt: Point; boundsRect: Rect)

;

; Pass window pointer
; mouse coordinates
; and boundaries
; Drag Window
; Go get next eventNextEvent

112 Macintosh 68000 Development System

InMenu

; The click was in the menu bar. Determine which menu was selected, then
; call the appropriate routine.

; FUNCTION
CLR.L
MOVE .

L

MenuSelect
MOVE
MOVE

MenuSelect (startPt : Point) : Longlnt;
-(SP) ; Get Space For Menu Choice
Point, -(SP) ; Mouse At Time Of Event

; Menu Select
(SP) +, MenuReg ; Save Menu
(SP) +, MenuItemReg ; and Menu Item

; On entry to Choices, the resource ID of the Menu is saved in the low
; word of a register, and the resource ID of the Menultem in another.
; The routine MenuKey, used when a command key is pressed, returns the same
; info

.

Choices

CMP
BEQ
CMP
BEQ
CMP
BEQ

ChoiceReturn

BSR
BRA

InFileMenu

#AppleMenu , MenuReg
InAppleMenu
#FileMenu, MenuReg
InFileMenu
#EditMenu, MenuReg
InEditMenu

Called by command key too

Is It In Apple Menu?
Go do Apple Menu
Is It In File Menu?
Go do File Menu
Is It In Edit Menu?
Go do Edit Menu

UnHiliteMenu
NextEvent

Unhighlight the menu bar
Go get next event

; If it was in the File menu, just check for Quit since that's all there is.

CMP #QuitItem, MenuItemReg ; Is It Quit?
BNE.S ChoiceReturn ; No, Go get next event
BSR UnHiliteMenu ; Unhiqhlight the menu bar
MOVE #-l , DO ; say It was Quit
RTS

InEditMenu

; First, call SystemEdit. If a desk accessory is active that uses the Edit
; menu (such as the Notepad) this ltets it use our menu.
; Decide whether it was cut, copy, paste, or clear. Ignore Undo since we
; didn't implement it.

BSR SystemEdit
BNE.S ChoiceReturn
CMP #CutItem, MenuItemReg
BEQ Cut
CMP #CopyItem, MenuItemReg
BEQ Copy
CMP #PasteItem, MenuItemReg
BEQ Paste
CMP #ClearItem, MenuItemReg
BEQ Clear
BRA.S ChoiceReturn

Desk accessory active?
Yes, SystemEdit handled it
Is It Cut?
Yes, go handle it
Is it Copy?
Yes, go handle it
Is it Paste?
Yes, go handle it
Is it Clear?
Yes, go handle it
Go get next event

The Window Sample Program 113

InAppleMenu

; It was in the Apple menu. If it wasn't About, then it must have been a
; desk accessory. If so, open the desk accessory.

CMP #AboutItem, MenuItemReg ; Is It About?
BEQ About ; If So Goto About...

; PROCEDURE

MOVE .

L

MOVE
PEA
GetItem

Getltem (menu: MenuHandle; item: INTEGER;
VAR itemString: Str255);

AppleHReg, - (SP) ; Look in Apple Menu
MenuItemReg, - (SP) ; What Item Number?
DeskName ; Get Item Name

; Get Item

; FUNCTION
CLR
PEA
OpenDeskAcc

MOVE

OpenDeskAcc
"(SP)
DeskName

(SP) +, DO

(theAcc : Str255) : INTEGER;
; Space For Opening Result
; Open Desk Acc
; Open It
; Pop result

GoSetOurPort

BSR SetOurPort
BRA. S ChoiceReturn

Set port to us
Unhilite menu and return

Cut

Text Editing Routines

; CUT

; PROCEDURE
MOVE .

L

TECut
BRA.S

TECut (hTE : TEHandle);
TextHReg, - (SP) ; Identify Text

; Cut it and copy it
ChoiceReturn ; Go get next event

Copy COPY

; PROCEDURE
MOVE .

L

TECopy
BRA. S

TECopy (hTE: TEHandle);
TextHReg,- (SP)

ChoiceReturn ;

Identify Text
Copy text to clipboard
Go get next event

Paste PASTE

; PROCEDURE
MOVE .

L

TEPaste
BRA. S

TEPaste (hTE: TEHandle);
TextHReg,- (SP)

ChoiceReturn ;

Identify Text
Paste
Go get next event

Clear

; PROCEDURE
MOVE .

L

TEDelete
BRA.S

TEDelete (hTE: TEHandle);
TextHReg, - (SP) ; Point to text

; Clear without copying
ChoiceReturn ; Go get next event

; SystemEdit does undo, cut, copy, paste, and clear for desk accessories.
; It returns False (BEQ) if the active window doesn't belong to a
; desk accessory.

SystemEdit

; FUNCTION
CLR
MOVE
SUBQ
SysEdit

MOVE .

B

RTS

SystemEdit (editCmd: INTEGER) : BOOLEAN;
-(SP) ; Space for result
MenuItemReg, - (SP) ; Get item in Edit menu
#1, (SP) ; SystemEdit is off by 1

; Do It
(SP)+,D0 ; Pop result

; BEQ if NOT handled

114 Macintosh 68000 Development System

UnhiliteMenu

; PROCEDURE
CLR
HiLiteMenu

KTS

HiLiteMenu (menuID: INTEGER);
-(SP) ; All Menus

; UnHilite Them All

-Mi sc Routines

About

; Call GetNewDialog to read the dialog box parameters from the resource file
; and display the box. Set the port to the box, then wait for the proper
; click or keypress. Finally, close the dialog box and set the pointer to us.

; FUNCTION

CLR.L
MOVE
PEA
MOVE .

L

GetNewDialog (dialogID:
behind:

~(SP)
#AboutDialog, - (SP) ;

DStorage ;

#-l,-(SP)
GetNewDialog

MOVE . L (SP),-(SP)

INTEGER; dStorage: Ptr;
WindowPtr) : DialogPtr
Space For dialog pointer
Identify dialog rsrc #
Storage area
Dialog goes on top
Display dialog box
Copy handle for Close

; PROCEDURE
SetPort

SetPort (gp: GrafPort)

;

Handle already on stack
Make dialog box the port

; PROCEDURE TEDeActivate (hTE : TEHandle)
MOVE . L TextHReg,- (SP) ; Identify Text
TEDeActivate ; Deactivate Text

WaitOK

; PROCEDURE ModalDialog

CLR.L -(SP)
PEA ItemHit
_ModalDialog

(filterProc: ProcPtr;
VAR itemHit: INTEGER);

; Clear space For handle
; Storage for item hit
; Wait for a response

MOVE
CMP
BNE

ItemHit, DO
#ButtonItem, DO
WaitOK

Look to see what was hit
was it OK?
No, wait for OK

; PROCEDURE CloseDialog (theDialog: DialogPtr);
_CloseDialog ; Handle already on stack
BRA GoSetOurPort '

; Set port to us and return

The Window Sample Program 115

Data Starts Here

EventRecord ; NextEvent's Record
What: DC 0 ; Event number
Message

:

DC . L 0 ; Additional information
When

:

DC . L 0 ; Time event was posted
Point

:

DC . L 0 ; Mouse coordinates
Modify: DC 0 ; State of keys and button
WWindow: DC . L 0 ; Find Window' s Result

DStorage DCB.W DWindLen,

0

; Storage For Dialog
DeskName DCB.W 16, 0 ; Desk Accessory's Name
Bounds DC 28, 4,308,508 ; Drag Window' s Bounds
ViewRect DC 5,4,245,405 ; Text Record' s View Rect
DestRect DC 5,4,245,405 ; Text Record' s Dest Rect
ItemHit DC 0 ; Item clicked in dialog

; Nonrelocatable Storage

; Variables declared using DS are placed in a global space relative to
; A5 . When these variables are referenced, A5 must be explicitly mentioned.

WindowStorage DS.W WindowSize ; Storage for Window

End

116 Macintosh 68000 Development System

The Program 's Resource File

*

* This is the resource file for the example program called "Window"

MDS2 : Window. Rsrc

*

* MENU Resource #1 specifies the menus used by the Window program.
* For proper support of the Desk accessories, the Apple menu
* should be first, and the Edit menu should be third. The first 5 items
* in the Edit menu should be identical to those used below. This makes
* it possible for the desk accessories to share the Edit menu with your
* application.
*

Type MENU
,1

\14
About This Example. .

.

<-

, 2
File

Quit

,3
Edit

(Undo/Z
<-
Cut/X
Copy/C
Paste/V
Clear

* Dialog Resource #1 specifies properties of the About box. It points
* to Dialog Item List (DITL) Resource #1 as containing its items.

Type DLOG
,1

100 100 190 400
Visible NoGoAway
1
0
1

* Dialog Item List Resource #1 specifies the items in the About box.
* By convention, the first item in an item list is the OK button.
* If there is a cancel button, it should be second. This makes it
* easier to interpret the item number returned by the call to ModalDialog.

Type DITL
,1

3

Button
60 230 80 290
OK

StaticText
15 20 36 300
This sample program was written

StaticText
35 20 56 300
just to prove it could be done

!

The Program's Resource File 117

* WIND Resource #1 specifies the title, coordinates, and other status
* for the window in which editing takes place. It is displayed by a
* call to GetNewWindow

.

Type WIND
,1

A Sample
50 40 300 450
Visible NoGoAway
0
0

Appendix B

System Traps

.

u

System Traps : Sorted by Name 121

System Traps : Sorted by Name

Here is an alphabetically sorted list of the Toolbox and Operating
System traps and their trap numbers in hexadecimal.

Make sure the names you use are the same as the names given here,
names that differ when used from Pascal are marked by an asterisk.

AddDrive $A04E ClosePort $A87D
AddPt $A87E CloseResFile $A99A

AddReference $A9AC CloseRgn $A8DB

AddResMenu $A94D CloseWindow $A92D
AddResource $A9AB Cmp String $A03C *

Alert $A985 ColorBit $A864

Allocate $A010 * CompactMem $A04C

AngleFromSlope $A8C4 Control $A004 *

AppendMenu $A933 CopyBits $A8EC

BackColor $A863 CopyRgn $A8DC
BackPat $A87C CouldAlert $A989

BeginUpdate $A922 CouldDialog $A979
BitAnd $A858 CountMItems $A950
BitClr $A85F CountResources $A99C

BitNot $A85A CountTypes $A99E
BitOr $A85B Create $A008 *

BitSet $A85E CreateResFile $A9B1

BitShift $A85C CurResFile $A994
BitTst $A85D Date2Secs $A9C7
BitXOr $A859 Delay $A03B
BlockMove $A02E Delete $A009 *

BringToFront $A920 DeleteMenu $A936
Button $A974 DeltaPoint $A94F
CalcMenuSize $A948 Dequeue $A96E
CalcVBehind $A90A * DetachResource $A992
CalcVis $A909 DialogSelect $A980
CautionAlert $A988 DiffRgn $A8E6
Chain $A9F3 Disableltem $A93A
ChangedResData $A9AA DisposControl $A955 *

CharWidth $A88D DisposDialog $A983 *

Checkltem $A945 DisposeMenu $A932
CheckUpdate $A911 DisposHandle $A023
ClearMenuBar $A934 DisposPtr $A01F
ClipAbove $A90B DisposRgn $A8D9 *

ClipRect $A87B DisposWindow $A914 *

Close $A001 * DragControl $A967

CloseDeskAcc $A9B7 DragGrayRgn $A905

CloseDialog $A982 DragTheRgn $A926
ClosePgon $A8CC * DragWindow $A925

ClosePicture $A8F4 DrawChar $A883

Trap

122 Macintosh 68000 Development System

DrawControls $A969 FreeAlert $A98A
DrawDialog $A981 FreeDialog $A97A
DrawGrowIcon $A904 FreeMem $A01C
DrawMenuBar $A937 FrontWindow $A924
DrawNew $A90F GetAppParms $A9F5
DrawPicture $A8F6 GetClip $A87A
DrawString $A884 GetCRefCon $A95A
DrawText $A885 GetCTitle $A95E
Drvr Ins tall $A03D * GetCtlAction $A96A
DrvrRemove $A03E * GetCtlValue $A960
Eject $A017 * GetCursor $A9B9
EmptyHandle $A02B GetDItem $A98D
EmptyRect $A8AE GetEOF $A01 1 *

EmptyRgn $A8E2 GetFilelnf

o

$A00C *

Enableltem $A939 GetFName $A8FF *

EndUpdate $A923 GetFNum $A900
Enqueue $A96F GetFontlnf

o

$A88B
EqualPt $A881 GetFPos $A018 *

EqualRect $A8A6 GetHandleSize $A025
EqualRgn $A8E3 Get Icon $A9BB
EraseArc $A8C0 Get Ind Resource $A99D
EraseOval $A8B9 GetlndType $A99F
ErasePoly $A8C8 Getltem $A946
EraseRect $A8A3 GetIText $A990
EraseRgn $A8D4 Getltmlcon $A93F *

EraseRoundRect $A8B2 GetltmMark $A943 *

Error Sound $A98C GetltmStyle $A941 *

EventAvail $A971 GetKeys $A976
Exit To Shell $A9F4 GetMaxCtl $A962 *

FillArc $A8C2 GetMenuBar $A93B
FillOval $A8BB GetMHandle $A949
FillPoly $A8CA GetMinCtl $A961 *

FillRect $A8A5 GetMouse $A972
FillRgn $A8D6 Ge t NamedRe source $A9A1
FillRoundRect $A8B4 GetNewControl $A9BE
FindControl $A96C GetNewDialog $A97C
FindWindow $A92C GetNewMBar $A9C0
FixMul $A868 GetNewWindow $A9BD
FixRatio $A869 GetNextEvent $A970
FixRound $A86C GetOSEvent $A031
FlashMenuBar $A94C GetPattern $A9B8
FlushEvents $A032 GetPen $A89A
FlushFile $A045 * GetPenState $A898
FlushVol $A013 * GetPicture $A9BC
FMSwapFont $A901 * GetPixel $A865
ForeColor $A862 GetPort $A874
FrameArc $A8BE GetPtrSize $A021

FrameOval $A8B7 GetResAttrs $A9A6
FramePoly $A8C6 GetResFileAttrs $A9F6
FrameRect $A8A1 GetRes Info $A9A8
FrameRgn $A8D2 GetResource $A9A0
FrameRoundRect $A8B0 GetRMenu $A9BF *

System Traps: Sorted by Name 123

Get Scrap $A9FD InverRoundRec t $A8B3 *

Get St ring $A9BA InvertArc $A8C1
GetTrapAddress $A046 InvertOval $A8BA
GetVol $A014 * InvertPoly $A8C9
GetVolInfo $A007 * IsDialogEvent $A97F
GetWindowPic $A92F KillControls $A956
GetWMgrPort $A910 KilllO $A006 *

GetWRefCon $A917 KillPicture $A8F5
GetWTitle $A919 KillPoly $A8CD
Get Zone $A01A Launch $A9F2
GlobalToLocal $A87

1

Line $A892
GrafDevice $A872 LineTo $A891
GrowWindow $A92B LoadResource $A9A2
HandAndHand $A9E4 LoadSeg $A9F0
HandleZone $A026 LocalToGlobal $A870

HandToHand $A9E1 LodeScrap $A9FB *

HideControl $A958 LongMul $A867
HideCursor $A852 LoWord $A86B
HidePen $A896 MapPoly $A8FC
HideWindow $A916 MapPt $A8F9
HiliteControl $A95D MapRect $A8FA
HiliteMenu $A938 MapRgn $A8FB
HiliteWindow $A91C MaxMem $A01D
HiWord $A86A MenuKey $A93E
HLock $A029 MenuSelect $A93D
HNoPurge $A04A ModalDialog $A991
HomeRes File $A9A4 MoreMasters $A036
HPurge $A049 MountVol $A00F *

HUnlock $A02A Move $A894
InfoScrap $A9F9 MoveControl $A959
InitAllPacks $A9E6 Move Port To $A877
Ini tApplZone $A02C Move To $A893
InitCursor $A850 MoveWindow $A91B
InitDialogs $A97B Munger $A9E0
InitFonts $A8FE NewControl $A954
InitGraf $A86E NewDialog $A97D
Ini tMenus $A930 NewHand le $A022
Ini tPack $A9E5 NewMenu $A931
Ini t Port $A86D NewPtr $A01E
InitQueue $A016 NewRgn $A8D8
InitResources $A995 NewString $A906
InitUtil $A03F NewWindow $A913
InitWindows $A912 NoteAlert $A987
Ini t Zone $A019 ObscureCursor $A856
InsertMenu $A935 Offline $A035 *

InsertResMenu $A951 Of fsetPoly $A8CE
InsetRect $A8A9 Off setRect $A8A8
InsetRgn $A8E1 Of setRgn $A8E0 *

InvalRect $A928 Open $A000 *

InvalRgn $A927 OpenDeskAcc $A9B6
InverRect $A8A4 * OpenPicture $A8F3
InverRgn $A8D5 * OpenPoly $A8CB

124 Macintosh 68000 Development System

OpenPort $A86F Rename $A00B *

OpenResFile $A997 ResError $A9AF
OpenRF $A00A * ResrvMem $A040
OpenRgn $A8DA RmveReference $A9AE
OSEventAvail $A030 RmveResource $A9AD
Pack0 $A9E7 RsrcZonelnit $A996
Packl $A9E8 RstFilLock $A042 *

Pack2 $A9E9 SaveOld $A90E
Pack3 $A9EA ScalePt $A8F8
Pack4 $A9EB ScrollRect $A8EF
Pack5 $A9EC Secs2Date $A9C6
Pack6 $A9ED SectRect $A8AA
Pack7 $A9EE SectRgn $A8E4
PackBits $A8CF SelectWindow $A91F
PaintArc $A8BF SellText $A97E
PaintBehind $A90D SendBehind $A921
PaintOne $A90C SetAppBase $A857 *

PaintOval $A8B8 SetApplLimit $A02D
PaintPoly $A8C7 SetClip $A879
PaintRect $A8A2 SetCRefCon $A95B
PaintRgn $A8D3 SetCTitle $A95F
PaintRoundRect $A8B1 SetCtlAction $A96B
ParamText $A98B SetCtlValue $A963
PenMode $A89C SetCursor $A851
PenNormal $A89E SetDateTime $A03A
PenPat $A89D SetDItem $A98E
PenSize $A89B Se tEmptyRgn $A8DD
PicComment $A8F2 SetEOF $A012 *

PinRect $A94E SetFilelnfo $A00D *

Plot Icon $A94B SetFilLock $A041 *

PortSize $A876 SetFilType $A043 *

PostEvent $A02F SetFontLock $A903
Pt2Rect $A8AC SetFPos $A044 *

PtlnRect $A8AD SetGrowZone $A04B
PtlnRgn $A8E8 SetHandleSize $A024
PtrAndHand $A9EF Set Item $A947
PtrToHand $A9E3 SetIText $A98F
PtrToXHand $A9E2 Setltmlcon $A940 *

PtrZone $A048 SetltmMark $A944 *

PtToAngle $A8C3 SetltmStyle $A942 *

PurgeMem $A04D SetMaxCtl $A965 *

PutScrap $A9FE SetMenuBar $A93C
Random $A861 SetMFlash $A94A *

RDrvr Ins tall $A04F SetMinCtl $A964 *

Read $A002 * SetOrigin $A878
ReadDateTime $A039 SetPBits $A875 *

RealFont $A902 SetPenState $A899
ReallocHandle $A027 SetPort $A873
RecoverHandle $A028 SetPt $A880
RectlnRgn $A8E9 SetPtrSize $A020
RectRgn $A8DF SetRecRgn $A8DE *

ReleaseResource $A9A3 SetRect $A8A7

System Traps : Sorted by Name 125

SetResAttrs $A9A7 TEActivate $A9D8
SetResFileAttrs $A9F7 TECalText $A9D0
SetResInfo $A9A9 TEClick $A9D4
SetResLoad $A99B TECopy $A9D5
Set ResPurge $A993 TECut $A9D6
SetStdProcs $A8EA TEDeactivate $A9D9
Set String $A907 TEDelete $A9D7
SetTrapAddress $A047 TEDispose $A9CD
SetVol $A015 * TEGetText $A9CB
SetWindowPic $A92E TEIdle $A9DA
SetWRefCon $A918 TEInit $A9CC
SetWTitle $A91A TEInsert $A9DE
SetZone $A01B TEKey $A9DC
ShieldCursor $A855 TENew $A9D2
ShowControl $A957 TEPaste $A9DB
ShowCursor $A853 TEScroll $A9DD
ShowHide $A908 TESetJust $A9DF
ShowPen $A897 TESetSelect $A9D1
ShowWindow $A915 TESetText $A9CF
SizeControl $A95C TestControl $A966
SizeResource $A9A5 TEUpdate $A9D3
SizeWindow $A91D Text Box $A9CE
SlopeFromAngle $A8BC TextFace $A888
SpaceExtra $A88E TextFont $A887
Status $A005 * TextMode $A889
StdArc $A8BD TextSize $A88A
StdBits $A8EB TextWidth $A886
StdComment $A8F1 TickCount $A975
StdGetPic $A8EE TrackControl $A968
StdLine $A890 TrackGoAway $A91E
StdOval $A8B6 UnionRect $A8AB
StdPoly $A8C5 UnionRgn $A8E5
StdPutPic $A8F0 Unique ID $A9C1
StdRect $A8A0 Unload Seg $A9F1
StdRgn $A8D1 UnlodeScrap $A9FA *

StdRRect $A8AF UnmountVol $A00E *

StdText $A882 UnpackBits $A8D0
StdTxMeas $A8ED UpdateResFile $A999
StillDown $A973 UprString $A854
StopAlert $A986 UseResFile $A998
StringWidth $A88C ValidRect $A92A
StuffHex $A866 ValidRgn $A929
SubPt $A87F VInstall $A033
SysBeep $A9C8 VRemove $A034
SysEdit $A9C2 * WaitMouseUp $A977
SysError $A9C9 Write $A003 *

SystemClick $A9B3 WriteParam $A038
SystemEvent $A9B2 WriteResource $A9B0
SystemMenu $A9B5 XOrRgn $A8E7
SystemTask $A9B4 ZeroScrap $A9FC

126 Macintosh 68000 Development System

System Traps: Sorted by Number

Here is an alphabetically sorted list of the Toolbox and Operating
System traps, and their trap numbers in hexadecimal.

Make sure the names you use are the same as the names given here.

names that differ when iused from Pascal are marked by an asterisk

$A000 Open * $A028 RecoverHandle
$A001 Close * $A029 HLock
$A002 Read * $A02A HUnlock
$A003 Write * $A02B EmptyHandle
$A004 Control * $A02C Ini tApplZone
$A005 Status * $A02D SetApplLimit
$A006 Kill 10 * $A02E BlockMove
$A007 GetVolInfo * $A02F PostEvent
$A008 Create $A030 OSEventAvail
$A009 Delete $A031 GetOSEvent
$A00A OpenRF * $A032 FlushEvents
$A00B Rename * $A033 VInstall
$A00C GetFilelnf

o

* $A034 VRemove
$A00D SetFilelnfo * $A035 Offline *

$A00E UnmountVol * $A036 MoreMasters
$A00F MountVol * $A038 WriteParam
$A010 Allocate * $A039 ReadDateTime
$A01

1

GetEOF * $A03A SetDateTime
$A012 SetEOF * $A03B Delay
$A013 FlushVol * $A03C Cmp String *

$A014 GetVol *
$A03D Drvr Ins tall *

$A015 SetVol * $A03E DrvrRemove it

$A016 Ini tQueue $A03F InitUtil
$A017 Eject *

$A040 ResrvMem
$A018 GetFPos * $A041 SetFilLock it

$A019 Ini t Zone $A042 RstFilLock *

$A01A Get Zone $A043 SetFilType *

$A01B SetZone $A044 SetFPos *

$A01C FreeMem $A045 FlushFile *

$A01D MaxMem $A046 GetTrapAddress
$A01E NewPtr $A047 SetTrapAddress
$A01F DisposPtr $A048 PtrZone
$A020 SetPtrSize $A049 HPurge
$A021 GetPtrSize $A04A HNoPurge
$A022 NewHandle $A04B SetGrowZone
$A023 DisposHandle $A04C CompactMem
$A024 SetHandleSize $A04D PurgeMem
$A025 GetHandleSize $A04E AddDrive
$A026 HandleZone $A04F RDrvrInstall
$A027 ReallocHandle $A850 InitCursor

Trap

System Traps: Sorted by Number 127

$A851 SetCursor
$A852 HideCursor
$A853 ShowCursor
$A854 UprString
$A855 ShieldCursor
$A856 ObscureCursor
$A857 SetAppBase
$A858 BitAnd
$A859 BitXOr
$A85A BitNot
$A85B Bit Or
$A85C BitShift
$A85D BitTst
$A85E BitSet
$A85F BitClr
$A861 Random
$A862 ForeColor
$A863 BackColor
$A864 ColorBit
$A865 GetPixel
$A866 StuffHex
$A867 LongMul
$A868 FixMul
$A869 FixRatio
$A86A HiWord
$A86B LoWord
$A86C FixRound
$A86D InitPort
$A86E InitGraf
$A86F OpenPort
$A870 LocalToGlobal
$A871 GlobalToLocal
$A872 GrafDevice
$A873 SetPort
$A874 GetPort
$A875 SetPBits
$A876 PortSize
$A877 MovePortTo
$A878 SetOrigin
$A879 SetClip
$A87A GetClip
$A87B ClipRect
$A87C BackPat
$A87D ClosePort
$A87E AddPt
$A87F SubPt
$A880 SetPt
$A881 EqualPt
$A882 StdText
$A883 DrawChar
$A884 DrawString
$A885 DrawText

$A886 TextWidth
$A887 TextFont
$A888 Text Face
$A889 TextMode
$A88A Text Size
$A88B Get Font Info
$A88C StringWidth
$A88D CharWidth
$A88E SpaceExtra
$A890 StdLine
$A891 LineTo
$A892 Line
$A893 MoveTo
$A894 Move
$A896 Hide Pen
$A897 ShowPen
$A898 GetPenState
$A899 SetPenState
$A89A GetPen
$A89B PenSize
$A89C PenMode
$A89D PenPat
$A89E PenNormal
$A8A0 StdRect
$A8A1 FrameRect
$A8A2 PaintRect
$A8A3 EraseRect
$A8A4 InverRect *

$A8A5 FillRect
$A8A6 EqualRect
$A8A7 SetRect
$A8A8 Of f setRect
$A8A9 InsetRect
$A8AA SectRect
$A8AB UnionRect
$A8AC Pt2Rect
$A8AD PtlnRect
$A8AE EmptyRect
$A8AF StdRRect
$A8B0 FrameRoundRect
$A8B1 PaintRoundRect
$A8B2 EraseRoundRect
$A8B3 InverRoundRect *

$A8B4 FillRoundRect
$A8B6 StdOval
$A8B7 FrameOval
$A8B8 PaintOval
$A8B9 EraseOval
$A8BA InvertOval
$A8BB FillOval
$A8BC SlopeFromAngle
$A8BD StdArc

128 Macintosh 68000 Development System

$A8BE FrameArc $A8F3 OpenPicture
$A8BF PaintArc $A8F4 ClosePicture
$A8C0 EraseArc $A8F5 KillPicture
$A8C1 InvertArc $A8F6 DrawPicture
$A8C2 FillArc $A8F8 ScalePt
$A8C3 PtToAngle $A8F9 MapPt
$A8C4 AngleFromSlope $A8FA MapRect
$A8C5 StdPoly $A8FB MapRgn
$A8C6 FramePoly $A8FC MapPoly
$A8C7 PaintPoly $A8FE InitFonts

$A8C8 ErasePoly $A8FF GetFName

$A8C9 InvertPoly $A900 GetFNum

$A8CA FillPoly $A901 FMSwapFont

$A8CB OpenPoly $A902 Real Font

$A8CC ClosePgon * $A903 SetFontLock

$A8CD KillPoly $A904 DrawGrowIcon

$A8CE Of f setPoly $A905 DragGrayRgn

$A8CF PackBits $A906 NewString

$A8D0 UnpackBits $A907 SetString

$A8D1 StdRgn $A908 ShowHide

$A8D2 FrameRgn $A909 CalcVis
$A8D3 PaintRgn $A90A CalcVBehind
$A8D4 EraseRgn $A90B ClipAbove
$A8D5 InverRgn * $A90C PaintOne
$A8D6 FillRgn $A90D PaintBehind
$A8D8 NewRgn $A90E SaveOld
$A8D9 DisposRgn $A90F DrawNew
$A8DA OpenRgn $A910 GetWMgrPort
$A8DB CloseRgn $A911 CheckUpdate
$A8DC CopyRgn $A912 InitWindows
$A8DD Set EmptyRgn $A913 NewWindow
$A8DE SetRecRgn * $A914 DisposWindow
$A8DF RectRgn $A915 ShowWindow
$A8E0 Of setRgn * $A916 HideWindow
$A8E1 InsetRgn $A917 GetWRefCon
$A8E2 EmptyRgn $A918 SetWRefCon
$A8E3 EqualRgn $A919 GetWTitle
$A8E4 SectRgn $A91A SetWTitle
$A8E5 UnionRgn $A91B MoveWindow
$A8E6 DiffRgn $A91C HiliteWindow
$A8E7 XOrRgn $A91D SizeWindow
$A8E8 Pt InRgn $A91E TrackGoAway
$A8E9 RectinRgn $A91F SelectWindow
$A8EA SetStdProcs $A920 BringToFront
$A8EB StdBits $A921 Send Behind
$A8EC CopyBits $A922 BeginUpdate
$A8ED StdTxMeas $A923 EndUpdate
$A8EE StdGetPic $A924 FrontWindow
$A8EF ScrollRect $A925 DragWindow
$A8F0 StdPutPic $A926 DragTheRgn
$A8F1 StdComment $A927 InvalRgn
$A8F2 PicComment $A928 InvalRect

System Traps: Sorted by Number 129

$A929 ValidRgn
$A92A ValidRect
$A92B GrowWindow
$A92C FindWindow
$A92D CloseWindow
$A92E SetWindowPic
$A92F GetWindowPic
$A930 Ini tMenus
$A931 NewMenu
$A932 DisposeMenu
$A933 AppendMenu
$A934 ClearMenuBar
$A935 InsertMenu
$A936 DeleteMenu
$A937 DrawMenuBar
$A938 HiliteMenu
$A939 Enable Item
$A93A Disableltem
$A93B GetMenuBar
$A93C SetMenuBar
$A93D MenuSelect
$A93E MenuKey
$A93F Getltmlcon *

$A940 Setltmlcon *

$A941 GetltmStyle *

$A942 SetltmStyle *

$A943 GetltmMark *

$A944 SetltmMark *

$A945 Checkltem
$A946 Getltem
$A947 Set Item
$A948 CalcMenuSize
$A949 GetMHandle
$A94A SetMFlash *

$A94B Plot Icon
$A94C FlashMenuBar
$A94D AddResMenu
$A94E PinRect
$A94F DeltaPoint
$A950 CountMItems
$A951 InsertResMenu
$A954 NewControl
$A955 DisposControl
$A956 KillControls
$A957 ShowControl
$A958 HideControl
$A959 MoveControl
$A95A GetCRefCon
$A95B SetCRefCon
$A95C SizeControl
$A95D HiliteControl
$A95E GetCTitle

$A95F SetCTitle
$A960 GetCtlValue
$A961 GetMinCtl *

$A962 GetMaxCtl *

$A963 SetCtlValue
$A964 SetMinCtl *

$A965 SetMaxCtl *

$A966 TestControl
$A967 DragControl
$A968 TrackControl
$A969 DrawControls
$A96A GetCtlAction
$A96B SetCtlAction
$A96C FindControl
$A96E Dequeue
$A96F Enqueue
$A970 GetNextEvent
$A971 EventAvail
$A972 GetMouse
$A973 StillDown
$A974 Button
$A975 TickCount
$A976 GetKeys
$A977 WaitMouseUp
$A979 CouldDialog
$A97A FreeDialog
$A97B InitDialogs
$A97C GetNewDialog
$A97D NewDialog
$A97E SellText
$A97F IsDialogEvent
$A980 DialogSelect
$A981 DrawDialog
$A982 CloseDialog
$A983 DisposDialog
$A985 Alert
$A986 StopAlert
$A987 NoteAlert
$A988 CautionAlert
$A989 CouldAlert
$A98A FreeAlert
$A98B ParamText
$A98C Error Sound
$A98D GetDItem
$A98E SetDItem
$A98F SetIText
$A990 GetIText
$A991 ModalDialog
$A992 DetachResource
$A993 SetResPurge
$A994 CurRes File
$A995 InitResources

130 Macintosh 68000 Development System

$A996 RsrcZone Init $A9CD TEDispose
$A997 OpenResFile $A9CE TextBox
$A998 UseResFile $A9CF TESetText
$A999 UpdateResFile $A9D0 TECalText

$A99A CloseResFile $A9D1 TESetSelect
$A99B SetResLoad $A9D2 TENew
$A99C CountResources $A9D3 TEUpdate
$A99D Get IndResource $A9D4 TEClick
$A99E CountTypes $A9D5 TECopy
$A99F Get IndType $A9D6 TECut
$A9A0 GetResource $A9D7 TEDelete
$A9A1 Ge tNamedResource $A9D8 TEActivate

$A9A2 LoadResource $A9D9 TEDeactivate
$A9A3 ReleaseResource $A9DA TEIdle

$A9A4 HomeResFile $A9DB TEPaste

$A9A5 SizeResource $A9DC TEKey

$A9A6 GetResAttrs $A9DD TEScroll

$A9A7 SetResAttrs $A9DE TEInsert

$A9A8 GetRes Info $A9DF TESet Just

$A9A9 SetResInfo $A9E0 Munger

$A9AA ChangedResData $A9E1 Hand ToHand

$A9AB AddResource $A9E2 PtrToXHand

$A9AC AddReference $A9E3 PtrToHand

$A9AD RmveResource $A9E4 HandAndHand

$A9AE RmveReference $A9E5 InitPack

$A9AF ResError $A9E6 InitAllPacks

$A9B0 WriteResource $A9E7 Pack0

$A9B1 CreateResFile $A9E8 Packl

$A9B2 SystemEvent $A9E9 Pack2
$A9B3 SystemClick $A9EA Pack 3

$A9B4 SystemTask $A9EB Pack4
$A9B5 SystemMenu $A9EC Pack5

$A9B6 OpenDeskAcc $A9ED Pack6

$A9B7 CloseDeskAcc $A9EE Pack7

$A9B8 GetPattern $A9EF PtrAndHand
$A9B9 GetCursor $A9F0 LoadSeg
$A9BA GetString $A9F1 Unload Seg
$A9BB Getlcon $A9F2 Launch
$A9BC GetPicture $A9F3 Chain
$A9BD GetNewWindow $A9F4 ExitTo Shell
$A9BE GetNewControl $A9F5 GetAppParms
$A9BF GetRMenu * $A9F6 GetRes FileAttrs

$A9C0 GetNewMBar $A9F7 SetResFileAttrs
$A9C1 Unique ID $A9F9 Info Scrap
$A9C2 SysEdit * $A9FA Unlode Scrap

$A9C6 Secs2Date $A9FB Lode Scrap

$A9C7 Date2Secs $A9FC Zero Scrap

$A9C8 SysBeep $A9FD Get Scrap

$A9C9 SysError $A9FE Put Scrap

$A9CB TEGetText $A9FF Debugger

$A9CC TEInit

Appendix C

Error Messages

Assembler Error Messages 133

Assembler Error Messages

Here is a list of the error messages that can be displayed by the
Assembler. A brief description accompanies the messages that are not
entirely self-explanatory.

Absolute expression required
Character literal size error: Character literals must be from 1 to 4

characters long.
Could not open
Could not open error file:
Could not open file:
Could not open file name list file: Could not open a .Files file.
Disk full
Disk I/O error
Disk write-protected
ELSE out of context: Only occurs in an IF statement.
Expression must be constant
Fatal assembly error:
File name too long: The symbol is longer than 252 characters.
File open error
Illegal .ALIGN value
Illegal .DUMP file name
Illegal expression follows #: For example, #D0.
Illegal expression operand in EA: The operand used in the effective
address field is illegal.

Illegal formal not declared
Illegal INCLUDE file name
Illegal index size: For example, 274(A0,D0).
Illegal indexing: For example 23(D0,D1).
Illegal line: The Assembler could not recognize the line as anything.
Often caused by missing semicolon on comment line.

Illegal number: For example, an octal number with an 8 in it.
Illegal opcode name
Illegal opcode size tag: One of the extensions .B, .W, or .L was not
used in the proper context.

Illegal operand
Illegal operand /operator combination: This is a general error message.
Caused, for example, by MOVE.L D0,34(PC).

Illegal operator
Illegal or missing operand(s) for instruction: For example, PEA D0.
Illegal register list
Illegal relocation in expression
Illegal RESOURCE directive
Illegal string comparison: Only occurs in an IF statement.
Illegal symbol type

:

Illegal trap definition
I/O memory error
Macro definition error
Macro too long
Missing <char>
Missing ENDIF: Only occurs in an IF statement.
Missing formal in macro

134 Macintosh 68000 Development System

Missing formal in macro definition or call
Missing macro definition body
Missing operand
Missing operator
Missing string literal
Multiply defined label: The specified label was previously declared.
Multiply defined symbol
<Name> redefined
Not enough room for...: Occurs when loading packed symbols.
Number expected: This message comes from a macro definition.
Number too long: The symbol is longer than 252 characters.
Out of memory: Probably symbol table full or MacsBug installed.
Partial field error in macro formal
PC relative address out of range: This is usually caused by a short PC

relative reference backward to a label that is too far away.
Register list expected
Size mismatch for operator /operands : The size of the operand does not
match the size of the operator (plus .B, .W, or .L).

Stopped by user : Either the Stop button was clicked or Command-period
was pressed.

String overflow: The symbol is longer than 252 characters.
String too long: The symbol is longer than 252 characters.
Symbol too long: The symbol is longer than 252 characters.
Too many formals in macro
Too many levels of macro nesting
Too many nested files
Undefined label:
Unknown cause: This is a serious error of unknown origin. Assembly

is abandoned when it occurs.
Unknown directive: Didn’t recognize the directive.
Unknown I/O error
Unmatched ELSE or ENDIF: Only occurs in an IF statement.
Value out of range : This is usually caused by a short PC relative

reference backward to a label that is too far away.

Volume locked
Warning: .S operand out of range: .W assumed: This is a warning

only.
XREF symbol defined: This message is a warning only.

Linker Error Messages 135

Linker Error Messages

Here is a list of the error messages that can be displayed by the
Linker

.

Code segments cannot follow resources
Could not create resource
Could not open file:
Could not open .Rel file:
Could not open resource file
Could not open temp file
Disk full
Disk I/O error
Disk write-protected
Duplicate Ident (System Error)
Duplicate symbol
Error in control file: Unknown type or error message
Errors in linking
Extra characters on line
File locked
File name too long: The symbol is longer than 252 characters.
File open error
Illegal / command
Illegal input token
Illegal number
Illegal .Rel file name
Illegal starting label
Illegal symbol Ident
Invalid or missing .Rel file
I/O memory error
JTSize does not match global size
JTSize does not match symbol count
Link errors
Linker error . .

•

Missing Ident
Multiply defined symbol:
Not enough memory to create resource:
Number too long: The symbol is longer than 252 characters.
Out of memory
RESOURCE directive in file before /RESOURCES
Segments cannot follow resources
Source file open fail:
Stack overflow (System Error)
Stack underflow (System Error)
Start label not found:
Start label undefined
String overflow
Symbol too long: The symbol is longer than 252 characters.
Symbol not found

:

Unknown arith opcode = (System Error)
Unknown cause
Unknown I/O error
Unknown opcode =

(System Error)

(System Error)

(System Error)
(System Error)

(System Error)

(System Error)

136 Macintosh 68000 Development System

Undefined external:
Volume locked
Value or offset out of range:

Expected a value between xx and yy.
Actual value was zz.

RMaker Error Messages 137

RMaker Error Messages

Here is a list of the error messages that can be displayed by RMaker.

A brief description accompanies the messages that are not entirely
self-explanatory

•

An Input/Output error has occurred
Bad attributes parameter
Bad bundle definition
Bad format number
Bad format resource designator in GNRL type: This is any error in

a user-defined resource type.

Bad ID Number
Bad item type
Bad object definition: This can happen if the specified file is of the

wrong type.
Bad type or item declaration
Can’t add to the file — disk protected or full?

Can’t create the output file

Can’t load INCLUDE file

Can’t open the output file

Out of memory
Syntax error in source file

Unknown type: The specified resource type is not defined.

Appendix D

Quick Reference

.

Assembler Quick Reference 143

Assembler Quick Reference

Registers : D0 . . D7

A0..A7
A7 or SP

SR
CCR
PC

Data Registers 0 through 7

Address Registers 0 through 7

Stack Pointer
Status Register
Condition Code Register
Program Counter

For MOVEM: for register range; 1 /* for list. Example: A1-A4/D0/D6

Syntax
An or Dn
(An)
(An)+

-(An)
Expr(An)
Expr(An, An)
Expr(An,Dn)
Expr
Expr(PC)
Expr(PC,An)
Expr(PC,Dn)
Expr(Dn)
//Expr

Addressing mode
Register Direct
Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset
Indexed Register Indirect with Offset
Indexed Register Indirect with Offset
Absolute or Relative
Relative with Offset
Relative with Index and Offset
Relative with Index and Offset
Relative with Index and Offset
Immediate

.B

.W

.L

Operands are one byte long
Operands are one word long (2 bytes)
Operands are long words (4 bytes)

Bcc.S Short branch (long is default)
JMP.W Short jump (long is default)

Numbers : Decimal is default; $ for hex; ~ for octal; % for binary.

Strings : Enclosed in single quotes. Use two single quotes in a row to

put a single quote in a string.

Symbols : Start with , A , -*Z ,

> 'a'-'z', •_*

Followed by 'A'-'Z 1

, 'a'-'z', '0'-'9', »i i6i ii
• J V > •

Operators :

Arithmetic Addition +
Subtraction -

Multiplication *

Division / Integer result
Negation -

Shift Shift Right » Zeros shifted in
Shift Left « Zeros shifted in

Logical And &

Or I

144 Macintosh 68000 Development System

Precedence

:

1 . Operations within parentheses (innermost first)
2. Negation
3. Shift operations
4. Logical operations
5. Multiplication and division
6. Addition and subtraction

Assembler Directives :

INCLUDE filename
STRING_FORMAT value
General Strings : value = 0

value = 1

DC .x Strings: value = 0

value = 2

value =

IF condition. . .ELSE. . .ENDIF

MACRO name Pl,P2,...Pn

END
.DUMP
EQU

XXXX {PI } , {P2

}

YYYY {Pn}

1

expression
SET expression
REG register list
.TRAP name $Axxx
DC. B value (s

)

DC value(s)
DC .W value (s

)

DC.L value(s)
DS.B length
DS length
DS.W length
DS.L length
DCB.B length, value
DCB length,value
DCB.W length, value
DCB.L length, value
.ALIGN value

XDEF symbol(s)
XREF symbol (s

)

RESOURCE type ID [name [attr]]

.NoList
•ListToFile
•ListToDisp
•Verbose

•NoVerbose

Include source file
Set string format
Text followed by a 0 byte
Text preceded by a count byte
Write strings literally
Text preceded by a count byte
Specifies 1 and 2

Conditional assembly

Mac-style macro definitions.
Arguments are symbols, defined
after name.

End of program
Dump symbols to . Syra file
Set permanent constant
Set temporary constant
Define register list

Assign a name to trap number $Axxx
Define Constant

values are separated by commas

Define Storage

Define Constant Block

value = 2 for word alignment
value = 4 for long word alignment
Symbol used externally
Symbol defined externally
Begin resource definition
Turn off listing
Turn on listing to file
Turn on listing to display
Turn on verbose listing which is

needed for Linker listing
Turn off verbose listing

Linker Quick Reference 145

Linker Quick Reference

filename
! label
<

[

]

(

)

/Verbose
/NoVerbose
/ Unde fOK
/NoUndef
/Type
/Globals
/Output
/Resources
/Data

$

The next file to link is the file named filename .Rel
Make label the starting location for the program
Start a new segment
Turn on code listing to .Map file
Turn off code listing to .Map file
Turn off listing of local labels to .Map file
Turn on listing of local labels to .Map file
Turn on verbose linker output
Turn off verbose linker output
Give warning only for undefined symbols
Give fatal errors for undefined symbols
Set type and creator bytes for file
Set offset from A5 of start of global space
Specify name of output file
Code section done; begin resource section
Resource section done; begin data section
End of Linker control file

146 Macintosh 68000 Development System

Serial Cable Connections

These two diagrams illustrate the connections necessary to use MacDB

with two Macintoshes or with a Macintosh and a Lisa. These allow you

to build your own cables for use with the Debugger.

Macintosh to Macintosh Serial Cable

1
Mac Serial Port

DB-9
Mac Serial Port

DB-9

No connect 1 1 No connect

No connect 2 2 No connect

Ground 3 3 Ground

TXD+ 4 t M 4 TXD+
TXD- 5 5 TXD-

No Connect 6 6 No Connect

Handshake 7 7 Handshake
1 RXD+ 8 8 RXD+

RXD- 9 9 RXD-

Macintosh to Lisa Serial Cable

Mac Serial Port Lisa Serial Port !

DB-9 DB-25

Ground

No connect

Ground

TXD+
TXD-

No Connect

Clock

RXD+
RXD-

Macs Bug Quick Reference 147

Macs Bug Quick Reference

Numbers

:

Text

:

Symbols

:

Operators

:

$ means hex; & means decimal. Maximum size is long word
One to four characters enclosed in single quotes.
RA0 • .RA7 ,RD0 • .RD7 , PC , SP,TP, *

.

1 (dot=current address)
+ (addition), - (subtraction, negation), @ (indirection)

Memory Commands
DM A N Display N bytes of memory starting at address A

If N =
* IOPB f

, *WIND 1

,

f TERC 1

, displays data structure
SM A El..En Set memory values El through En starting at address A

Dn E

An E
PC E

SR E

TD

Register Commands
Set data register n to E. If E is omitted, display n
Set address register n to E. If E is omitted, display n
Set the PC to value E. If E is omitted, display the PC
Set the SR to value E. If E is omitted, display the SR
Display all the registers

BR A C

CL A
G A
GT A
T

S N

SS A1 A2

ST A
MR N

RB
ES

Control Commands
Set breakpoint at address A. Do C times before breaking.
C is optional
Clear breakpoint at address A. If A omitted, clear all
Execute application starting at A. If no A, at current PC
Set one-time breakpoint at address A, start at current PC
Trace one instr. Traps treated as single instructions
Step through N instructions. If N is omitted, one
instruction is executed. Traps not single instructions
Remember checksum for address range; step through
instructions, validating checksum before each one; break
into MacsBug if checksum changes
Step through instructions to address A. A can be in ROM
Execute instructions until return address N bytes down in
stack is used. If N is omitted, return address on top of
stack is used
Reboot Macintosh
Exit to the shell; launch startup application

A-Trap Commands
Take effect if a trap in the range T1 through T2 is called from address
range A1 through A2

, and D0 has a value between D1 and D2. For omitted
parameters, full range (all traps, all addresses, all D0 values) used.
These commands set up conditions that are monitored when Go is used.

AB T1 T2 A1 A2 D1 D2
AT T1 T2 A1 A2 D1 D2
AH T1 T2 A1 A2 Dl D2
HS T1 T2

AS A1 A2

AX

Break on specified A-traps
Trace program and display specified A-traps
Check the heap on specified traps
Scramble heap and check it on specified traps
Usually Tl=$18 and T2=$2D for optimal speed
Remember checksum for address range; validate it
before traps
Clear all A-Trap commands

148 Macintosh 68000 Development System

Heap Commands
HX Toggle between system heap and application heap

HC Check the consistency of current heap
HD MASK Dump each heap block, followed by heap summary line

Block = BlockAddr Type Size [Flags MP_location] [*] [RefNum ID Type]

Type (of block): F = free, P = pointer, H = handle

Size: physical size = header+contents+spare bytes

Flags nibble: Bit 3 = Locked; Bit 2 = Purgeable;

Bit 1 = Resource; Bit 0 = unused

MP_Location: the location of the Master Pointer
*: indicates non-relocatable or locked blocks

RefNum ID Type
:

given for resource blocks only

If no MASK:
Summary = HLP PF //Reloc blocks, //Locked reloc blocks, #Purgeable blocks,

Purgeable space, Non-reloc blocks, Free Space

If MASK = *H f (handle), 'P 1 (pointer), f F f (free blocks),
, R* (relocatable), or ‘xxxx 1 (resource type 'xxxx’) then

Summary = CNT ##// <# of blocks of MASK type> <// bytes in those blocks>

HP MASK Dump heap to other port (TermBugA or TermBugB only)

HT MASK Display heap dump summary line (See HD)

Disassembler Commands

ID A Disassemble one line at address A
IL A N Disassemble N lines starting at address A

PX Toggles symbolic display (Pascal option only)

Miscellaneous Commands
F A C D M Search C bytes from address A, looking for data D after

masking the target with M. Display first occurrence

WH X X<512: display address of trap X
X>511: display trap nearest address X

CS A1 A2 Checksum specified range. If no A2, 16 bytes. If no A1

or A2, checksum and compare with last. Print result.

CV X Display X as unsigned hex, signed hex, signed decimal

and text
RX Toggle register display during trace

SM PC 60FE
SM PC 4E71

Handy Hints
Enter instruction BRA *-2 to stop disk spinning

Enter no-op at current PC location

.

Glossary

-
1

Glossary 151

Glossary

The terms in this glossary are defined in the context of the Macintosh
68000 Development System. All references to the Assembler, Editor,
Linker, RMaker, or PackSyms refer to applications in the development
system. Things that are true of the Editor, Assembler, or Linker in
this package are not necessarily true of other editors, assemblers, or
linkers

.

application: A tool to manipulate information. Macintosh 68000
Development System applications include the Editor, Assembler, Linker,
Executive, Resource Compiler, and PackSyms.

application heap: A portion of memory available to the application
program for its own memory allocation.

argument: In a macro definition, a placeholder for values that are
supplied when the macro is actually used. Values are passed to the
macro as a list of parameters; they replace, character-for-character

,

the arguments that represent them.

assembler: An application that translates an assembly-language program
(understandable by humans) into a form that is useful to a computer.
The Assembler creates modules that can then be connected together, by
the Linker, to form an application.

assembly-language program: Lines of text containing instructions
written by a human, translated by an assembler, and carried out by a

computer. These instructions generally include instructions to the

microprocessor, instructions to the assembler, and comments to humans.

A-trap: An instruction beginning with a hexadecimal $A which, when
executed by the MC68000, causes an exception. The Macintosh recognizes
this exception as a call to one of its Operating System or Toolbox
routines and uses it to determine which routine was reqested. Also
called a system trap, or simply a trap.

block: An area of contiguous memory within a heap zone.

breakpoint: An instruction in an application that causes the immediate
halting of the application. Using a debugger, you can place a

breakpoint in an application; when the program halts, you can use the
debugger to examine the state of the program.

bundle : A resource that maps local IDs of resources to their actual
resource IDs; used to provide mappings for file references and icon
lists needed by the Finder.

cell: In MacDB, an address or value that can be selected, and

sometimes changed.

152 Macintosh 68000 Development System

conditional assembly: The act of assembling a program that has
conditions placed in it that determine whether or not specified blocks
of source should generate code. In the Assembler the IF, ELSE, and
ENDIF directives are used to perform conditional assembly.

data fork: The part of a file that contains data accessed via the File
Manager

•

debugger: An application that aids analysis of ailing applications.
Debuggers generally provide a way to stop an application, to examine
the computer’s memory and registers, and to control the operation of
the application.

directive: An instruction within a file that is interpreted as a
command to the Assembler or the Linker.

document: Whatever you create with Macintosh applications—information
you enter, modify, view, or save.

Editor: An application that lets you enter, modify, view, or save
text, or some other form of information. The Editor is a disk-based
text editor that lets you create documents larger than will fit into

memory

.

exception: An error or abnormal condition detected by the processor in
the course of program execution. System traps are exceptions. Refer
to the 68000 Reference Manual for more details.

Executive: The Executive is an application that lets you control the
use of other applications. If you repeatedly assemble, link, and add
resources to the same files, you can use the Executive to automate the
process

•

expression: A collection of symbols (numbers, labels, mathematical
operators...) that is arranged according to a set of rules (syntax).
The symbols are evaluated according to that set of rules to produce a

result

.

extension: In the development system, a period followed by one or more
letters that is added to a filename to help identify the type of

information in the file.

frozen: A state in which the contents of a MacDB window cannot change.
By default, MacDB windows are changeable (thawed).

global space: An application’s global space is a fixed block of memory
that is located relative to A5. It contains all the program storage
declared using the DS directive. Because it never moves, it is ideal
storage for data shared between segments.

heap: An area of memory in which space is dynamically allocated and
released on demand, using the Memory Manager.

Glossary 153

jump table: A table that contains one entry for each routine that is
used by more than one segment. It is a channel of communication
between relocatable segments, and even allows segments to be removed
from memory until called by the active segment.

linker: In the development system, an application that connects .Rel
files (produced by the Assembler) together into an application.

machine language: The language that the microprocessor itself
understands. The Assembler and Linker together translate an
assembly-language program that you can understand into a
machine-language program that the Macintosh can understand.

macro instruction: Consists of a name and a list of parameters. When
assembled, the macro call is replaced by the list of instructions it
represents, and the parameters are placed into that list of
instructions, as appropriate. Just as subroutines are a way of
generalizing similar pieces of code, macros are a way of generalizing
similar pieces of text.

MacWorks : A program that runs on a Lisa computer and that allows the
Lisa to run Macintosh software.

modem port: On a Macintosh, the port that has the modem icon above it.
Also known as port A.

Nub: In the context of the development system, a program you should
run on the Macintosh on which you wish to debug your program. MacDB,
running on another Macintosh, can then examine your program by
communicating with the nub over a serial cable.

operand: A quantity upon which an operation is performed. In the
expression A + B, the operands are A and B, and + is the operator. In
the assembly-language instruction MOVE D0,D1, the operands are D0 and
Dl.

operator: A character or characters that represent an operation to be
performed. Operators perform operations upon operands.

packed symbol file: A file that equates values to symbols. Like a text
file composed of EQU statements, but in a much more compact form. To
create a packed symbol file, run PackSyms on a .Sym file.

parameter: In a macro call, a text-string that is to be placed
literally into the list of instructions that the macro represents.
Each parameter replaces all instances of the argument that is a

placeholder for it.

Pascal string: A Pascal string starts on a word boundary. It consists
of a byte containing the length of the string followed by bytes
containing the ASCII codes of the characters in the string.

precedence: In an expression, the order in which operations are
performed. For example, in expressions used in the Assembler,

154 Macintosh 68000 Development System

multiplication is performed before addition (with the exception that
operations in parentheses are performed first).

printer port: On a Macintosh, the port that has the printer icon above
it. Also referred to as port B. The machine that runs the MacDB
debugger must always be connected to the other machine by this port.

program counter: The register in the 68000 that points to the memory
address that contains the assembly-language instruction that is

currently being executed.

port A: On a Macintosh, the port that has the modem icon above it.

port B: On a Macintosh, the port that has the printer icon above it.
The machine that runs the MacDB debugger must always be connected to

the other machine by this port.

register: A structure within a microprocessor that holds information,
that can be rapidly and flexibly changed or moved. The 68000 has data
registers for general data manipulation, address registers that point
to memory locations, and other registers crucial to the operation of

the microprocessor. See also: program counter and stack pointer.

relocatable: Moveable. The Assembler and Linker produce code segments
that work regardless of their position in memory. The Segment Loader
moves segments of code relative to one other by updating the jump table
that allows communication between segments. Together, these features
create relocatable applications.

resource: Data or code stored in a resource file and managed by the
Resource Manager. Predefined resource formats, such as menus or fonts,
make possible the easy integration of complex data structures into an
application.

Resource Compiler: An application that forms resources from a set of
definitions, and places them into a resource file. The RMaker
application is the Resource Compiler; however, the Linker is also able
to create resources.

resource fork: The part of a file that contains the resources used by
an application (such as menus, fonts, and icons) and also the
application code itself; usually accessed via the Resource Manager.

RMaker: See Resource Compiler.

segment: One of several parts into which the code of an application
may be divided. Not all segments need to be in memory at the same
time

.

source file: A file that contains information used as input to an
application.

stack: An area of memory in which space is allocated and released in
LIFO (last-in-first-out) order, used primarily for routine parameters,

Glossary 155

return addresses, local variables, and temporary storage.

stack pointer (SP): A register that contains the memory address that

is currently the top of the stack. In the 68000, address register 7

(A7) is used as the stack pointer.

symbol table: Data that represents the symbols (variables, constants,
labels, and routine names) used by a program. The symbol table is

created by the Assembler and used by the Linker.

system definition file: A file defining global constants, variables,
or system traps. The development system is shipped with a set of

equates files and traps files that contain necessary system
definitions

.

system heap: A portion of memory reserved for use by the Macintosh
system software.

text-only file: A file consisting of a stream of ASCII characters that
contains no special formatting information.

thawed: Describes a MacDB window that can be changed. A MacDB window
that cannot be changed is said to be frozen.

trace: To examine, one instruction at a time, the execution of a

program. The MacDB Trace command executes the machine-language
instruction indicated by the program counter, then it updates its

windows

.

trap: See A-trap.

1-

•

Index

Index 159

Index

• (dot) 80

@ 69

! command 50

< command 50

[command 50

] command 50

(command 50

) command 50
* command 69

$ command 50

A
address 31

aligning 42

addressing modes 31

alert
item 97

template 96

•ALIGN directive 43

align box 65, 71

aligning
addresses 42

columns 21

anchor box 65

Anchor command 65, 70

appending to resource file 94

application bundle 96

arguments, macro 38

•Asm 19, 25

file list 25

files 28

Assembler 8, 25

directives 35

errors 8, 133

file naming conventions 25

invoking 26

macros 8

output files 29

source files 26, 28

syntax 29

assembly-language source programs
asterisk (*) 30, 69

A-Trap command (s) 72-73, 86

attribute byte 44

Auto Indent command 21

auto-pop bit 73

B
•B extension 32

binary notation 33
Bkpts menu 69

block header 73

branch instructions 32

breakpoint 69

Breakpoints window 64

C
cells 66

Change command 2

1

changing text 21

Char command 71

Clear All command 69

Clear command 69

close box 65

code optimization 32

columns, aligning 21

Command-S 29

comments
Assembler 30

RMaker 93

Compile command 100

Control
commands 83

template 96

copying text 21

creator bytes 51, 93-94
current program location 30

cutting text 21

D
•D file 25, 45

/Data command 51, 53

data fork 49, 52

data registers 31

data storage 52

DC directive 41

DCB directive 42

debug machine 61

Debug menu 67

Debugger See MacDB; MacsBug
decimal notation 33

default
25 font 20

volume 28
defined resource types 95

dialog resource 97

directives
Assembler 35

Linker 43

printing control 27, 35
Disassembler commands 88

disk-based editor 20

disk drive, stopping 67, 89

160 Macintosh 68000 Development System

document
opening 20

printing 22

DS directive 42

•DUMP directive 40, 44

Duplicate command 69

E
editing 21

Editor 7, 19

document names 7

documents 7, 20

file naming conventions 19

invoking 19

.EJECT directive 35

ELSE directive 37

END directive 40
ENDIF directive 37

•ENDM directive 39

EQU directive 40

equates 16

.Err file 26, 29

errors
Assembler 8, 133

Executive 58

Linker 9, 135

RMaker 137

Examine window 64

exceptions 62, 63, 78, 79

Execute command 58

Executive 10, 57

control file 57

default name 58

errors 58

file naming conventions 57

invoking 57

syntax 57-58

using 58

expressions 33

MacsBug 81

F
file

name 28

naming conventions 6

opening from Editor 20

selecting from Assembler 27

setting creator 51, 93-94
setting type 51, 93-94

file reference 98

file system equates 16

.Files 19, 25

.Files files 28

Filter by Time command 27

Find command 21

finding text 21

512K Mac command 67

font
default 20

monospaced 20

proportional 21

Format menu 71

Frozen command 70

G
global equates 16

global storage 41, 49, 52

/Globals command 51, 52

Go Till command 68

Go To command 68

H
Heap Check Off command 67

Heap Check On command 67

heap zone 71

commands 86

Hex Address command 70

hexadecimal notation 33

I
IF directive 37

INCLUDE directive 36, 94
indenting text 21

initial volume 28

Inside Macintosh 3

Inst command 71

instruction 30

lines. Assembler 29

syntax. Assembler 30
interrupt button 79

invoking
Assembler 26

Editor 19

Executive 57

Linker 50
MacDB 61

MacsBug 77, 79

RMaker 100

J
.Job 19, 57

•Job files 10, 58

jump instructions 32

jumb table 49

K

Index 161

L
• L extension 32

labels 30, 42

.LErr 49

•Link 19, 49

linked list 72

Linker 9, 49

commands 50

control directives 43

control file 50, 52

errors 9, 135

file naming conventions 49

invoking 50

sample control file 53

Lisa Workshop 90, 93

LisaBug 78

list of .Asm files 25

List command 72

List to Display command 27, 29

List to File command 27, 29

listing, Assembler 27

•ListToDisp directive 35

•ListToFile directive 35
local label 30
Long command 71

lowercase letters 29

•Lst file 26, 29

M
M68000 16/32-Bit Microprocessor

Programmer's Reference Manual 3

MacDB 12-13, 61

menus 67

windows 63

Macintosh , the owner's guide 3

Macintosh 68000 Development System
disks 4

MacNub 62

.MACRO directive 39
MACRO 38

macros 38

Lisa-style 39

for numerics 16

for packages 16

MacsBug 12, 14, 77-78

commands 81

invoking 79

setting up 77

syntax 80

versions 77

MacWorks 61, 78

.Map file 9, 49, 73, 74

master pointer 73, 86

MaxBug 78

MDS 1 disk 4

MDS2 disk 5

MemBlock command 73

Memory commands 81

memory storage 42

menu(s) 98

defining 54

MacDB 67

miscellaneous MacsBug commands 88

modes, addressing 31

monospaced font 20

Move Left command 21

Move Right command 21

MOVEM command 31

N
naming

Assembler files 25

Editor files 19

Executive files 57

files 6

Linker files 49

resource files 93

New command 69

new document 20

No Anchor command 65, 70

No Listing command 27

•NoList directive 35

non-string expression 37

no-op 67, 90

Normal Output command 27

/NoUndef command 51

•NoVerbose directive 35

/NoVerbose command 51

Nub 12, 61-62, 63
numbers 33

MacsBug 80

O
octal notation 33

128K Mac command 67

Open command 20

Open Job File command 58

opening
document 20

files 20

operations 34

operators, MacsBug 81

/Output command 51, 52

output file 52

P

package equates 16

package macros 16

162 Macintosh 68000 Development System

packed symbol files 44, 45

PackSyms 44

Pascal String command 71

PC window 63

precedence 34

Print command 22

printer equates 16

printing
control directives 27, 35

dialog box 22

document 22

procedure 98

Proceed command 63, 68

program, sample 103

proportional font 21

Purge command 74

Q
QuickDraw equates 16

QuickDraw traps 16

R
.R file 19, 25, 93, 100

.R Filter command 100

REG directive 41

Register commands 82

Registers window 63
•Rel file 8, 9, 29, 41, 53, 93

removing text 21

replacing text 21

Resource Compiler See RMaker
RESOURCE directive 44, 53

resource files 93

adding to 94

naming 93

types 95

resource fork 49, 52

resources 49, 95

defining 53

types of 99

/Resources command 51, 52, 53

Resume command 58

Resume and Re-do Last command 58

RMaker 15, 93

creating types 99

errors 137

input file 93

syntax 95-96
using 100

replacing 21

•Rsrc files 93

Run menu 68

S

sample
Linker control file 53

program 103

session 11

Sample Programs folder 11

scope 30

scroll
arrows 66

bars 20, 66

box 66

Search command 72

searching for source files 28

Select File command 27

selecting
listing options 27

source files 27

SET directive 41

Set command 69

Set Startup command 62

Set Tabs command 21

setting
file's creator 51, 93-94

file’s type 51, 93-94
setting up

MacsBug 77

Debugger 61

signature bytes 51, 93-94
size box 66

size extension 32

source files
Assembler 26, 28

Editor 7, 20

Executive 57

Linker 50, 52

RMaker 93

start box 65

stopping
assembly 29

disk drive 89

listing 29

STRING_FORMAT 36

strings 33, 36-37, 98

•Sym file 26, 40, 44, 74

symbol table 9

Symbolic Address command 70

symbols 34, 74

MacsBug 80
Symbols menu 73

syntax
Assembler 29

Executive 57-58

MacsBug 80
RMaker 95-96

Index 163

system definition files 16

system error numbers 16

system traps 72, 84

T
tab stops 21

target machine 61

template 96

TermBugA 78

TermBugB 78

text literals, MacsBug 80
text-only files 7, 22, 26

Thawed command 70

title bar 65

Title command 70

Toolbox equates 16

Toolbox traps 16

TP 80

Trace command 68
Trace Into ROM command 68
•TRAP directive 41

traps 16, 72-73, 84
type bytes 51, 93-94
/Type command 51

typing text 20

V
Value command 74

•Verbose directive 35
/Verbose command 50
Verbose Output command 27
volume

default 28

names 6, 28

W
• W extension 32
Wait command 67

Window menu 69

window(s)
Breakpoints 64

Examine 64

MacDB 63

PC 63

Registers 64

template 99
word alignment 42
Word command 71

WorksNub 61

X
XDEF directive 43
XREF directive 43

Y

U
/UndefOK command 51

uppercase letters 29

Z

n
n
n
n
n
n
n

n

.n

n
n

!

a
!

3

P
J
J

Macintosh
User’s Manual

Copyright

This manual and the software described in it are copyrighted

with all rights reserved. Under the copyright laws, this manual

or the software may not be copied, in whole or part, without

written consent of Apple, except in the normal use of the

software or to make a backup copy. The same proprietary and

copyright notices must be affixed to any permitted copies as

were affixed to the original. This exception does not allow

copies to be made for others, whether or not sold, but all of the

material purchased (with all backup copies) may be sold,

given, or loaned to another person. Under the law, copying

includes translating into another language or format.

You may use the software on any computer owned by you, but

extra copies cannot be made for this purpose. For some

products, a multiuse license may be purchased to allow the

software to be used on more than one computer owned by the

purchaser, including a shared-disk system. (Contact your

authorized Apple dealer for information on multiuse licenses.)

©1984 Apple Computer, Inc.

20525 Mariani Ave.

Cupertino, CA 95014

(408)996-1010

Apple, the Apple logo, and Lisa are trademarks of Apple

Computer, Inc.

Macintosh is a trademark of McIntosh Laboratory, Inc. and is

being used with express permission of its owner.

Simultaneously published in the U.S.A. and Canada.

Limited Warranty on Media and Manuals

If you discover physical defects in the media on which this

software is distributed, or in the manuals distributed with the

software, Apple will replace the media or manuals at no charge

to you, provided you return the item to be replaced with proof

of purchase to Apple or an authorized Apple dealer during the

90-day period after you purchased the software. In some

countries the replacement period may be different; check with

your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA AND
MANUAL, INCLUDING IMPLIED WARRANTIES OF
MERCHANTABILITYAND FITNESS FOR A PARTICULAR

PURPOSE, ARE LIMITED IN DURATION TO NINETY (90)

DAYS FROM THE DATE OF THE ORIGINAL RETAIL

PURCHASE OF THIS PRODUCT.

Even though Apple has tested the software and reviewed the

documentation, APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS SOFTWARE, ITS QUALITY,

PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS SOFTWARE
IS SOLD “AS IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITYAND
PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,

INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES RESULTING FROM ANY DEFECT IN THE
SOFTWARE OR ITS DOCUMENTATION, even if advised of

the possibility of such damages. In particular, Apple shall have

no liability for any programs or data stored in or used with

Apple products, including the costs of recovering such

programs or data.

THE WARRANTYAND REMEDIES SET FORTH ABOVE ARE
EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent,

or employee is authorized to make any modification,

extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied

warranties or liability for incidental or consequential damages,

so the above limitation or exclusion may not apply to you. This

warranty gives you specific legal rights, and you may also have

other rights which vary from state to state.

142 Macintosh 68000 Development System

File Naming Conventions

Name Created by Contents

Name • Asm Edit Assembler source file

Name .Files Edit List of separate assemblies to be performed
Name. Re

1

Asm Relocatable module with symbol table information
Name.Lst Asm Assembler listing
Name .Err Asm Assembly errors
Name • Sym Asm Symbol table file, generated by .DUMP directive
Name • D PackSyms Symbol table, used as input to Asm; packed version

generated by running PackSyms on .Sym files

Name . Link Edit Files to link; Linker listing on/off; where to

begin segments, resources, data
Name Link Application
Name .LErr Link Errors that occurred during linking
Name .Map Link Symbol table for MacDB and Linker listing

Name • Job Edit Executive control program; specifies names of

applications to be run and files to be passed as

input to applications

Name .

R

Edit RMaker input file; contains resource definitions
Name.Rsrc RMaker RMaker output file

System Overview 141

System Overview

L,
OOOI
1 0 1 1

0

OIOII

Both.Rsrc

Both

Both.Map

Resource

file for the

application

Executable

object file

(an Application!)

MacsBug

Non-symbolic,

one-Macintosh

debugger

Symbol table

and listing

(if requested)

Used by MacDB

MacDB

Symbolic

two-Macintosh

debugger

List of

errors

from linking

Both.LErr

Both .Job

This book’s binding lets it lie

flat while you’re working

with your Macintosh. When

you’re using the book, keep

the wraparound endflap

tucked inside the back cover.

To make it easy to spot the title

when the book’s on a shelf,

fold the flap inside the front

cover and set the book on the

shelf with the title visible.

Macintosh

68<

)Develo

1
Use

n

n

n
n

n
n
n
:

)

n
n

App8e Computer, Snc.

20525 Mariani Avenue

Cupertino, California 95014

(408)996-1010

TLX 171-576 030-1077-A

