DISTRIBUTION, ECOLOGY, and HABITAT MANAGEMENT

of the

REPTILES and AMPHIBIANS

of the

HUALAPAI-AQUARIUS PLANNING AREA,
MOHAVE and YAVAPAI COUNTIES, ARIZONA

by

Kenneth Bruce Jones
DISTRIBUTION, ECOLOGY, AND HABITAT MANAGEMENT

OF THE REPTILES AND AMPHIBIANS OF THE

HUALAPAI-AQUARIUS PLANNING AREA,

MOHAVE AND YAVAPAI COUNTIES, ARIZONA

July, 1981

Kenneth Bruce Jones

Present Address:
Phoenix Training Center
5050 N. 19th Avenue, Suite 300
Phoenix, AZ 85015

Wildlife Biologist

USDI, Bureau of Land Management, Phoenix District

Phoenix, Arizona

Bureau of Land Management
Library
Bldg. 50, Denver Federal Center
Denver, CO 80225
I am extremely thankful to Dan R. Abbas and Terry Bergstedt for their assistance in all aspects of the inventory, especially in obtaining data. I am also grateful to Dr. Ted T. Allen for assisting in data collection. Special thanks to Theodore E. Cordery for obtaining necessary equipment and personnel in maintaining a high inventory standard. My thanks go to Brian A. Millsap for his help in data interpretation and analysis; John L. Burd and William G. Kepner for amphibian data; and the entire wildlife crew for their support and help during the inventory. I am grateful to Dr. Bill Krohn, Dr. Walter G. Whitford, William G. Kepner, Lauren R. Porzer, Donald J. Seibert and Kenneth McGinty for editorial review and comments on this manuscript. I would like to express my deepest gratitude to Roger Taylor and the Kingman Resource Area for their warm and personal attitude toward me and the rest of the wildlife crew. Lastly, I acknowledge my wife, Barbara for allowing me to work long hours on this inventory and manuscript.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>DESCRIPTION OF STUDY AREA</td>
<td>2</td>
</tr>
<tr>
<td>METHODS</td>
<td>8</td>
</tr>
<tr>
<td>RESULTS</td>
<td>10</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>28</td>
</tr>
<tr>
<td>Habitat Management</td>
<td>48</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>56</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table

1. Relative abundance, species diversity, and habitat use diversity of amphibians .. 11
2. Lizard trap-night success (relative abundance) by standard habitat site ... 14
3. Summary of lizard life-forms .. 15
4. Adult-juvenile and sex ratios of lizards trapped 17
5. Comparison of lizard populations and habitat characteristics of fair and poor condition desert grassland standard habitat sites ... 24
6. Relative abundance, species diversity, and habitat use diversity of snakes ... 25
7. Summary of snake life-forms ... 26
8. Significant species, limiting factors, and their management ... 49
9. Habitat maintenance and/or improvements for maximum faunal richness by standard habitat site 52
10. Land-use conflicts and their mitigation 54
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The study area</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Comparison of activity periods of Cnemidophorus tigris and Eumeces gilberti</td>
<td>16</td>
</tr>
<tr>
<td>3.</td>
<td>Comparison of Sceloporus magister abundance and downed litter</td>
<td>18</td>
</tr>
<tr>
<td>4.</td>
<td>Comparison of Phrynosoma abundance and ant nest abundance</td>
<td>21</td>
</tr>
<tr>
<td>5.</td>
<td>Comparison of Heloderma suspectum abundance and avian ground abundance</td>
<td>22</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix
1. Adult-juvenile classifications for lizards sampled 64
2. Scientific - common name cross-reference 65
3. Distribution maps of reptiles and amphibians sampled 68
4. Amphibian sample site locations .. 129
5. Array sample site locations ... 130
6. Road riding sample site locations ... 131
7. Standard habitat site abbreviations ... 132
8. Standard habitat site map .. 133
9. Conflict areas within the Hualapai-Aquarius planning area. 134
ABSTRACT

Relative abundance, species diversity, habitat use diversity, distribution, and ecological relationships were determined for eight species of amphibians, four species of turtles, twenty-three species of lizards, and twenty-six species of snakes. Of the sixty-one species of reptiles and amphibians verified within the Hualapai-Aquarius planning area, twenty-seven were range extensions which demonstrates the need to inventory public lands by habitat type.

Bufo punctatus was the most abundant amphibian and also possessed the greatest habitat use diversity. *Cnemidophorus tigris* was the most abundant and habitat diverse lizard throughout the planning area. *Crotalus atrox* was the most abundant snake while *Salvadora hexalepis* had the highest habitat use diversity among the serpentes.

Saguaro-palo verde, cottonwood-willow, creosote bush, and canotia mix standard habitat sites had the most diverse and abundant herpetofauna and upland standard habitat sites (e.g., ponderosa pine) the least diverse and abundant herpetofauna.

Certain species of reptiles and amphibians were found to possess limiting ecologies which I felt justified separate management considerations. Other management recommendations were made based on faunal richness of each standard habitat site, habitat conditions, habitat structural requirements, and conflicts (e.g., livestock grazing) that I felt are reducing the fitness of the area's herpetofauna and will continue to do so in the future.

Numerous studies in Arizona have described the ecology of individual species of reptiles and amphibians (Zweifel and Lowe 1966; Parker 1972: Parker 1972b; Pianka and Parker 1972; Vitt and Ohmart 1974; Pianka and Parker 1975, to name a few). Few studies however, have dealt with the ecology and distribution of entire communities of reptiles and amphibians over varied habitat types (Hanna et al. 1975; Ohmart and Stephenson 1975; Jones unpub. data).

West-central Arizona has received little or no attention regarding either individual species or overall herpetofauna. The Bureau of Land Management, Phoenix District, is obligated to compile information on reptiles and amphibians for west-central Arizona, specifically the Hualapai and Aquarius planning units, for a grazing environmental statement.

Because of the total lack of information on reptiles and amphibians for the two planning units, the Bureau of Land Management had to undertake extensive herpetological inventories (the two planning units have a combined area of 1.4 million acres). To further complicate lack of existing data, the two planning units possess interior chaparral and pine-oak woodland (Brown and Lowe 1974a and 1974b; Brown and Lowe 1975), atypical of adjacent habitat for several miles in any direction. Many field guides have overlooked these isolated vegetative stands and
illustrate species distribution typical of desertscrub communities (with the exception of Stebbins, 1966, regarding an isolated population of the Sonoran mountain kingsnake, Lampropeltis pyromelana).

I contended that many of the reptile and amphibians known from central Arizona plateau region occur within isolated stands of interior chaparral and pine-oak woodland of the Hualapai and Aquarius planning units.

This document gives a total distributional account of reptiles and amphibians by vegetative community (standard habitat site, BLM 1977). It also assesses ecological parameters and population dynamics of resident herpetofauna and makes habitat management recommendations based on such determinations.

DESCRIPTION OF STUDY AREAS

Located south and southeast of Kingman, Arizona, in Mohave and Yavapai counties (Fig. 1), the Hualapai and Aquarius planning area is characterized by Upper and Lower Sonoran, and Transition Life Zones (Brown and Lowe 1974a and 1974b). Fourteen standard habitat sites (SHS) (in conjunction with BLM Manual 6602, BLM 1977) were established from these Life Zones: two Transition, six Upper Sonoran, and six Lower Sonoran (for their location see Appendix 8). Riparian standard habitat sites (SHS) were grouped with Life Zones they transected.

Certain SHSs had physical features that rendered site-specific, species distribution. These features are discussed in this section.

STANDARD HABITAT SITES

Following are descriptions of each SHS within the two planning units.

Transition Life Zone

Ponderosa Pine

Ponderosa pine study sites occurred in northern sections of the Hualapai Mountains at elevations ranging 6,500 - 7,500' where annual precipitation ranged 20-24" (Soil Conservation Service 1976). Ponderosa pine (Pinus ponderosa) was the dominant overstory vegetative component, with local stands of Gambel oak (Quercus gambelii) also common. Understory
Figure 1. The Hualapai-Aquarius planning area.
composition varied from site to site, depending primarily on aspect and topography. Low percentages of understory occurred at some sites and high percentages at other sites. Where understory prevailed, scrub-oak (Quercus turbinella) and manzanita (Arctostaphylos spp.) were common. Skunk brush (Rhus trilobata) and yerba santa (Eriodictyon augustifolium) were also common at certain sites. Understory height ranged 1-5' and overstory height 20-75'. Large amounts of downed logs and litter occurred on the surfaces of this SHS.

Ponderosa-Aspen (Mixed Conifer)

Ponderosa-aspen SHSs occurred in small stands in the Hualapai Mountains between 7,400-8,300' where precipitation ranged from 20-24" annually (SCS 1976). Ponderosa-aspen consisted of an assortment of evergreens, the majority comprised of ponderosa pine. Other prevalent trees included aspen (Populus tremuloides), Douglas fir (Pseudotsuga menziesii), and white fir (Abies concolor). As at ponderosa pine SHSs, large amounts of downed vegetative litter occurred at this SHS.

Upper Sonoran Life Zone

Pinyon-Juniper

Pinyon-juniper occurred at elevations ranging 3,700-5,800' where annual precipitation fluctuates between 12-16" (SCS 1976). Vegetative composition varied greatly from site to site but in all cases had an overstory component of pinyon pine (Pinus monophylla) or juniper (Juniperus monosperma), or both. Major understory constituents included snakeweed (Gutierrezia spp.), paleleaf goldenweed (Haplopappus acradenius), and, in some areas, scrub-oak. Overstory height ranged 8-20' and understory height, 1-5'. Substrate varied, but was generally comprised of rocky, shallow soils.

Juniper Mix

Typically, this habitat consisted of a variety of plant species, but always possessed juniper as the dominant overstory component. Certain areas possessed 10-20 trees/section and others as high as 300/section. Unlike pinyon-juniper SHSs, juniper mix had a more diverse and varied understory. Rayless goldenhead (Acamptopappus sphaerocephalus) was the major understory component, and varying percentages of snakeweed, narrowleaf goldenbush, and flat-top buckwheat (Eriogonum fasciculatum) were also present. Overstory and understory height reached 15' and 5', respectively. Rock outcrops and large boulders dominated many areas of this SHS and Bigelow's nolina (Nolina bigelovi) occurred commonly at various locations. Partially decomposed limbs and trunks of this plant species help increase surface moisture retention. Elevation of this SHS ranged 3,500-5,500', and precipitation 12-16" annually (SCS 1976).
Closed Chaparral

Closed chaparral consisted of shrub cover in excess of 40%. By far, the most dominant plant was scrub-oak. Skunkbrush and manzanita also made up moderate percentages of the total vegetative composition. This habitat had most of its structural mass between 1 and 4'. Substrate varied but was generally rocky. Elevation of closed chaparral standard habitat sites ranged 4,300-6,500' and precipitation 12-20", annually (SCS 1976).

Open Chaparral

Open chaparral possessed shrub cover of less than 40%, and was typically dominated by scrub-oak, buckbrush (Ceanothus spp.), and mountain mahogany (Cercocarpus spp.). Sites adjacent to desert grassland SHS (Aquarius PU) had high percentages of tobosa grass (Hilaria mutica), three-awn (Aristida spp.) and shrubby buckwheat (Eriogonum wrightii) as the understory components. Open chaparral adjacent to closed chaparral had understory components consisting of desert needlegrass (Stipa speciosa), pigmy cedar (Peucephyllum schottii), and goldenweed. Both Hualapai and Aquarius sites had high percentages of snakeweed. Differences within this SHS for the two planning units resulted primarily from differences in range sites (SCS 1976). Elevation and precipitation ranged 3,700-4,700 and 12-16" per annum, respectively (SCS 1976).

Desert Grassland (Clay-loam, Mesa Tops)

Desert grassland standard habitat sites were restricted to mesa tops of the Aquarius planning unit and were dominated by large, volcanic rock surfaces. Dominated by snakeweed, nearly all vegetation was lower than 2'. Tobosa grass, three-awn, shrubby buckwheat, and catclaw (Acacia gregii) constituted the remainder of vegetation. Elevation varied 4,000-4,700', where precipitation ranged 16-20", annually (SCS 1976). Typically, these sites should be comprised of 80% perennial grass (Hilaria, Aristida, Bouteloua) (SCS 1976).

Lower Sonoran Life-Zone

Joshua Tree (Mohave Desertscurb)

Joshua tree SHSs occurred at elevations ranging 2,400-3,700', where annual precipitation varied between 8-12" (SCS 1976). Joshua tree (Yucca brevifolia) was the major overstory constituent, except when in ecotone...
with juniper mix SHSs. Understory vegetative composition was dominated by rayless goldenhead and snakeweed. Overstory height reached 20-25' and understory 2-3'. Soils were generally sandy with varying degrees of rockiness. Rock outcrops occurred within this SHS in isolated situations.

Creosote Bush

This standard habitat site was found primarily in the Yucca, Arizona vicinity at elevations 1,500-2,000', where precipitation ranged 7-10" annually (SCS 1976). Creosote bush (Larrea divaricata) and white bursage (Franseria dumosa) made up the majority of the vegetation. Overstory composition was quite limited; restricted to areas with a few Joshua trees and ocotillo (Fouquieria splendens). Overstory height, when present, ranged 10-20' and understory 1-5'. Substrate was generally a coarse sand with small diameter rocks on the surface.

Saguaro-Palo verde

This SHS occurred at elevations ranging 1,700-3,900', where precipitation varied between 7-12" annually (SCS 1976). Palo verde (Cercidium microphyllum) was the major overstory component. The understory consisted of several shrub species: range ratany (Krameria parvifolia), Mormon tea (Ephedra spp.), and rayless goldenhead. Moderate-height (4-7') vegetative components were dominated by creosote bush and buckhorn cholla (Opuntia acanthocarpa). Saguaro (Cereus giganteus) was common in isolated situations and gave a dominant overstory appearance but made up only a small percentage of the total vegetative composition and cover. Substrate was generally rocky, several sites consisting of rock outcrops and talus slopes.

Canotia Mixed-shrub

Canotia mixed-shrub sites occurred at elevations ranging 3,000-4,000' where precipitation varied between 12-16" annually (SCS 1976). Mohave thorn (Canotia holocantha) was the major overstory constituent, and snakeweed, big galleta grass (Hilaria rigida), and rayless goldenhead were the major understory constituents. Canotia mixed-shrub occurred on sandy loam soils of rolling hills. Certain areas with increased clay in the soil had large stands of cholla (Opuntia spp.) and perennial grass (Hilaria spp.). In these areas, Mohave thorn dropped out. Both areas had high percentages of low-height shrubs, resulting in similar appearance.
Overstory vegetation reached 12' and understory 4'. Substrate was generally quite rocky, with limited amounts of rock-outcrops.

Riparian Mixed Broadleaf

Mixed broadleaf riparian SHSs occurred at elevations of 2,500-5,000' that transected the Upper Sonoran Life-Zone. Precipitation ranged 12-16" annually (SCS 1976). Typically, this SHS had surface water or a high water table. Overstory was dominated by a variety of plant species: ash (Fraxinus pennsylvanica), walnut (Juglans major), willow (Salix gooddingii), cottonwood (Populus fremontii), and sycamore (Plantanus wrightii), with heights reaching 50'. Moderate height (4-15') vegetation included skunkbrush, Fremont barberry (Berberis fremontii), see willow (Baccharis salicifolia), and young willows. In some areas, overstory dominants demonstrated no reproduction. Understory components were limited to annual species (with the exception of limited amounts of see willow, small scrub-oak, skunkbrush, and goldenweed). Substrate was rocky with limited areas of fine sand. Downed litter and branches predominated on the surface of this SHS.

Cottonwood-Willow

This standard habitat site occurred at elevations ranging from 1,700-3,500', transecting Lower Sonoran standard habitat sites, but not exclusively. In some higher regions of Francis Creek, this SHS transected the Upper Sonoran Life Zone. Precipitation at this SHS ranged from 7-12" annually (SCS 1976). The majority of this SHS occurred along Burro Creek and Big Sandy, Santa Maria, and Bill Williams River drainages. Isolated, small stands of this SHS occurred throughout small drainages in either planning unit. Cottonwood, Goodding willow, and mesquite (Prosopis glandulosa) made up the majority of the overstory vegetation reaching a canopy height of 50' in older stands. Although mesquite was present, it made up a minority of the vegetation. Understory components consisted of seep willow, catclaw, wolfberry (Lycium spp.), burro brush (Hymenoclea spp.), and white thorn (Acacia constricta). Substrate varied from sand to large rock.

Mesquite Bosque

Mesquite bosque SHSs occupied areas similar to cottonwood-willow SHSs along Burro Creek and the Big Sandy, Santa Maria, and Bill Williams River drainages. Unlike cottonwood-willow sites, the major vegetative component was mesquite. Catclaw also made up a large proportion of the vegetative
community. Other low-to-moderate height (2-7') species included bursage, gray thorn (Zizyphus obtusifolia), desert broom (Baccharis sarathroides), and wolfberry. Maximum canopy height of mature stands reached 20', except where cottonwood occurred. Understory ranged 2-7'.

Elevation of mesquite bosque SHSs ranged 1,700-3,000' and precipitation 7-10' annually (SCS 1976). Substrate was generally sandy but rocky in certain areas.

METHODS

Species distribution and abundance by standard habitat site (SHS) were determined by use of an Array trapping method, road riding and field and canyon hunting between September 1978 and July 1979. The Array trapping scheme, a term coined by Campbell and Cristman (1977), uses a series of 5-gallon can traps placed in the ground and connected by aluminum fences. Campbell and Cristman used eight can traps with an open-center configuration. To save cost on drift fence and buckets, and to save time in their placement, we used four buckets with three radiating arms from a center bucket. Each of the four buckets was placed in the ground, their tops flush to the surface. Fences connecting buckets were anchored with stakes and wire, and extended 3 inches over the top of each can trap. Drift fence emanated from a center bucket, extending 25' at 1200 angles to end can traps. Arrays were marked and later checked at least once every three days. Animals collected in buckets were measured (mm., snout-vent), toe-clipped, sexed, and released. Forty-nine Arrays were placed in the planning area.

Quantitative Array data were analyzed exclusively for lizards and based on the number of lizards/4 trap nights which is the number of lizards caught/Array/night. Mean trap-night success for each habitat was compiled ± one standard deviation. Mean trap-night success of each SHS was compared for both individual species and overall lizard fauna. A breakdown of adult-juvenile lengths appears in Appendix 1.

Road riding, consisting of traveling roads day and night at speeds of less than 25 mph throughout delineated SHSs, was a method used to determine relative abundance of snakes (Appendix 6). Canyon hunting was utilized to determine amphibian relative abundance. Typically, it involved hiking canyons at night with flashlights, sampling spring sites, perennial streams, and dirt tanks. Appendix 4 illustrates amphibian (canyon hunting) sample sites.

Relative abundance (RA) was computed for amphibians and snakes by \(n_j/N \times 100 \); where \(n_j = \) number of the \(j \)th species and \(N = \) total number sampled.
Data obtained by array trapping, road riding and canyon hunting were analyzed by the Shannon-Weiner H' diversity index (Orr et al. 1973),

\[H' = \sum_{i=1}^{s} p_i \log p_i \]

where \(s \) = number of species and \(p_i \) = the proportion of the total number of individuals consisting of the \(i \)th species. Diversity indices were calculated for each SHS. Habitat use diversity (HUD) was calculated for each reptile and amphibian by the diversity index listed above; where \(p_i \) = the proportion of species abundance occurring in the \(i \)th SHS.

Information on Chelonia was limited to field collecting due to small, isolated populations of turtles. Desert tortoise populations are under investigation by Betty L. Burge, and therefore, are only briefly discussed in this paper.

Special transects were used to determine relationships between ecological parameters and reptilian species. Transects estimating abundance of Heloderma suspectum were run to determine possible correlation with avian ground nests. Transects were 2,000' in length and consisted of walking straight lines and recording lizards seen within 50' of the line. Similarly, avian ground nests within 10' of the line were recorded.

To compare trap-night success of Phrynosoma with ant nest density, we obtained the number of ant hills along a 4,000', straight transect line, recording nests within 10' of the line. Transects were located at Array sites where data on Phrynosoma populations existed.

The relationship between downed vegetative litter and Sceloporus magister was analyzed from data obtained on SHSs and trap night abundance. All relationships between lizards and habitat variables were analyzed via simple regression.

Data on habitat structure, cover, and vegetative composition were obtained for fair and poor condition desert grassland SHSs and compared to lizard density, diversity, and population trends. Lizard density was based on Array data of each condition class. Student's t test (\(p < .05 \)) were performed on lizard abundance to determine if differences observed between poor and fair condition desert grassland sites were significant.

Reptiles and amphibians are listed by scientific name only. Appendix 2 gives a cross-reference of scientific and common names.

SHSs are abbreviated in tables and figures throughout. Appendix 7 gives SHSs with corresponding abbreviations.

Voucher specimens of species possessing significant range extensions and unusual morphological features were taken and placed in the Phoenix District's Herpetological Museum.
RESULTS

Distributional and ecological data were obtained on 8 species of amphibians, 4 species of turtles, 23 species of lizards, and 26 species of snakes. Twenty-seven of these species represented significant range extensions of known distribution records (Appendix 3) (Jones et al. 1981).

AMPHIBIA

Overall amphibian abundance and diversity were dominated by the xerically adapted bufonid toads (Table 1). *Bufo microscaphus* and *Bufo punctatus* comprised more than 50% of the amphibian diversity for all SHSs combined (Table 1). Largest populations of these two species of toads occurred along intermittent and permanent water courses transecting various SHSs. Riparian SHSs were not a requirement for establishment of these species (Table 1). Both *B. microscaphus* and *B. punctatus* occurred sympatrically at elevations ranging 1,500-3,000' and allopatrically at elevations ranging 3,000-6,500'.

B. alvarius is known to occur at one locality--McGreggor Spring (Appendix 3). This specimen was an adult located in a vertical mine shaft with 6" of defined shoreline. Other than extending the known distribution of *B. alvarius* to the WNW, no conclusions can be drawn from one locality record.

Similar to *B. alvarius*, *B. woodhousei* was also found at only one location--the Big Sandy River (Appendix 3). Unlike *B. alvarius*, which occurs more frequently at dirt tanks and temporary water pools, *B. woodhousei* frequents sandy river drainages. With this knowledge, we can ascertain a hypothetical distribution for *B. woodhousei* (Appendix 3, includes the Big Sandy and Santa Maria Rivers).

The family Pelobatidae is represented by the species *Scaphiopus couchi* and, similar to *B. woodhousei*, was verified only along the Big Sandy River (Appendix 3). Populations of this species should occur on majority of the Big Sandy, Santa Maria, and Burro creek drainages (Appendix 3). This species of toad generally requires sand-bottom drainages.

The family Hylidae was represented by one species, *Hyla arenicolor*. *H. arenicolor* was the second most abundant amphibian and possessed the second largest habitat use diversity, occurring in all but three SHSs
TABLE 1 - Relative abundance (RA), species diversity (H'), and habitat use diversity (HUD') of 8 species of amphibians in 14 standard habitat sites. RA = \(n_i / N \) (100). N = the total number of amphibians.

\(n_i \) = the total number of a given species. \(n' = the total number of amphibians within a given standard habitat site. n = the total number of species in a given standard habitat site. HS = the number of standard habitat sites a species occurred in. See Appendix 7 for standard habitat site abbreviations.

Species diversity (H') = \(s \times p_i \log p_i \) (Orr et al. 1973); where \(s = the number of species and p_i = the proportion of the total number of individuals consisting of the i-th species. Habitat use diversity (HUD') = (H') except \(s = the number of standard habitat sites and p_i = the proportion of the total number of individuals occurring in the i-th standard habitat site.

<table>
<thead>
<tr>
<th>PP</th>
<th>PA</th>
<th>PJ</th>
<th>JM</th>
<th>IC</th>
<th>OC</th>
<th>DG</th>
<th>JT</th>
<th>CB</th>
<th>SP</th>
<th>CM</th>
<th>MB</th>
<th>CW</th>
<th>BR</th>
<th>HS</th>
<th>HUD'</th>
<th>n_i</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Bufo alvarius</td>
<td>1.00</td>
<td>0.33</td>
<td></td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>Bufo microscaphus</td>
<td>4.00</td>
<td>3.00</td>
<td>1.00</td>
<td>1.67</td>
<td></td>
<td>1</td>
<td>2.29</td>
</tr>
<tr>
<td>Bufo punctatus</td>
<td>4.00</td>
<td>3.00</td>
<td>1.00</td>
<td>1.67</td>
<td></td>
<td>1</td>
<td>2.00</td>
</tr>
<tr>
<td>Bufo woodhousei</td>
<td>1.00</td>
<td>0.33</td>
<td></td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>Hyla arenicolor</td>
<td>1.00</td>
<td>0.33</td>
<td></td>
<td>1</td>
<td>2.00</td>
</tr>
<tr>
<td>Rana pipiens</td>
<td>2.00</td>
<td>1.67</td>
<td></td>
<td>1</td>
<td>1.54</td>
</tr>
<tr>
<td>Scaphiopus couchi</td>
<td>0.33</td>
<td></td>
<td>1</td>
<td>0.64</td>
</tr>
<tr>
<td>Ambystoma tigrinum</td>
<td>0.33</td>
<td></td>
<td>1</td>
<td>1.11</td>
</tr>
</tbody>
</table>

H'	0.65	0.50	0.27	1.36	1.18	1.03	0.00	0.00	0.00	1.40	1.28	0.86	1.41	0.99
n'	39	5	13	22	26	10	0	12	8	15	24	29	74	24
n	3	2	2	5	4	3	0	1	1	5	4	4	5	4
RA	13.00	1.66	4.33	7.33	8.67	3.34	0.00	4.00	2.67	4.99	8.01	9.67	24.67	8.00
N' = 301														
Similar to B. microscaphus and B. punctatus, H. arenicolor required intermittent and permanent watercourses (independent of riparian vegetation in certain areas). Tadpoles of this species occurred in standing pools supported by large boulders. Tadpoles were most evident between late May and July. Largest populations of H. arenicolor were found on Burro Creek, Francis Creek, and the Santa Maria River.

Of the true frogs (Ranidae), only Rana pipsiens occurred in the planning area (Table 1), abounding in permanent, relatively calm pools of water. Because of high numbers over a limited area and number of SHSs, R. pipsiens possesses a relatively moderate habitat use diversity (Table 1). R. pipsiens was most common along Francis Creek, Burro Creek, the Big Sandy River, and the Santa Maria River, but may also occur at spring sites within other standard habitat sites (Table 1). Similar to H. arenicolor, R. pipsiens distribution has most likely been extended by considerable precipitation over the past 2 years.

The salamanders were represented by the species Ambystoma tigrinum of the family Ambystomidae. Because of difficulty in identifying subspecies of this salamander, we are uncertain as to whether A. t. nebulosum (native) or A. t. mavoritum (introduced) were sampled.

An overview of amphibian diversity demonstrated cottonwood-willow riparian SHSs to possess the highest species diversity index, 1.41 (Table 1). R. pipsiens, H. arenicolor, B. microscaphus and B. punctatus comprised the majority of that index (Table 1). Pinyon-juniper SHSs had the lowest diversity, 0.21 (Table 1). Since specimens were not collected in desert grassland, Joshua tree, and creosote bush SHSs, no value for diversity could be calculated.

REPTILIA-CHELONIA

Casual observations of the terrestrial species Gopherus agassizi were compiled to supplement data obtained by Betty L. Burge (1979). Data from both sources were then used to compile a tortoise distribution map (Appendix 3).

The family Chelyridae was represented by two species, Kinosternon flavescens, and Kinosternon sonoriense. Records were obtained only for the backwater canals of the Big Sandy River (Appendix 3). Trionyx spinferus, of the family Trionchidae, may occur in limited areas along the Burro Creek drainage, specifically the confluence of Burro and Boulder creeks and the Big Sandy and Santa Maria rivers. These areas contain slow-moving pools with well-developed shorelines, requirements of this species of turtle.
The only verified records of _T. spiniferus_ are from Alamo Lake. To date, three specimens have been taken, with photographs of each located in the Wayside Bar.

REPTILIA - SAURIA (LACERTILIA)

Cnemidophorus tigris was the most abundant lizard encountered within the study area except at higher elevations (Table 2). Higher elevations gave rise to _Cnemidophorus velox_ and _Cnemidophorus exsanguis_, the more mesic, parthenogenetic counterparts of the family Teiidae (Table 2). Although _C. velox_ and _C. exsanguis_ appear to be more ecologically compatible with higher elevation standard habitat sites than _C. tigris_, neither was abundant, 0.08 and 0.01/4TN, respectively (Table 2).

Similar to _C. velox_ and _C. exsanguis_, _Eumeces obsoletus_ and _Eumeces gilberti_ demonstrated distributions tied to mesic habitats (Table 2). Ecologically, _E. gilberti_ and _E. obsoletus_ are similar to _C. velox_ and _C. exsanguis_. Both are considered widely-foraging species (Table 3), and like _C. velox_ and _C. exsanguis_, they occur in small numbers (Table 2). The activity of teiid and scincid lizards were influenced by elevation, lizards at higher elevations commencing activity later in the spring than those of lower elevations. Where the distribution of _E. gilberti_ and _C. tigris_ overlap, _E. gilberti_ were most active in early spring, and _C. tigris_ in June (Figure 2).

Of the five widely-foraging species, only _C. tigris_ has adult-juvenile and sex ratios and relative abundance typical of healthy, stable populations (Tables 2 and 4).

Sceloporus magister, a sit-and-wait forager, was the second most abundant lizard (1.74/4TN, Table 2), occurring in all but three SHSs. A comparison of downed litter (tree limbs, branches, and other plant matter) and _S. magister_ populations demonstrated high correlation, r=0.86 (Figure 3). In upland communities, _S. magister_ gives way to _Sceloporus undulatus_ (Table 2). Similar to _S. magister_, _S. undulatus_ thrived where downed vegetative litter predominated, especially in ponderosa pine standard habitat sites (Table 2). Rock substrate seems to be the ecological equivalent of downed litter at desert grassland habitat sites, as demonstrated by high populations of _S. undulatus_, the lack of downed litter, and the abundance of large rock substrate. The abundance and adult-juvenile and sex ratios of both _S. undulatus_ and _S. magister_ are
<table>
<thead>
<tr>
<th>Species</th>
<th>CM</th>
<th>SC</th>
<th>X</th>
<th>BY</th>
<th>JF</th>
<th>NM</th>
<th>JG</th>
<th>CH</th>
<th>BR</th>
<th>CV</th>
<th>MB</th>
<th>Total</th>
<th>MB</th>
<th>Number of MBs occurred in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanus cyanus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.021</td>
<td>0.021</td>
<td>-</td>
<td>0.021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.04</td>
<td>0.04</td>
<td>3</td>
</tr>
<tr>
<td>Loligo forbesi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.034</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.03</td>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>Engraulis mordax</td>
<td>-</td>
<td>0.04</td>
<td>0.04</td>
<td>-</td>
<td>0.027</td>
<td>0.027</td>
<td>-</td>
<td>0.015</td>
<td>-</td>
<td>0.025</td>
<td>-</td>
<td>0.12</td>
<td>1.08</td>
<td>3</td>
</tr>
<tr>
<td>Cypselurus collum</td>
<td>-</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Trachysargus argyrostoma</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calamus tenuis</td>
<td>-</td>
</tr>
<tr>
<td>Panareaus giganteus</td>
<td>0.034</td>
<td>0.034</td>
<td>0.07</td>
<td>-</td>
<td>0.04</td>
<td>0.04</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.22</td>
<td>1.18</td>
<td>4</td>
</tr>
<tr>
<td>Pappasargus spinifer</td>
<td>-</td>
<td>0.035</td>
<td>0.035</td>
<td>-</td>
<td>0.035</td>
<td>0.035</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.34</td>
<td>1.13</td>
<td>1</td>
</tr>
<tr>
<td>Paraplagia spinifer</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hamidius spinifer</td>
<td>-</td>
<td>0.035</td>
<td>0.035</td>
<td>-</td>
<td>0.035</td>
<td>0.035</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
<td>0.54</td>
<td>2</td>
</tr>
<tr>
<td>Ctenophis spinifer</td>
<td>-</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.196</td>
<td>0.035</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.49</td>
<td>1.29</td>
<td>5</td>
</tr>
<tr>
<td>Pappasargus argyrostoma</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Engraulis argyrostoma</td>
<td>-</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.34</td>
<td>1.13</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 14 species, 70 individual MB, 14 individual MB.
TABLE 3 - Summary of Life Forms for lizards of the Hualapai-Aquarius planning units. Based on observations and Pianka (1966).

Diurnal Species

I. Widely foraging species Cnemidophorus and Eumeces

II. Sit-and-wait species

(a) Under bushes and on large rocks, litter, trees, etc. . . . Crotaphytus, Sceloporus, Urosaurus, Uta

(b) Open spaces between shrubs
 ab. Generalists Callisaurus, Cophosaurus, Gambelia, and Holbrookia
 bb. Specialists Phrynosoma

III. Herbivorous

(a) (IIa-d) Dipsosaurus
(b) (IIa) Sauromalus

Nocturnal Species

I. Open foraging Coleonyx

II. Fossorial-Boreal Xantusia

Crepuscular

I. Olfaction and digging Heloderma
Figure 2. Comparison of activity intensity between *Cnemidophorus tigris* and *Eumeces gilberti* for the months of April, May, and June, 1979. Populations were sympatric and activity was expressed as a percent of the total number of lizards observed during a given month. Means are illustrated ± SD.
Figure 3. Relationship between relative abundance of Sceloporus magister and downed vegetative litter (primarily tree limbs and trunks). Litter is expressed as the percentage of downed litter vs. the total ground surface area. A = points significantly outside the deviation of the best fit line. These points also represent sample areas with buildups of Neotoma nests. Points indicated by A were not used in determining r.
typical of stable populations (Near 1:1, Tables 2 and 4). *S. magister* demonstrated population numbers for many areas that may indicate increasing trends (large number of juveniles). In areas of sympatry, *S. magister* activity preceded that of *S. undulatus*.

Crotaphytus collaris, a sit-and-wait forager while on rocks and litter, was abundant at SHSs dominated by large rocks and rock outcrops. Although not demonstrated by trap-night success (Table 2), field observations indicate *C. collaris* to thrive on rock-dominated malpais mesa tops (desert grassland). Similar to lizards increased by downed vegetative litter content, large amounts of rock make available numerous roosting and feeding sites to *C. collaris*, thus supporting greater numbers. Field observations reveal that *C. collaris* populations are either stable or, as in the case of desert grassland, increasing (based on large abundance of females in the populations).

Urosaurus ornatus, *U. gracilis*, and *Uta stansburiana* constitute the remainder of the sit-and-wait foragers while on rocks, trees, and litter (Table 3). These species were typically found at lower elevation SHSs and demonstrated high trap-night success (Table 2). *U. ornatus* and *U. gracilis* were sympatric on creosote bush SHSs (Table 2). Both persisted in areas where litter and rock were prevalent. *U. stansburiana* demonstrated a high diversity index, a result of a broad distribution throughout the study area (Table 2).

Sit-and-wait foragers of open spaces of the family Iguanidae were represented by the species *Callisaurus draconoides*, *Cophosaurus texana*, *Gambelia wislizenii*, (formally *Crotaphytus*), *Phrynosoma douglassi*, *Phrynosoma platyrhinos*, and *P. solare*.

Ecologically, *C. draconoides* and *C. texana* are similar. *C. draconoides* demonstrated higher trap-night success (0.32) than *C. texana* (0.12) (Table 2), probably resulting from *C. texana* occurring on the periphery of its distribution within our study area. These species were sympatric only at cottonwood-willow SHSs and demonstrated abundance and sex and adult-juvenile ratios indicative of stable populations (Tables 2 and 4).

Gambelia wislizenii, the largest of the predatory, open-space, sit and wait predators, was not trapped in any Arrays. Typically, these lizards are found in palo verde-saguaro SHSs where large rock and rugged gulleys predominate. *G. wislizenii* was verified by casual observation but was not statistically analyzed due to lack of trap-night data.

The genus *Phrynosoma* was represented by three species within the study area: the high elevation *P. douglassi*, moderate-to-low elevation *P. platyrhinos*, and low elevation *P. solare* (Table 2). The genus *Phrynosoma* comprise species that specialize in foraging ants, and are thus referred to as specialists (Table 3). Of the three species, *P. platyrhinos* had the highest trap-night success, 0.44/4TN (Table 2). A strong positive correlation (r= 0.88) was found between *P. platyrhinos* and *P. douglassi*.

19
abundance and the number of ant hills (Figure 4), further supporting existing data on this species as an ant specialist (to be discussed in the following section). *P. platyrhinos* is replaced by *P. douglassi* in habitats from pinyon-juniper and above (Table 2). *P. solare* was verified only in creosote bush SHSs (Table 2) but may occur in saguaro palo-verde communities. Populations of *P. platyrhinos* and *P. douglassi* appear to be increasing in many areas (Tables 2 and 4, based on near 1:1 adult-juvenile ratios). Insufficient data on *P. solare* prevent any population trend analysis.

The distribution of the herbivorous iguanid lizards *Dipsosaurus dorsalis* and *Sauromalus obesus* was related to specific features within SHSs. *D. dorsalis*, although not trapped, was observed in areas with high percentages of creosote bush (includes saguaro-palo-verde SHS). Creosote flowers may be an important dietary constituent for *D. dorsalis*. *S. obesus* demonstrated a preference for extremely rocky situations, especially in malpais areas.

Heloderma suspectum of the family Helodermatidae, was trapped only once within the study area. Several casual observations (n = 5) were combined into a distribution map appearing in Appendix 3. Separate transects comparing *H. suspectum* abundance with avian ground nests yielded a moderate correlation: \(r = 0.76 \) (Figure 5). The canotia mix SHS demonstrated the highest numbers of both ground nests and *H. suspectum* abundance. Although only one specimen was trapped, our field observations indicate *H. suspectum* populations to be stable within canotia mix standard habitat sites (high ratio of females and juveniles in the population).

Nocturnal lizards were represented by the species *Coleonyx variegatus* (Gekkonidae), *Xantusia vigilis arizonae*, and *Xantusia vigilis vigilis* (Xantusidae) (Table 2). *C. variegatus* had a low overall trap-night abundance, 0.09 (Table 2), occurring in areas of high rock and litter content. *X. v. arizonae* showed distribution restricted to pinyon-juniper and chaparral SHSs (Table 2). *X. v. arizonae* was larger (in size) than *X. v. vigilis* (highly associated with foothills and hillsides with high concentrations of *Nolina bigelovii*). Both *X. v. arizonae* and *X. v. vigilis* had limited activity periods and low trap-night success, *X. v. arizonae* with 0.07 and *X. v. vigilis* with 0.05, (Table 2).

C. tigris and *S. magister* had the highest habitat use diversities (HUDs) of lizards sampled, 2.25 and 2.24 respectively (Table 2). *U. stansburiana* and *E. g. arizonensis* also had high HUDs, but the latter was found only in Upper Sonoran and riparian SHSs (Table 2). *H. suspectum*, *P. solare*, *C. exsanguis* and *X. v. vigilis* had HUDs of 0.00 each occurring in only one SHS (Table 2).

Overall saurian trap-night success, based on months with the highest activity, was greatest in saguaro-palo verde SHSs, 0.99L/4TN (Table 2). Riparian areas demonstrated high trap-night abundance (Table 2,) whereas high elevation SHSs demonstrated generally low trap-night success (Table 2).
Figure 4. Relationship between *Phrynosoma platyrhinos* and *Phrynosoma douglassi* abundance and ant hill abundance. Lizard and ant hill abundance are expressed as the number seen per 4000 ft. transect.
Figure 5. Relationship between *Heloderma suspectum* abundance and the number of avian ground nests, primarily quail and dove. Lizard and nest abundance are expressed as the number seen per 2000 ft. transect.
Pinyon-juniper and open chaparral had the greatest species diversities with each SHS consisting of 8 species (Table 2). Interior chaparral had the greatest number of species (11) but total abundance was dominated by a few species which resulted in only a moderate diversity index (1.42, Table 2). Juniper mixed-scrub, creosote bush, and cottonwood-willow SHSs all had indices greater than 1.70 (Table 2). Ponderosa-aspen, ponderosa pine, and desert grassland had the lowest diversity indices within the study area (Table 2). Only one species (Phrynosoma douglassi) was trapped in the ponderosa-aspen SHS (Table 2).

Degradation of condition in desert grassland SHSs would seem to reduce species richness of lizards (Table 5). Poor condition desert grassland sites demonstrated fewer species, lower abundance, and fewer stable populations than fair condition sites (Table 5).

REPTILIA - SERPENTES (OPHIDIA)

Of 26 species of snakes, Crotalus atrox (Crotalidae) was found to be the most abundant and evenly dispersed, 14.82 (Table 6), occurring in six of the fourteen SHSs (Table 6). C. atrox activity was intense in mid-April. Four den sites were verified on boulder-strewn hillsides where up to 15 adults were observed per visit.

Other members of the crotaline family with relatively high abundance and habitat use diversities were Crotalus scutulatus and Crotalus viridis cerberus (Table 6). C. scutulatus occurred sympatric to C. atrox, and C. v. cerberus occurred at upper elevation SHSs allopatric to all other crotalines with the exception of Crotalus molossus (Table 6). C. molossus was strictly related to rock outcrops and talus slopes within chaparral SHSs (Table 6). One record, however, demonstrates the exploitation of rocky canonia mix SHSs.

Crotalus cerastes and Crotalus mitchelli make up the remainder of the genus Crotalus in our study area. C. cerastes was limited in distribution to sandy soils within creosote bush flats near Yucca, Arizona (Appendix 3). C. mitchelli is ecologically similar to C. molossus, with the exception of the latter exploiting higher elevations.

The colubrid family had by far the largest number of representatives within the study area (Table 6). Of the colubrids, Masticophis was the most represented genus (Table 6). Masticophis flagellum had the third highest HUD, 1.56 (Table 6), occurring in many low-to-mid elevation SHSs (Table 6). Masticophis taeniatus replaced M. flagellum at higher elevations (Table 6), demonstrating a moderate HUD, 1.48 (Table 6). Masticophis bilineatus occurred sporadically throughout Lower and Upper Sonoran Life Zones (Table 6), with highest abundance along Burro and Francis creeks. Of the colubrid snakes, Salvadora hexalepis had the highest HUD, 1.88, occurring in a variety of habitats in high abundance (Table 6). This species is ecologically similar to M. flagellum (fast-moving, diurnal, lizard-eater). See Table 7 for ecological life-forms of each snake.
TABLE 5 - Plant species composition and lizard relative abundance for two condition classes of mesa top, desert grassland standard habitat sites. Means are listed + one standard deviation.

<table>
<thead>
<tr>
<th>Plant Species</th>
<th>Nelson Mesa (Poor Condition)</th>
<th>Bozarth Mesa (Fair Condition)</th>
<th>Composition %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilaria mutica</td>
<td>2.1 ± 2.4</td>
<td>14.7 ± 1.6</td>
<td></td>
</tr>
<tr>
<td>Aristida sp.</td>
<td>1.1 ± 0.9</td>
<td>3.7 ± 2.0</td>
<td></td>
</tr>
<tr>
<td>Acacia greggii</td>
<td>2.7 ± 1.1</td>
<td>1.6 ± 1.1</td>
<td></td>
</tr>
<tr>
<td>Gutierrezia sp.</td>
<td>90.1 ± 1.7</td>
<td>73.3 ± 3.8</td>
<td></td>
</tr>
<tr>
<td>Quercus turbinella</td>
<td>1.7 ± 0.8</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>Eriogonum wrightii</td>
<td>1.9 ± 1.3</td>
<td>9.4 ± 2.6</td>
<td></td>
</tr>
<tr>
<td>% Cover (Perennial)</td>
<td>16.3 ± 2.6</td>
<td>23.4 ± 3.2</td>
<td></td>
</tr>
<tr>
<td>*Total Lizard Abundance/4TN</td>
<td>0.07+ 0.01</td>
<td>0.25+ 0.03</td>
<td></td>
</tr>
<tr>
<td>No. of Lizard Species</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>No. of Gravid Females</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Adult-Juvenile Ratios</td>
<td>5:0</td>
<td>11:4</td>
<td></td>
</tr>
<tr>
<td>No. of Species in Decline</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>No. Species Stable</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No. Species Increasing</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

* Student T-test on the means of total lizard abundance at p = 0.025 showed significant difference between Nelson and Bozarth Mesas.

** Condition classes are based on methods of the Soil Conservation Service (1976).
<table>
<thead>
<tr>
<th>Species</th>
<th>PP</th>
<th>PA</th>
<th>P0</th>
<th>DC</th>
<th>SE</th>
<th>SG</th>
<th>JT</th>
<th>CR</th>
<th>CP</th>
<th>CP</th>
<th>HI</th>
<th>HC</th>
<th>HC'</th>
<th>SS</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litorina trunculus</td>
<td></td>
</tr>
<tr>
<td>A. trunculus</td>
<td></td>
</tr>
<tr>
<td>A. gigas</td>
<td></td>
</tr>
<tr>
<td>A. stagnalis</td>
<td></td>
</tr>
<tr>
<td>A. obtusa</td>
<td></td>
</tr>
<tr>
<td>A. pulchra</td>
<td></td>
</tr>
<tr>
<td>A. neglecta</td>
<td></td>
</tr>
<tr>
<td>A. limnetica</td>
<td></td>
</tr>
<tr>
<td>A. sparsa</td>
<td></td>
</tr>
<tr>
<td>A. obtusa</td>
<td></td>
</tr>
<tr>
<td>A. abrupta</td>
<td></td>
</tr>
<tr>
<td>A. pulchra</td>
<td></td>
</tr>
<tr>
<td>A. neglecta</td>
<td></td>
</tr>
<tr>
<td>A. limnetica</td>
<td></td>
</tr>
<tr>
<td>A. sparsa</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table provides data on various species and their distribution across different habitats. The columns represent different species, while the rows indicate the number of individuals found in each habitat type. The data is organized to show the frequency of each species across various environments, allowing for analysis of their ecological niches and habitats preferences.
TABLE 7 - Life-forms of snakes of the Hualapai and Aquarius Planning Units.

Diurnal

I. Surfocorial - Lizard foragers
 - Masticophis flagellum
 - Masticophis bilineatus
 - Masticophis taeniatus
 - Salvadora hexalepis

Nocturnal

I. Fossorial
 - Hypsiglena torquata
 - Phyllorhynchus decurtatus
 - Sonora semiannulata
 - Tantilla p. atriceps
 - Micruroides euryxanthus
 - Leptotyphlops humilis

II. Surfocorial
 - Arizona elegans
 - Rhinocheilus leconti

III. Arboreal
 - Lichanura t. gracia
 - Trimorphodon b. lambda

Crepuscular

I. Aquatic
 - Thamnophis cyrotopsis
 - Thamnophis marcianus

II. Fossorial
 - Diadophis punctatus
 - Lampropeltis pyromelana

III. Surfocorial
 - Lampropeltis getulus
 - Pituophis melanoleucus
 - Crotalus atrox
 - Crotalus cerastes
 - Crotalus molossus
 - Crotalus scutulatus
 - Crotalus v. cerberus
Nocturnal colubrids were well represented throughout the study area. Sonora semianulata and Rhinocheilus leconti were the most common (Table 6), with the fossorial-surfacoreal (refers to species that spend most of their time under litter on the surface or underground) Tantilla planiceps atriceps, Hypsiglena torquata, Diadophis punctatus, and Phyllorhynchus decurtatus the least common (Table 6). The rock-restricted, arboreal, Trimorphodon biscutatus lambda was also an uncommon snake, and possessed a low HUD, 0.00 (Table 6).

Crepuscular colubrids were represented by the species Lampropeltis getulus, Lampropeltis pyromelana, Thamnophis cyrtopsis, and Thamnophis marcianus (Table 6).

L. getulus and *L. pyromelana* exploited entirely different habitats (Table 6). *L. getulus* was found in low elevation, xeric habitats with varying amounts of water, and *L. pyromelana* was found specifically in higher, mesic elevations of the Hualapai Mountains near perennial water. Whereas *L. getulus* was abundant in certain areas, *L. pyromelana* was never abundant (Table 6).

I. cyrtopsis and *I. marcianus* were found only at SHSs with intermittent or permanent water (riparian SHS or at spring sites within other SHSs). *I. cyrtopsis* was extremely common along drainages of the Big Sandy and Santa Maria rivers and Burro and Francis creeks, where they feed primarily on Bufo and Hyla tadpoles. This species also occurred at isolated spring sites and dirt tanks in the Hualapai Mountains. Only one record of *I. marcianus* was obtained (the Big Sandy River).

One of Arizona's most unusual vertebrate species was verified during this study, Licianura trivirigata gracja, a member of the world's most primitive snake family Boiidae. *L. t. gracja* populations occurred in areas with large boulders and rocky hillsides of the saguaro palo-verde and juniper mix SHSs (Table 6). Low elevation populations generally occurred near perennial or intermittent floodplains.

The family Leptotyphlopidae was represented by one species, Leptotyphlops humilis, which was fairly abundant in saguaro palo-verde SHSs (Table 6) where sand-bottom floodplains persisted.

The neurotoxic family Elapidae (primarily from tropical Africa and Asia) was represented by the species Micruroides euryxanthus. Existing on the periphery of its range in our study area, *M. euryxanthus* was quite rare.

The saguaro palo-verde SHSs had the highest combined ophidian diversity index (Table 6). Pinyon-juniper, juniper mix, interior chaparral, and cottonwood-willow riparian SHSs all had indices greater than 1.25 (Table 6). Of the SHSs sampled, ponderosa-aspen had the lowest ophidian diversity index, 0.00 (Table 6).
DISCUSSION

AMPHIBIA

My studies reveal that members of the families Bufonidae, Hylidae, Pelobatidae and Ranidae are restricted to aquatic and semi-aquatic situations, often independent of habitat type. The dependence of these species on water varies, and is related to specific physiological, morphological, and behavioral adaptations.

Of the amphibians, *Rana pipiens* was perhaps the most dependent on permanent water, individuals exclusively associated with perennial drainages and springs. Studies by Walker and Whitford (1970) showed *R. pipiens* to have the lowest skin absorption abilities when compared to species of *Scaphiopus* and *Bufo*. Its inability to absorb soil moisture efficiently may prevent *R. pipiens* from exploiting more xeric habitat.

Hyla arenicolor, similar to *R. pipiens*, was associated with perennial streams and springs, but not exclusively. As perennial streams recede during warm summer months, tadpoles migrate into remaining pools. Ford and Breed (1970) demonstrated nest-building by *H. arenicolor* tadpoles confined to small pools. Nest-building is adaptive because it decreases evaporative water loss through reduction of exposed surface area, thus extending tadpole survival. *H. arenicolor* exploit areas with intermittent waterflow by using rugged, narrow canyons, which facilitate more mesic conditions. Adults were observed in crevices along vertical rock walls where heat stress may be reduced.

The bufonid and pelobatid toads are among the best adapted Anurans to terrestrial life. Of these, *Bufo woodhousei* seems to be least adapted to terrestrial existence. Axtell (1963) and Bragg (1958) concluded that *B. woodhousei* distribution was related to moist, sandy river drainages at the western margin of its range where this species avoids midday desiccation by burrowing into loose soil. My records support these findings.

Bufo punctatus and *Bufo microscaphus* have adapted behaviors that result in exploitation of terrestrial SHSs transected by intermittent and permanent waterflow. These adaptations account for high abundance and habitat use diversity figures obtained in this study. Similar to *H. arenicolor*, *B. punctatus* constructs nests that reduce evaporative water Toss, thus extending tadpole survival. Studies by Weintraub (1974) demonstrated adult *B. punctatus* to migrate in response to receding surface water. Migration was always in the direction of increased water availability. Weintraub (1974) also demonstrated migration of adult *B. punctatus* away from pools during extended wet periods, attributing to high mortality during following dry periods. Adults remaining in floodplains were able to home back to original areas of inhabitance.

Ecologically, *B. microscaphus* are similar to *B. punctatus*, inhabiting both high and low elevation washes. Unlike *B. punctatus*, *B. microscaphus*

28
depends on excavating its own burrows (Jones unpl. data), especially in the sand bottoms of Knight Creek and the Big Sandy River. Sympatric B. punctatus used rock and litter cover sites, thus reducing competition with B. microscaphus at lower elevations. In upland drainages these species are mostly allopatric, a result of few drainages having both sand and rocky substrate (typical of areas in the Hualapai Mountains). B. microscaphus exploit dirt tanks and upland areas of sandy or loose soil.

Subspecific difference in populations of B. microscaphus may occur in the study area. Shannon and Lowe (1955) described B. m. mexicanus as upland subspecies distinct from the lower elevation B. m. microscaphus. High elevation B. microscaphus in our study area were lighter and more dorsally blotched than lower elevation populations. My data are inconclusive as to whether both subspecies inhabit the area.

Knowledge of Bufo alvarius is limited to one locality record. Studies in the previous ES area - Black Canyon-Skull Valley Planning Units of central Arizona demonstrated B. alvarius to exploit springs and dirt tanks (Jones unpl.data). Cole (1962) concluded that B. alvarius was very rare at the edges of its distribution, the case with the southern portion of our study area. This explains low abundance and habitat use diversity obtained for this species during my studies.

Previous studies have shown Scaphiopus couchi to be highly adapted to terrestrial existence. Clanahan (1967) demonstrated several adaptive physiological mechanisms allowing a 10-month burrowing phase: body fluid concentration up to 600mOsm/l of 50% urine, storage of fat and metabolic utilization during inactivity, and utilization of dilute urine in maintaining body fluids. Walker and Whitford (1970) demonstrated abilities of this species to absorb soil moisture up to 2.5 atmospheres (double that of many anurans), further facilitating extended fossorial existence. Developing larvae of S. couchi are also adapted to terrestrial existence as they possess high tolerance to heat (Justus et al. 1977). However, this species seems limited to areas with deep sand bottoms which may partially account for a low habitat use diversity (few SHSs with deep sand).

S. couchi keys on ground rumbling created by thunderstorms for emergence during warm summer months (Bondello and Brattstrom 1979). Thunderstorm rumbling is an indicator to S. couchi of accumulation of surface water necessary for breeding. Artificial ground rumbling (sonic booms and ORV races) result in surfacing of S. couchi at times when there is no surface water, thus causing desiccation and some mortality of individuals (Bondello and Brattstrom 1979).

Ambystoma tigrinum (the only caudate in our area) distribution is probably a result of introduction by man. On several occasions in New Mexico and Arizona subspecies of A. tigrinum have been observed in a single pond (Whitford pers. comm.). Ranchers further indicate that this species was introduced into the Hualapai-Aquarius Planning Units. So called "water dogs" have been released into dirt tanks and drinking troughs.
Webb and Roueche (1971) have determined that *A. tigrinum* use dirt tanks at higher elevations. Larval and neonate *A. tigrinum* depend on these sites and have evolved higher temperature tolerance than adults in adapting to warmer summer temperatures (Delson and Whitford 1973). Larvae and neonates can also follow O$_2$ and temperature gradients, allowing for movement into preferred temperature and O$_2$ regimes during different times of the day (Whitford and Massey 1970). Adult *A. tigrinum* can migrate great distances, using Neotoma dens and ground squirrel nests as cover sites during migration (Hamilton 1946).

Habitat management plans for amphibians of the Hualapai-Aquarius Planning Units should stress preservation of aquatic areas. Surface disturbance of aquatic areas including drainages and dirt tanks, by cattle and construction should be kept to a minimum during reproductive periods of May-July to reduce trampling of areas with deposited eggs.

Habitat improvement should consist of constructing retaining walls in drainages to facilitate water catchment. This improvement should improve reproduction of *H. arenicolor*, *B. punctatus*, and *B. microscaphus*, especially in drier years.

Areas inhabited by *S. couchi* can be maintained by restricting ORV use and mineral exploration. Natural catchments that increase surface water retention during summer rains will help perpetuate this species as well as *B. woodhousei*.

The Hualapai-Aquarius Planning Units have sufficient drainages to maintain healthy populations of *B. punctatus* and *B. microscaphus*. Because these species partition cover sites, habitat quality (particularly erosion) should be monitored where they are sympatric.

Maintenance of defined shorelines and detrital bottoms in dirt tanks should continue the existence of *A. tigrinum* in the two planning units.

No habitat management suggestions are recommended for *B. alvarius* or *R. pипiens*, with the exception of monitoring water quality at aquatic sites.

REPTILIA - CHELONIA

Gopherus agassizii is being studied by Betty L. Burge and thus, is not extensively discussed in this paper. My study, however, has uncovered a high number of desert tortoises in a Joshua tree community on the west side of the Hualapai Mountains. These findings contradict Burge's (1979) conclusion that only populations north and west of the Colorado River occur in Joshua tree habitat.

The other genus of turtle, *Kinosternon*, has received little attention, especially in our area. Iverson (1978) refutes a record of *Kinosternon flavescens* by Stebbins (1966) along the Big Sandy River. Examination of
this specimen indicated the Big Sandy record to be *Kinosternon sonoriense*. Our records support Stebbins (1966) but also verify the existence of *K. sonoriense* in the Big Sandy River. The canal in which both species were found was not typical of areas previously observed with *K. sonoriense*. Sites usually consist of rocky streambeds with limited amounts of silt (little or no rock occurred in the backwater canals of the Big Sandy). One consistent factor of the Big Sandy River and rocky streambeds is the buildup and maintenance of algae on water and substrate surfaces. Hulse (1974) observed similar algae buildup in creeks south of the Prescott National Forest, which he felt reduced evaporative water loss. Algae buildup may also reduce predation on *K. sonoriense* (allowing rapid escape) by reducing visibility, and help maintain temperatures within a cool preferred range during hot months.

K. flavescens has been reported primarily from sandy river drainages (Iverson 1978). The Big Sandy River provides this distributional requirement.

Habitat management for both of these species of turtles should include protection of riparian areas (especially the Big Sandy and Santa Maria rivers, and rocky perennial streams in the Bagdad area), maintenance of water quality standards and, any means of enhancing riparian habitat quality. Tadpole and fish populations are important to maintain as food sources for *Kinosternon*.

REPTILIA - SQUAMATA - (LACERTILIA) SAURIA

Of the reptiles, lizards are probably the best indicators of habitat quality, a result of utilizing and requiring specific habitat structures (Pianka 1966). Specific habitat requirements result from resource partitioning that reduces ecological competition among lizards. In addition to partitioning physical resources, lizards have adopted differential activity periods that reduce competition (Creusere and Whitford 1979).

Pianka (1966) separated lizards into life forms based on foraging and substrate requirements. We further separate lizards based on additional ecological information (Table 3).

DIURNAL

Widely Foraging

Of the widely foraging species, *Eumeces gilberti arizonensis* and *Eumeces obsoletus* require the most specialized habitat. Both species require moist, rocky situations where low-height vegetation prevails. Similar habitat requirements have been described for *E. obsoletus*.
throughout most of its range (Fitch 1955). Mesic situations in our area are provided by interior and open chaparral, pinyon-juniper, desert grassland, mixed broadleaf riparian, and cottonwood-willow riparian SHSs. Because E. g. arizonensis occurs in even abundance throughout these SHSs, it possesses a relatively high habitat use diversity (HUD). However, populations are generally decreasing except in pinyon-juniper SHSs. Areas with decreasing populations are overgrazed, possessing few low-height perennials (with the exception of snakeweed). Reducing such vegetation may reduce invertebrate food available to these species (invertebrates) and thus reduce their fitness (Whitford pers. comm.) Jones (1979b, 1981a) demonstrated lower abundance of Eumeces in overgrazed areas than in non-grazed areas, attributing decreased numbers and fitness to the loss of low-height perennial vegetation. Fitch (1955) discussed a relationship similar to that discussed by Jones in the species E. obsoletus. Fitch (1955) also demonstrated small home and foraging ranges that would further reduce fitness of this species in overgrazed situations. E. g. arizonensis and E. obsoletus do not lay eggs every year resulting in low recruitment and further reduction of the fitness of these species in overgrazed situations (Fitch 1955).

E. g. arizonensis and E. obsoletus have adapted burrowing behavior and limited activity patterns for exploitation of desert habitats (Fitch 1955). Morphologically, Eumeces is well equipped for burrowing, having reduced lateral posterior appendages, reduced eyes, and a snakelike body (Fitch 1955). Even with these adaptations, Eumeces is restricted to more mesic habitat types.

Establishing separate activity periods from that of C. tigris in areas of sympatry help E. g. arizonensis reduce competition for food, cover sites, territory, and reproductive sites. Creusere and Whitford (1979) demonstrated different activity periods in Chihuahuan lizards reduced competition for roosting, reproductive, and feeding sites. Activity periods of C. tigris and E. g. arizonensis also reflect the mean preferred body temperatures of these two species. Brattstrom (1965) determined mean preferred temperature of E. obsoletus to be between 31-34 C, a temperature range indicative of an animal active in late winter and early spring. No data are available on the preferred temperature of E. g. arizonensis, although it should be similar to that of E. obsoletus.

Populations of E. obsoletus may spread into more xeric habitats during wet years within our area as demonstrated by Whitford and Creusere (1977). Such migration may allow for intraspecific genetic exchange of populations of E. obsoletus which are separated by xeric habitat.

The genus Cnemidophorus demonstrated a distribution related to elevation. Cnemidophorus tigris inhabited all low elevation SHSs, reaching elevations up into ponderosa pine SHSs, thus possessing a high habitat use diversity. At higher elevations C. tigris numbers decreased probably resulting from competition with the ecologically similar Cnemidophorus velox and Cnemidophorus exsanguis. Medica (1961) studied four species of whiptails in New Mexico. He found results similar to mine: C. exsanguis prefer more mesic habitats than C. tigris. Because C. exsanguis and C.
velox are limited to the Upper Sonoran Life-zone, they possess low habitat use diversities. Medica also demonstrated differences in food consumption between C. tigris and C. exsanguis: C. tigris consuming smaller percentages of Hymenoptera and Orthoptera than C. exsanguis. Upper Sonoran standard habitat sites may support larger percentages of prey items preferred by C. exsanguis than C. tigris, thus reducing the fitness of C. tigris, especially in view of the similarity in the ecology of these two species of lizards.

Cnemidophorus species in our study area reproduce similarly except for C. exsanguis, which lay only one clutch per year. C. tigris and C. velox lay two or more clutches per year (Schall 1978; Medica 1967; Parker 1972).

Parker (1972) determined thermoregulation and preferred body temperature of Cnemidophorus and found no differences in either behavior or preferred body temperature among the species.

The exploitation of high elevation SHSs has been treated by Asplund (1974). Asplund contends that larger whiptails can exploit cooler, more patchy environments than smaller lizards. His hypothesis supports the exploitation of chaparral SHSs in our study area by all three whiptails.

Sit-and-Wait Foragers - Trees, Rocks, Litter

High abundance of sit-and-wait foragers of this variety seem to be related to the availability of rock and litter. The second most abundant lizard, Sceloporus magister, demonstrated high correlation to the amount of downed vegetative litter, except in areas with high densities of pack rat dens. High abundance of S. magister in areas of high Neotoma nest density has been described by Parker and Pianka (1973), which explains S. magister abundance in areas of small amounts of downed litter.

Adult S. magister use both trees and downed litter whereas young use mostly downed litter and rocks (Vitt and Ohmart 1974). Vitt and Ohmart (1974) hypothesized young S. magister use downed litter and rock to reduce competition for roosting sites and prey with the arboreal Urosaurus graciosus and Urosaurus ornatus. Unlike young S. magister, adults can use both large and small prey, thus reducing competition with U. graciosus and U. ornatus on arboreal sites. Similar studies by Simon (1976) on Sceloporus jarrovi demonstrated capabilities of adults to use both large and small prey items whereas juveniles use only small prey items.

S. magister was replaced by Sceloporus undulatus at high elevation SHSs, but no other studies have treated a similar ecological situation. Tinkle (1976) studied sympatric populations of S. magister and S. undulatus and found little difference in their ecology. Differences in food consumed and thermoregulatory capacities may explain this elevational relationship. Toliver and Jennings (1975) showed S. undulatus to consume high percentages of Isoptera, Hymenoptera and Coleoptera and similar to Vitt and Ohmart's (1974) studies on S. magister, found S. undulatus to be an opportunistic

33
forager, diets of the two species reflecting prey availability. Brattstrom (1965) demonstrated S. undulatus to possess lower preferred body temperatures than S. magister. Lower preferred temperature ranges of S. undulatus may allow this species to exploit higher elevations and prevent exploitation of low elevation SHSs. Conversely, higher preferred temperatures of S. magister allow this species to exploit hot, low-lying elevations but also prevent extensive exploitation of higher elevations. Because S. magister exploits both Upper and Lower Sonoran SHSs to some degree, it has a high habitat use diversity.

Similar to S. magister, S. undulatus preferred areas of high litter density, as demonstrated by its high abundance at ponderosa pine SHSs, which have high concentrations of downed litter. Downed litter increases the number of roosting, reproductive, and feeding sites available to S. undulatus in an area and, therefore, permits the area to support more lizards.

U. graciosus and U. ornatus were sympatric only at creosote bush SHSs. Vitt and Ohmart (1974) demonstrated sympatric populations of U. graciosus and U. ornatus in mesquite habitat. U. graciosus were more associated with mesquite drainages. Ironwood-blue palo verde habitat is limited to southern portions of the study area along Alamo Lake. Although Vitt and Ohmart (1974) suggest these species are exclusively arboreal, my findings expand habitat preference to include rocky surfacereal situations within saguaro-palo-verde and creosote bush SHSs.

Crotaphytus collaris, the largest of the sit-and-wait predators, were common in rocky areas, generally independent of habitat type. Fitch (1956) reviewed the ecology of C. collaris and found a similar dependence on rocky habitat. He also found C. collaris to have a high preferred deep body temperature range (37-40°C). Dawson and Templeton (1963) demonstrated similar temperature ranges for this species, as well as abilities to reduce heart rates and O2 consumption when exposed to temperatures above 40°C. They also found that C. collaris dissipates heat through evaporative cooling (panting). High preferred body temperature with physiological and behavioral mechanisms have allowed C. collaris to exploit rocky, low and middle elevation habitats. The build-up of huge populations of C. collaris on desert grassland SHSs within the study area results from large amounts of rocky, boulder strewn surfaces.

Sit-and-Wait Foragers - Open Spaces

Generalists

Callisaurus draconoides and Cophosaurus texana were found to have similar ecologies but demonstrated sympatry only at cottonwood-willow SHSs. Pianka and Parker (1972) discussed the ecology of C. draconoides in several areas. Generally, C. draconoides preferred Orthoptera and Coleoptera and possessed longer forelegs (expressed as percentages of snout-vent length).
than eight other sympatric species. Pianka and Parker (1972) hypothesized that longer forelegs were related to the lizard's open-space feeding habits. Open-space feeding habits are also facilitated by high preferred body temperatures--39.6°C (Brattstrom 1965). *C. draconoides* has also demonstrated an ability to regulate body temperature through use of various body postures (Muth 1977). Muth (1977) concluded that convectional heat loss through elevated body postures allowed *C. draconoides* to maintain preferred body temperatures over long periods of time. The previously described adaptations have allowed *C. draconoides* to exploit hot, xeric environments.

Pianka and Parker (1972) stated that species of the genus *Holbrookia* which at the time included *Cophosaurus*, were ecologically similar to *Callisaurus* (high population turnover, short longevity). Neither Pianka and Parker (1972) nor Muth (1977), however, discussed any ecological differences between *C. draconoides* and *C. texana* that explain my observed differences in distribution. Food preference and thermoregulatory adaptation differences between the two species may explain some distributional observations, but lack of information prevents verifying such an explanation.

Gambelia wislizenii is more dependent on other lizards as food than any of the open-space, sit-and-wait foragers (Stebbins 1966; Tanner and Krough 1975). *G. wislizenii* has adapted dorsal pattern polymorphism, thus increasing cryptic camouflage, and reducing predation (Montanucci 1978). Exploitation of hot, xeric habitats has been facilitated by arboreal behavior (Clark 1974). Arboreal behavior allows *G. wislizenii* to dissipate heat in cooler, above-ground air layers (convectional heat loss).

Specialists

Phrynosoma comprises the only genus specializing in the prey it takes, *Formicidae* (ants). Species representing *Phrynosoma* demonstrated elevational relationships within the study area. *Phrynosoma solare* was found strictly in one lower elevation SHS. Parker (1971) demonstrated a similar habitat relationship (all observations in Sonoran Desert mountain valleys).

Prieto and Whitford (1971) have correlated *Phrynosoma douglasi* to high elevations, showing *P. douglasi* to possess a greater preferred temperature range than that of the lower elevation *Phrynosoma cornutum*, especially at the lower temperature range. They suggested that the lower temperature tolerance of *P. douglasi* was facilitated by more efficient transport of oxygen, thus allowing exploitation of cooler SHSs. The inability of *P. douglasi* to exploit low elevations may result from hot ambient temperature regimes that drive deep body temperature above a preferred range, especially considering large amounts of their time are spent in the open foraging. Goldberg (1971) suggested that viviparity of *P. douglasi* has allowed this species to exploit upper elevation habitats by reducing the effects of cool spring temperatures on developing young.
The replacement of *P. douglassi* by *Phrynosoma platyrhinos* at intermediate elevations are not related to competition for prey. Pianka and Parker (1975) demonstrated the ability of *P. douglassi* to shift its diet to Orthoptera and Coleoptera when overlapping the distribution of *P. platyrhinos* which relies strictly on ants as prey throughout all areas studies. My data also suggests high dietary dependence of *P. platyrhinos* on ants. Whitford and Bryant (1979) found highly specialized ant foraging in *P. cornutum*, and demonstrated an optimum foraging strategy in which only small amounts of ants (Harvester Ants) were taken at any given nest, thus assuring future supplies of this highly specific food item. Use of ants as a primary food item is facilitated by large stomach volume.

Pianka and Parker (1975) listed other morphological, behavioral, and ecological adaptations that separate *Phrynosoma* from other lizards and facilitate specialized foraging habits: dorsoventral flattening, spines, short legs, behavior of standing ground when approached by predators; activity over a long period of time, variable body temperatures, specialized ant diet, specialized dentition facilitating ant-eating, production of numerous relatively small eggs/young, and expenditure of considerable amounts of energy on each clutch or litter. Pianka and Parker (1975) also discussed blood squirting from the eye of *Phrynosoma solare* in efforts to detract predators.

Populations of sit-and-wait predators of open spaces are reduced by loss of low-height vegetation and cover (Jones 1979b, 1981a). Heavy grazing in the Hualapai-Aquarius planning units may have decreased numbers of certain sit-and-wait foragers. Although my figures indicate stable populations, they are inconclusive due to small sample size.

Phrynosoma populations may be indicators of range condition because ant nests increase with grazing pressure, and *Phrynosoma* populations vary directly with ant-nest densities (Whitford and Bryant 1979).

Herbivorus

The species *Dipsosaurus dorsalis* and *Sauromalus obesus* present similar management problems: both require plant material in their diets (Norris 1953; Berry 1974). From a management standpoint, it is important to maintain maximum production of vegetative components in the early spring and throughout the summer.

D. dorsalis changes its diet; foraging primarily on creosote bush buds in the spring and composite annuals and perennials in the summer (Norris 1953). It forages both in open spaces and above the ground in creosote bush (Norris 1953). The ability to forage in sparsely vegetated creosote bush SHSs is facilitated by high mean preferred body temperatures (De Witt 1967). Tolerance of temperatures above preferred ranges occur only when lizards are involved in territorial combat or escaping a predator (not
during foraging, De Witt 1967). Arboreal behavior observed in *D. dorsalis* is a mechanism allowing for foraging on creosote bush buds and at the same dissipating heat to cooler air stratum (convective cooling during warm morning hours) (De Witt 1967).

Herbivory of *D. dorsalis* may account for slow juvenile growth rates and low yearly recruitment (Parker 1972), making this species more susceptible to environmental changes. Species with low recruitment cannot tolerate rapid changes in their surroundings that lower the fitness of existing members of the population.

S. obesus has broader dietary constituents than *D. dorsalis*, foraging on a variety of shrubs, annuals, and forbs (Johnson 1965; Berry 1974). Loss of dietary constituents, as occurs in heavily grazed areas, could reduce the number of *S. obesus* by lowering the carrying capacity. *S. obesus*, however, is restricted to extremely rocky hillsides where few cattle graze. My observations of this species indicate healthy populations (large juvenile and sub-adult composition).

Similar to *D. dorsalis*, *S. obesus* has low yearly recruitment (in some areas females reproduce once every 2 years), and emphasizes longevity (Johnson 1965). Populations dependent on high survival rates to offset low recruitment are highly susceptible to catastrophic events, such as rapid changes in the environment.

Unlike studies by Johnson (1965), my studies found *D. dorsalis* and *S. obesus* to be sympatric, which probably results from large amounts of creosote bush occurring in saguaro-palo verde SHSSs.

Johnson (1965) demonstrated widely-foraging behavior in *S. obesus*, made possible in hot, rocky desertscrub environments by the use of a panting mechanism and by the possession of a high mean preferred deep body temperature range (Case 1972). Panting allows *S. obesus* to maintain deep body temperature up to 4.0 C cooler than the environment, thus extending the period of preferred temperature range needed for activity.

NOCTURNAL

Open Foraging

Coleonyx variegatus was placed into this group of foragers because of large home ranges and open space, opportunistic feeding habits (Parker 1972b). This rather translucent species has exploited desert habitats by adopting nocturnal activity and low preferred temperature ranges (Brattstrom 1965). Brattstrom (1965) also demonstrated this species' use of road surfaces in maintaining preferred temperatures. Because road temperatures are generally greater than soil temperatures, Brattstrom suggests that *C. variegatus* is more likely to use road surfaces for ventral basking. Roads, therefore, may place selective pressure on this species due to vehicular mortality.
Like C. draconoides, C. variegatus matures in less than 1 year, maintains almost yearlong activity (9 months), and produces up to three clutches per year (Parker 1972b).

Fossorial-Surfacoreal

The genus Xantusia was placed into a separate group because of small home ranges, nocturnal activity, and existence on, in or under downed vegetative litter. Populations of Xantusia vigilis vigilis in Arizona differ from those in California. The Arizona populations occur in foothill and hillside situations dominated by Nolina bigelovii and the California populations occur in valley Joshua tree habitat (Smith 1971). High moisture retention created by downed Nolina bigelovii may allow X. v. vigilis to exploit Sonoran Desertscrub habitats in Arizona. Correlation of X. v. vigilis with cool, mesic environments is consistent with the findings of Kour and Hutchison (1970). They found X. v. vigilis acclimated the least to hot ambient temperature regimes and the greatest to cool ambient temperatures. They also found X. v. vigilis to possess the lowest mean critical minimum deep body temperature of the species. Zweifel and Lowe (1966) examined X. v. vigilis and determined similar ecological relationships. Studies by Cowles and Burleson (1944) determined that high temperatures sterilized male X. v. vigilis. This relationship may further restrict X. v. vigilis to moist, cool environments.

Xantusia vigilis arizonae has received little attention, a result of relatively small, limited populations. I found this species in rocky chaparral SHSs similar to habitats described by Stebbins (1966). Yucca bacata was always present where X. v. arizonae were found. My observations suggest that X. v. arizonae is ecologically similar to X. v. vigilis, dependent on litter (dead Yucca bacata) and nocturnal activity for existence within the study area. Exploitation of high elevation, closed chaparral SHSs suggest X. v. arizonae may have a lower preferred deep body temperature range than X. v. vigilis (although not conclusive, Brattstrom 1965 demonstrated X. v. vigilis to possess a mean preferred body temperature of 30.0 °C and X. v. arizonae 25.0 °C). Strict habitat structural requirements of these two subspecies account for low habitat use diversities within the study area.

Management of these two species of lizards should include the preservation of litter in their habitat. These species' limited movement and heavy dependence on downed litter could lead to their elimination due to habitat alteration. Harvesting of Yucca and Nolina should be restricted in areas inhabited by these lizards. Careful monitoring of projects requiring roads, clearing, and habitat modification is extremely important.
Heloderma suspectum demonstrated high positive correlation with the number of avian ground nests. Bogert and Del Campo (1956) discussed eggs as preferred food items but also included small mammals in the diet. Bogert (1956) also suggested that H. suspectum's ability to smell out food enabled it to forage at night on rodents. H. suspectum may utilize eggs when available in the late spring and summer and small mammals when eggs are not available.

Bogert and Del Campo (1956) suggested that H. suspectum's mostly nocturnal activities are facilitated by mean preferred body temperatures of 27 °C. My findings, however, indicate extensive diurnal activity, many lizards being observed moving about during warm, daylight hours. Diurnal activity may be facilitated by patchy, low-height vegetation that allow H. suspectum to avoid direct solar insulation and maintain cooler deep body temperatures.

Because it is venomous, bold, and large H. suspectum is feared by man and is often needlessly killed. Increasing the knowledge of people within the area as to the importance of this animal in the natural ecosystem should reduce killings. This species should be protected from collectors by urging local ranchers and townspeople to report any collecting violations.

Generally, management for lizards should include increasing perennial production and low-height vegetation (excluding Gutierrezia), assuring natural litter deposition in all habitats, minimizing roadbuilding, and restricting harvest of vegetative components (dead or alive) important to the existence, maintenance, and re-establishment of a given species of lizard.

REPTILIA - SQUAMATA - SERPENTES (OPHIDIA)

Ecologically, snakes are probably the least understood, a result of low abundance (compared to lizards) and difficulty observing them. Stebbins (1966), Fowlie (1965), and Wright and Wright (1971) summarize existing information on snake ecology pertaining to reproduction, habitat preference, and distribution and this information is supplemented by studies on specific snake species.

From existing information on life histories of snakes and my own data I grouped snakes into different ecological life forms (Table 7).
DIURNAL

Surfacoreal - (Lizard Foragers)

Elevational differences observed for diurnal lizard foragers are related to differences in preferred body temperatures and other physiological adaptations. *Masticophis flagellum* and *Salvadora hexalepis*, inhabitants of primarily low elevation SHSs, have the highest mean preferred body temperature (MPT) of snakes (Brattstrom 1965; Jacobson and Whitford 1971). Jacobson and Whitford (1971) demonstrated a MPT of 33.0°C for *S. hexalepis* and a thermal tolerance range of 36.8°C greater than all snakes and lizards except for *P. douglassi* (Prieto and Whitford 1971). This high thermal range in part explains this species high habitat use diversity (highest of the snakes). High MPT has allowed *S. hexalepis* to exploit hot, low elevation environments as a diurnal lizard eater. Large thermal tolerance, especially at the low range, allows *S. hexalepis* to emerge from cover sites and into cool air temperatures to bask.

Like *S. hexalepis*, *M. flagellum* have large thermal tolerance ranges 45.4°C (Brattstrom 1965). *M. flagellum* also possess an ability to maintain deep body temperature below ambient temperatures for short periods of time, especially when subjected to hot environments (Jones 1979a). This mechanism allows *M. flagellum* to extend the diurnal foraging time in which deep body temperature is maintained within a preferred range. Reduction of heating capacities appears to be a disadvantage to a snake that requires rapid heating during earlier morning hours to attain an internal temperature necessary for foraging lizards. Hammerson (1977) revealed that *M. flagellum* possess circulatory mechanisms allowing the cranial areas to heat quickly. This mechanism allows *M. flagellum* to emerge from its burrow at relatively low, deep body temperatures (Tb) but with adequate neurological coordination.

M. flagellum in different habitats differ in foraging behaviors. Jones (1979a) demonstrated that creosote bush-dwelling *M. flagellum* possess only active search predation, whereas mesquite dune-dwelling *M. flagellum* use active search and sit-and-wait predation. Sit-and-wait foraging in mesquite dune habitat is facilitated by shade trees. Similar differences may occur within the study area between populations in creosote bush SHSs and brushy shade-providing SHSs (e. g. mesquite bosques).

The replacement of *M. flagellum* and *S. hexalepis* by *Masticophis bilineatus* and *Masticophis taeniatus* may be a result of ambient temperature regimes that are unfavorable for maintenance of preferred ranges of the former two and favorable for the latter two.

Parker (1976) and Hirth et al. (1969) studied populations of *M. taeniatus* associated with hibernacula. Hirth et al. (1969) found that this species ranged 1.5-3.6 km from the hibernaculum. Parker (1976) estimated dispersed *M. taeniatus* population densities to be 0.15-0.22/ha. Bennion and Parker (1976) demonstrated reproductive characteristics that account for low population densities. Male *M. taeniatus* practice specific
territorial and combat rituals that favor more experienced individuals and results in subordinate males not reproducing for several years. Female M. taeniatus do not reproduce until their third year and generally produce one clutch per year. Upland habitats have approximately half the food of lower elevation SHS (Table 2) and thus have lower carrying capacities for the diurnal lizard eater, M. taeniatus. The lack of food at higher elevations may account for lower abundance figures of this species at higher elevations than at lower ones.

M. taeniatus may establish hibernacula within the study area. This wintering behavior is adaptive in cool upland areas, since it increases male-female interaction, which is advantageous to snakes with low recruitment and limited yearly activity cycles (due to cool spring and fall temperatures).

The ability of M. taeniatus to home back to specific den sites has been demonstrated by Hirth (1966). Hirth also demonstrated that return to specific hibernacula increased winter survival.

Other than information available in field guides (Wright and Wright 1971; Fowlie 1965; Stebbins 1966) data on M. bilineatus are largely limited to my findings. Vitt and Ohmart (1975) observed one clutch of seven eggs in M. bilineatus and suggested this species showed reproductive strategies of an upland, mesic-environment snake.

Diurnal lizard foragers seem to be well established in the study area and should remain so under present conditions. Management should emphasize protection of hibernacula. Parker (1976) suggests that man has played a major role in reducing the number of these snakes by killing them at hibernaculum entrances. Elimination of snakes at one hibernaculum could wipe out populations covering an area up to 3 square miles involving 500 or more individuals.

NOCTURNAL

Fossorial

The secretive, subterranean existence of this group of snakes and their limited above-the-ground activity, makes obtaining data on them difficult.

Leptotyphlops humilis demonstrated a wider distribution than expected. Stebbins (1966) suggested that this species exploits rocky and moist hillsides and foothills. My findings support those of Stebbins (1966).

Studies by Punzo (1974) showed L. humilis to be more surfacorial than Leptotyphlops dulcis, particularly in areas of sympatry. L. humilis also feeds on some surfacorial arthropods, but is mostly fossorial, as evidenced by high percentages of ants and termites in its diet. Punzo (1974) showed
L. humilis to be an opportunistic forager, as indicated by other food items taken at termite nests. Studies by Watkins et al. (1967) showed L. humilis to utilize ant pheromones in locating food.

As indicated by Stebbins (1966), little is known about the habits of Tantilla planiceps. A review of the genus Tantilla by Tanner (1966) demonstrated the study area to be a void between populations of T. p. utahensis and T. p. atriceps, with the former occurring to the northwest and the latter to the southeast. Hahn and May (1972) verified T. p. atriceps near the Santa Maria River on Highway 93. Specimens obtained in this study keyed to T. p. atriceps and were verified in the Wikieup area. This information helps bridge the gap between the two subspecies indicated by Tanner (1966).

Information from this study indicates T. p. atriceps distribution to be related to mesic habitat. Jones (unpubl. data) demonstrated similar habitat preference for T. p. atriceps. Unlike Jones, I was unable to verify this species in Chaparral communities.

Hypsiglena torquata exploits a variety of habitats, feeding primarily on lizards (Stebbins 1966). Stebbins (1966) suggests that this snake preys on inactive lizards at a variety of cover sites, using an immobilizing venom to secure its prey. Reproductive information on H. torquata is limited to studies by Vitt and Ohmart (1975) and Clark and Lieb (1973) who determined an average of three eggs per clutch and two clutches per year.

Phyllorhynchus decurtatus was verified along the Big Sandy River near Wikieup, a location consistent with habitat descriptions of Stebbins (1966) and Wright and Wright (1971). The record at Wikieup significantly extends the distribution of this species northwest of that reported by Hahn and May (1972). Field observations reveal that the activity of P. decurtatus is limited to moist summer months of July and August. Limited, nocturnal activity has allowed this species to exploit desert environments.

Sonora semiannulata occurs in areas of sandy or loose soil where subsurface moisture prevails (Stebbins 1966). My findings indicate this species is one of the more common nocturnal fossorial snakes within the study area.

Stebbins (1966) discussed the species Micruroides euryxanthus as an inhabitant of a variety of vegetative communities. My observations indicate that this species is strictly related to mesquite washes adjacent to rocky hillsides where sand substrate seems to facilitate burrowing. Vitt and Hulse (1973) determined food preferences for M. euryxanthus, finding L. humilis and other smooth snakes to constitute the majority of the diet. M. euryxanthus habitat strictly overlaps that of L. humilis, probably because L. humilis is a primary food item. Vitt and Hulse (1973) demonstrated high percentages of tail breaks, which they attributed to effective predator escape facilitated by tail-curling and cloacal popping (tail mimics head).
Rhinocheilus leconti and Arizona elegans are two of the most common snakes in our study area, foraging at night on rodents and inactive lizards (Stebbins 1966; Jones 1979a).

R. leconti demonstrated preferred temperature ranges typical of nocturnal snakes \(x = 25.0 \) C, Brattstrom 1965). Low preferred body temperatures and nocturnal activity have allowed *R. leconti* to exploit desert environment.

Similar to *R. leconti*, *A. elegans* has low preferred deep body temperature ranges \(MPT = 27.0 \) C, Brattstrom 1965) and nocturnal activity periods.

Jones (1979a) determined foraging strategies of *A. elegans*, finding this snake moved from burrow to burrow feeding on inactive diurnal lizards. Their nocturnal feeding reduces competition with diurnal lizard foragers.

Reproductive information of this group of snakes is limited to research on *R. leconti* by Vitt (1975), where one clutch of three eggs was observed.

Arboreal snakes are described as snakes that spend a majority of their time on large boulders and rocks, and in trees.

Lichanura trivirgata gracia were verified in several isolated areas consisting of high percentages of large boulders and rocks. This species is live-bearing - (viviparous) (Stebbins 1966), a characteristic adaptive to a rock-dwelling snake (lacks suitable nest sites for eggs).

Gorman (1965) reviewed the distribution of *L. t. gracia*, finding no populations north of the Ajo Mountains. Hahn and May (1972), however, verified *L. t. gracia* at Nowhere, Arizona on Highway 93, and later this species was verified to the northwest in the Cerbat and Hualapai Mountains (Jones et al. 1981).

Populations of *L. t. gracia* are isolated and estimated as small. Further studies are needed to determine specific habitat management for this species. The biggest threat to existing populations is collection by man. Legislation prohibiting its collection and sale should be drafted and implemented. *L. t. gracia* is listed as sensitive by the Bureau of Land Management in Arizona.
Trimorphodon biscutatus lambda occurs in low-to-mid-elevation (2200-4000 ft), rocky habitat, but is suggested to occur at elevations up to the ponderosa pine SHS (Stebbins 1966). This study indicates a preference for rocky hillsides of the palo-verde SHS. Jones (unpubl. data) also demonstrated T. b. lambda to climb several feet above the ground in mesquite trees.

Stebbins (1966) suggests that T. b. lambda preys on small mammals and lizards. Jones (1981b) observed different capture strategies, depending on the type of prey pursued. T. b. lambda captured lizards by grasping at their heads and holding them for several minutes until immobilized. T. b. lambda grasped and constricted rodents for 3 to 5 minutes with four tight coils. The difference in foraging strategies may result from the ineffectiveness of Trimorphodon venom to immobilize rodents but its effectiveness in subduing lizards.

CREPUSCULAR

Aquatic

Thamnophis cyrtopsis and Thamnophis marcianus demonstrate distributions closely associated with water (Stebbins 1966). Fleharty (1967) concluded that T. cyrtopsis prefer rocky, wet areas, which permit escape into pools to avoid predators. Wet areas also support primary food items of this species (Fouquette 1954). Of the prey consumed, 35% were adult toads and frogs and 61% were tadpoles. My observations support findings of Fleharty (1967) and Fouquette (1954) since T. cyrtopsis was found strictly associated with wet, rocky areas, and on two occasions, observed feeding on tadpoles. This species also escaped into water when approached.

Van Devender and Howard (1973) hypothesized that the mid-dorsal stripe of many Thamnophis, combined with lateral dark striping, give these animals a concave appearance, confusing predators as to their size and enhancing escape. Van Devender and Howard (1973) also hypothesized that lateral striping creates the illusion that snakes are moving faster than they actually are, further confusing predators.

Brattstrom (1965) demonstrated that Thamnophis possess relatively low preferred body temperature ranges. Cool waters (where this species spends a majority of its time) help T. cyrtopsis maintain low preferred temperature ranges (Fleharty 1967). Steward (1965) also demonstrated use of water in maintaining cool, preferred body temperatures.

This genus's strict distributional ties to wetlands makes its risk of elimination from our area higher than that of most species. I recommend protecting riparian areas from actions that reduce frog and toad reproduction, primarily dewatering from ground pumping. Mining activities that require dumping of effluent into floodplains should be eliminated if this genus is to continue existence in the study area.
Unlike most snakes, Diadophis punctatus has received considerable attention. Stebbins (1966) illustrates an isolated population of this species in northern sections of the Hualapai Mountains (one record in this study).

Diadophis punctatus regalis (found in the study area) is the largest of all subspecies (Wright and Wright 1957). Gehlback (1974) concluded that the large size of this subspecies allows for the exploitation of xeric, Madro-tertiary Geoflora, reducing desiccation. In another study, D. punctatus was the only small colubrid to select habitat independent of cutaneous water loss (Elick and Sealander 1972). This snake's independence from water loss through the skin is an adaptation that allows for exploitation of desert environments.

Relatively large sizes of juvenile D. punctatus have resulted in decreased mortality; as a result the species produces fewer eggs and has a low population turnover (Vitt 1975). The relatively long lifespan of D. punctatus, documented by Parker and Brown (1974), combined with small clutch size and low population turnover, make this species less adaptive to rapid environmental changes than species with high turnover and large clutches.

Buikema and Armitage (1969) demonstrated acclimation of metabolic functions of D. punctatus in response to various temperature regimes. Metabolic acclimation over a wide variety of temperatures, combined with a wide voluntary internal temperature range (Voluntary Maximum - Voluntary Minimum, Brattstrom 1965) are adaptive to a small crepuscular snake that exploits xeric environments (wide variety of ambient temperatures).

The Hualapai Mountains have an isolated population of Lampropeltis pyromelana, existing in upper elevation SHSs. Stebbins (1966) recognizes this population and suggests dependence on perennial water. My findings support Stebbins (1966) and verify his supposition that L. pyromelana forages on small mammals. I observed one individual regurgitating three small mammals near a streambed. The same individual ate two laboratory mice while held in captivity. Consumption of small mammals may allow L. pyromelana to maintain activity during cool spring and fall months when lizards are scarce.

Further studies are needed to determine population densities of L. pyromelana in the Hualapai Mountains. I contend that this species possesses small population numbers and highly recommend the protection of riparian areas and perennial drainages in upper elevation SHSs. Downed branches and trunks of trees should be left in place to assure cover sites for this species.
This group represents a broad variety of snakes that feed primarily on small mammals.

Lampropeltis getulus differs from other crepuscular-surfacoreal snakes in that lizards and snakes constitute a majority of its diet (Stebbins 1966; Wright and Wright 1957).

I observed the greatest abundance of *L. getulus* along drainages and near water, possibly as a result of greater food and cover availability in drainages than in adjacent areas.

Brattstrom (1965) reported a mean preferred body temperature of 28.1°C and a relatively low voluntary minimum of 15.0°C for *L. getulus*. Low preferred temperature ranges and voluntary minimums allow *L. getulus* to maintain activity during cool springtime diurnal hours and cool nocturnal summer hours.

The genus *Lampropeltis* has evolved partial immunity to rattlesnake venom (Carpenter and Gillingham 1975). This mechanism allows *L. getulus* to feed on the study area's most common snakes. To reduce predation by *Lampropeltis*, crotaline snakes have evolved an alternate defense behavior (Carpenter and Gillingham 1975). When approached by *Lampropeltis*, these snakes inhale air (makes the snake appear larger) and then strike the ground with the midsection of their body.

Pituophis melanoleucus was one of the most common snakes in the study area. Greenwald (1969) suggested that *P. melanoleucus* spends a majority of its time foraging. He found the species to have a high metabolic scope, facilitating long activity periods and high frequencies of prey constriction.

A majority of the diet of *P. melanoleucus* consists of small mammals, birds, and bird eggs (Stebbins 1966). Austin et al. (1973) documented predation of cactus wrens and their eggs by *P. melanoleucus*. Although predation of this bird is often successful, dead *P. melanoleucus* impaled by cholla spines were observed at or around nest sites.

Bogert and Roth (1966) demonstrated ritualistic combat among *P. melanoleucus*. This mechanism is adaptive since it facilitates the expression of more experienced males in the gene pool.

Members of the genus *Crotalus* represent the West's only dangerous snakes to man; a result of advanced poison injection and striking mechanisms (Klauber 1972). Crotalines have also evolved heat sensory pits that facilitate nocturnal foraging of homiothermic animals (Klauber 1972).
In reviewing preferred body temperatures, Brattstrom (1965) documented little difference in species of the genus Crotalus. The exploitation of higher elevation SHSs by Crotalus viridis cerberus and Crotalus molossus seem not to be related to preferred temperature range. These two species may exploit upland habitat through limited activity periods and use of hibernacula. Use of hibernacula in Utah populations of C. viridis have been shown to increase winter survival (Hirth and King 1968; Hirth, et al. 1969). Denning also increases the probability of male-female interaction in early spring (Hirth, et al. 1969).

I observed four dens of Crotalus atrox (low elevation). Similar to denning by C. viridis, such denning increases male-female contact of C. atrox, thus assuring reproduction.

The similarities in distribution and morphology of C. atrox and Crotalus scutulatus have led some authors to believe that these species interbreed. Jacob (1977) evaluated this possibility, and although he did not rule out interbreeding, suggested it as highly unlikely.

Crotalus cerastes exploited only creosote bush SHSs within the study area which is partially facilitated by burrowing and midsummer nocturnal activity periods (Klauber 1972). The inability to exploit other habitats may result from cool springtime nocturnal temperature regimes and the lack of loosely compacted alluvial soils. Cowles and Bogert (1936) found that C. cerastes forage at night during the spring, since their small size allows them to consume only small animals. Lizard foraging, they concluded, was ineffective due to scarcity of lizards in the spring. Unlike C. cerastes, Crotalus mitchelli forage both large and small prey items, allowing them to forage during the day (e.g. ground squirrels).

Habitat management plans for crotaline snakes should emphasize protection of denning areas. As mentioned for M. taeniatus, entire populations of rattlesnakes can be wiped out at den sites. Hirth and King (1968) discussed similar problems in Utah. They demonstrated rattlesnake populations to be well below carrying capacity, concluding that man was mainly responsible. The western portion of the Hualapai Mtns. demonstrates a similar problem. Alamo Road runs along several den sites at the western edge of the Hualapai Mountains. I observed several dead rattlesnakes along this road with heads and tails chopped off.

Den sites should be fenced and ranchers and other residents should be informed of the importance of these snakes in the natural ecosystem.

In summary, management for snakes should include maintenance of ground litter, restriction of roadbuilding, protection of den sites, protection and maintenance of riparian areas, reduction of commercial collectings, reduction of killings by man, and enhancement of range conditions.
HABITAT MANAGEMENT

Three important factors must be considered in recommending habitat management schemes for reptiles and amphibians: condition of the animal species including population trend and limiting factors (e.g., foraging specialization), habitat condition including habitat structural diversity and cover, and land and resource actions that have accounted for present species and habitat conditions and will continue to be a factor in the future. This includes land actions that presently have little effect on reptiles and amphibians and their habitats, but could in the future.

Significant Species

I have developed and determined species relations with standard habitat sites, relationships between reptile and amphibian species and habitat structure, and other ecological relationships important in maintaining species existence in an area. I have also made general recommendations for maintaining and improving each group of reptile and amphibian. There is a group of reptiles and amphibians, however, demonstrating ecological relationships and population dynamics that I feel represent declining or sensitive situations (Table 8). Generally the factors that will maintain and/or enhance the condition of these reptiles and amphibians can be applied planning area-wide over a wide variety of standard habitat sites. Table 8 summarizes each of these significant reptiles and amphibian's limiting factors and makes specific recommendations to maintain and/or improve each species (depending on whether the species is presently in danger of extirpation). A majority of the recommendations are habitat improvement or maintenance, with only a small number representing legislation and other needs.

Significant species designation for the planning area was consistent with BLM objectives established under Manual 6840 (BLM 1979) and the Arizona State Office directives. I recommend, however, that the species listed in Table 8, other than Federal, State, and BLM sensitive, be recognized as significant only for the Hualapai-Aquarius planning area. These species can be requalified based on specific inventory information obtained in upcoming planning areas.

Management of Faunal Richness

Determination of maximum faunal richness for a given standard habitat site has been a difficult problem to access, primarily because of differences in ecology of the major taxonomic groups within the herpetofaunal community. My studies and studies of Jones (1979b and 1981a) on lizard populations in relation to livestock grazing present a better picture as to what conditions of range support the greatest abundance and diversity of reptiles and amphibians for a given standard habitat site. I demonstrated fair condition desert grassland to support greater abundance and diversity of lizards than poor condition desert grassland. I hypothesized that fair condition sites provided more favorable conditions to "widely foraging" species due to increased cover and low-height
<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
<th>Limiting factors</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rufa alvarius</td>
<td>-</td>
<td>A, G, I</td>
<td>Additional studies on distribution</td>
</tr>
<tr>
<td>Gopherus agassizii</td>
<td>S</td>
<td>A, B, C, E, F, J, K</td>
<td>Maintain or increase surface waters of the Upper Bill Williams drainage area. Prevent de-watering of river by Cyprus-Bagdad and other operations.</td>
</tr>
<tr>
<td>Kinosternon sonoriense</td>
<td>-</td>
<td>G, I, J</td>
<td>As above.</td>
</tr>
<tr>
<td>Eumeces obsolatus</td>
<td>-</td>
<td>A, B, C, G, H, J</td>
<td>Increase all range sites inhabited by this species to good condition with specific efforts to increase the composition of perennial grasses.</td>
</tr>
<tr>
<td>Cnemidophorus exsanguis</td>
<td>-</td>
<td>A, C, H, J</td>
<td>As above.</td>
</tr>
<tr>
<td>Cnemidophorus velox</td>
<td>-</td>
<td>A, C, H, J</td>
<td>Maintain or increase condition of range within inhabitation of these species to fair-good.</td>
</tr>
<tr>
<td>Phrynosoma sp.</td>
<td>-</td>
<td>K</td>
<td>Delist from BLM sensitive species list. Increase forb and wildflower production of range sites in which this species occurs.</td>
</tr>
<tr>
<td>Heloderma suspectum</td>
<td>S</td>
<td>A, B, E, F, H, J, L</td>
<td>Increase low-height vegetation in Palo Verde - Saguaro and Open Chaparral SHS's by establishing good condition range sites.</td>
</tr>
<tr>
<td>Diadophis punctatus</td>
<td>-</td>
<td>B, G, I</td>
<td>Additional studies.</td>
</tr>
<tr>
<td>Hemicentrotus tetensius</td>
<td>-</td>
<td>B, D, G</td>
<td>Additional studies to determine and protect den sites.</td>
</tr>
<tr>
<td>Thamnophis sp.</td>
<td>-</td>
<td>G, I, J, K</td>
<td>Improve water quality of the Upper Bill Williams drainage below the Cyprus-Bagdad mining operation. Prevent any further dewatering of the Upper Bill Williams River. Prevent any spring development where these snakes occur that will eliminate surface water. Prevent wanton killings by increasing knowledge of local residents and if necessary adopt legislation prohibiting unnecessary killings. Fence off known den sites and withdraw these areas from other land use considerations.</td>
</tr>
<tr>
<td>Crotalus atrox</td>
<td>-</td>
<td>D, F, L</td>
<td>As above but delete den site recommendations.</td>
</tr>
<tr>
<td>Crotalus cerastes</td>
<td>-</td>
<td>G, H, I, L</td>
<td>As in C. atrox.</td>
</tr>
<tr>
<td>Crotalus mitchelli</td>
<td>-</td>
<td>D, L</td>
<td>As above.</td>
</tr>
<tr>
<td>Crotalus molossus</td>
<td>-</td>
<td>A, D, L</td>
<td>As above.</td>
</tr>
<tr>
<td>Crotalus scutulatus</td>
<td>-</td>
<td>D, F, L</td>
<td>As above.</td>
</tr>
<tr>
<td>Crotalus viridis cerberus</td>
<td>-</td>
<td>D, G, L</td>
<td>As above.</td>
</tr>
</tbody>
</table>

TABLE B - Significant species of the Hualapai-Aquarius planning area. Limiting factors are A = low abundance, B = low reproductive capacities, C = declining population trends, D = denning activities, E = over-collection, F = road kills, G = habitat specific, H = habitat structural specific, I = limited habitat, J = deteriorating habitat quality, K = specialized diet, L = reputation. Status abbreviations are F = federally listed, S = Arizona state listed, and SB = Bureau of Land Management sensitive species.
vegetative structure. High low-height composition throughout all SHSs should result in stable and/or increasing populations of "widely foraging" species. It should also favor surfacoreal, fossorial, and arboreal snakes that forage on this group of lizards.

The amount of low-height vegetative structure, particularly perennial grasses, throughout the planning area is low (BLM 1979). I hypothesize, therefore that low abundance of "widely foraging" species, with the exception of Canemidophorus tigris, results from lack of low-height perennial structure within each SHS. Higher preferred body temperature ranges and large body size may account for C. tigris' independence of the amount of low-height perennial cover.

Lizards utilizing "sit-and-wait" foraging strategies were generally the most abundant lizards in the planning area throughout a variety of SHSs. I feel this results from large amounts of rocky substrate, downed tree limbs and vegetative litter, and large amounts of woody plants in many of the SHSs. Because of the relatively stable nature of these types of habitat structures within SHSs, I feel little management is needed, with the exception of maintaining reproductive rates of woody plants (e.g. Canotia, Pinus, and Juniperus).

Rodent foragers, primarily snakes and Heloderma suspectum, present different management problems than "sit-and-wait" and "widely foraging" lizards. Studies by Black (1968) and Peck (1979) indicate small mammal diversity and abundance to be greatest on sites with moderate composition of both perennial and annual plant species. Black (1968) hypothesized that annual seeds provided higher energy food sources during late winter and spring months and perennial seeds an energy source during late summer, fall, and winter months when annuals were not available. Therefore, I contend that upper fair to good condition rangeland would support the greatest rodent prey base to snakes and H. suspectum (range conditions as in the National Range Handbook, SCS 1976 and Jones 1979b).

Upper fair to good condition rangeland would also provide optimum habitat structure to "sit-and-wait" lizards who forage in open spaces between shrubs. Pianka and Parker (1972) determined that a good mixture of open space and low-height cover provided excellent foraging conditions for this group of lizards. This type of condition is typical of upper fair to good condition rangeland under SCS determinations (SCS 1976).

The ant foraging genus Phrynosoma is also most abundant on rangeland in upper fair to good condition (Whitford pers. comm.), primarily resulting from moderate to high amounts of annual grass that provide harvester ants with high energy food sources (Whitford and Bryant 1979).

Although I have discussed the relationship between lizards and habitat structure, and rodent foraging snakes and prey base, I have not discussed the relationship between habitat structure and invertebrate foraging reptiles. Many of the fossorial snakes and nearly all the lizards with the exceptions of Dipsosaurus dorsalis, Heloderma suspectum, and Sauromalus obesus forage on invertebrates. Unfortunately, little is known
of the foraging habits of these reptiles and how invertebrate diversity and abundance affect populations numbers. It is reasonable to surmise, however, that high invertebrate diversity and abundance would provide a highly favorable food base for these reptiles. The greater the variety and abundance of invertebrates, the greater the number of food niches available to reptiles that exploit this type of prey. I would, therefore, expect the diversity and abundance of invertebrate foragers to be greater under such situations. Whitford (pers. comm.) hypothesized that range supporting high diversities of plant structures and plant species had the greatest diversity of invertebrate species.

From a diversity standpoint, upper fair to good condition rangeland would provide habitat structure (vegetative) favorable of supporting the greatest reptilian diversity and abundance. The maintenance and improvement of range to upper fair to good condition should be applied planning area-wide and over all standard habitat sites. The means by which fair to good condition is maintained and/or improved varies depending on the standard habitat site. Table 9 summarizes methods of maintaining and attaining the prescribed range-or habitat condition, and in some cases refers to specific areas within the Hualapai-Aquarius Planning Area.

Reptiles and amphibians dependent on water present different management problems than their terrestrial counterparts. Water, although important to species that consume it, is extremely important to species that require water to perform limiting ecological functions, primarily reproduction and foraging. The most important aquatic habitat management considerations are water quality, structure (e.g. percent riffles, percent runs, and percent pools of lotic habitat, and pool depth and bottom composition of lentic habitat), water persistence, and water distribution.

Water quality requirements of tadpoles, adult toads and frogs, and members of the genus Kinosternon are not well known. It is likely that tadpoles and Kinosternon would be most affected, the former requiring oxygen and temperature gradients for oxygen levels in body fluids, and the latter requiring food items that can only be found in lentic and lotic habitats. Because of strict water related requirements, changes in quality of water could threaten the mere existence of these animals in the planning area. Although I can not recommend specific levels of nitrogen, dissolved solids, carbon compounds, and heavy metals, I do recommend utilizing physical profiles and models established for native fishes and EPA standards as a minimum acceptable level for aquatic ecosystems.

An even dispersal of riffles, runs, and pools provide the most optimum conditions for tadpole, adult frogs and toads (Rana pipiens, Hyla arenicolor, Bufo punctatus, and Bufo microscaphus), Kinosternon, and Thamnophis perpetuation (a result of high diversity of trophic levels which increase the number of niches.) I recommend obtaining a diversity of these conditions with the addition of varying amounts of backwater areas as exemplified by the stretch of aquatic habitat one mile above and below the confluence of Burro and Boulder Creeks on the former.
<table>
<thead>
<tr>
<th>Standard Habitat Site</th>
<th>Area/s</th>
<th>Maintenance and/or Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponderosa Pine</td>
<td>Entire SHS in Hualapai Mountains.</td>
<td>Increase perennial grass composition to 20% by establishing 2 acre exclosures throughout. Prevent further spring development. Develop rest-rotational grazing system.</td>
</tr>
<tr>
<td>Ponderosa - Aspen</td>
<td>Entire SHS in Hualapai Mountains.</td>
<td>Increase perennial grass composition to 20% by establishing 2 acre exclosures throughout. Prevent further spring development. Develop rest-rotational grazing system.</td>
</tr>
<tr>
<td>Pinyon - Juniper</td>
<td>Entire SHS in Hualapai Mountains and near Junction Highway 93 and 1-40.</td>
<td>Increase perennial grass composition to 20% by establishing 2 acre exclosures throughout SHS. Assure reproduction of Yucca baccata through studies and harvest protection. Develop rest-rotational grazing system.</td>
</tr>
<tr>
<td>Juniper Mix</td>
<td>Area near Nowhere, AZ. and Banegas well west of Wikelup, AZ.</td>
<td>Prohibit harvest of Yucca schiedegea. Fence off rattlesnake dens illustrated in Appendix. Develop rest-rotational grazing system.</td>
</tr>
<tr>
<td>Interior (Closed Chaparral)</td>
<td>Hualapai Mountains and entire area within boundaries of closed chaparral illustrated in Appendix</td>
<td>Increase perennial grass composition to 20% by thinning selective areas of 100 acres. Establish seed base by constructing 2 acre exclosures. Seed up to 10 species of native grasses. Prohibit harvest of Yucca baccata within this SHS. Develop rest-rotational grazing system.</td>
</tr>
<tr>
<td>Open Chaparral</td>
<td>(Same as above)</td>
<td>(Same as above)</td>
</tr>
<tr>
<td>Desert Grassland</td>
<td>Goodwin, Bozarth and Nelson Mesas.</td>
<td>Increase perennial grass composition to 40% by elimination of Gutierrezia and seeding. Increase shrub composition through planting and seeding. Develop small rain water catchments for amphibian propagation. Develop intensive (cattle reduction with limited use) rest-rotational grazing system.</td>
</tr>
<tr>
<td>Joshua Tree</td>
<td>Valleys of the Hualapai Mountains.</td>
<td>(Appendix 4). Increase shrub composition to 45%. Develop rest-rotational grazing system with the exception of areas listed in Appendix 4 for Gopherus agassizzi. These areas should not be grazed.</td>
</tr>
<tr>
<td>Creosote Bush</td>
<td>Yucca, AZ valleys</td>
<td>Increase perennial grass composition to 20% by establishing 2 acre exclosures seeded with 5 native grass species. Develop rest-rotational grazing system. Develop small rain water catchments for amphibian propagation.</td>
</tr>
<tr>
<td>Palo verde-Saguaro</td>
<td>Entire SHS.</td>
<td>Increase perennial grass composition to 25% by establishing 2 acre exclosures. Prohibit harvest of live and dead Nolina bigelovi. Develop rest-rotational grazing system.</td>
</tr>
<tr>
<td>Canoe Mix</td>
<td>Entire SHS.</td>
<td>Increase perennial grass composition to 30% by establishing 2 acre exclosures. Develop rest-rotational grazing system.</td>
</tr>
<tr>
<td>Mixed Broadleaf Riparian</td>
<td>Entire SHS including Francis and Sycamore Creeks.</td>
<td>Increase perennial grass composition by establishing 2 acre exclosures in the sand bottom drainages. Eliminate livestock grazing for a period of 3 years and thereafter utilize a very restricted rest-rotational grazing system. Increase cottonwood, willow, ash, walnut, and sycamore reproduction by seeding. Increase perennial cover on other SHS to reduce flooding effects. Prohibit road building and ORV activities in the drainages. Assure water quality compliance with EPA safe water standards. Prohibit any dewatering activities.</td>
</tr>
<tr>
<td>Cottonwood-willow Riparian</td>
<td>Entire SHS including all of Burro, Boulder and Trout Creeks and the Big Sandy and Santa Maria Rivers.</td>
<td>As above with the exception of propagating ash, walnut, and sycamore, and the addition of thinning tamarisk and mesquite.</td>
</tr>
<tr>
<td>Mesquite</td>
<td>Entire SHS.</td>
<td>As above with emphasis on expanding cottonwood-willow SHSs into areas of mesquite.</td>
</tr>
</tbody>
</table>
Water distribution is good throughout the planning area (Jones 1977), with large evenly dispersed numbers of springs, earthen dirt tanks, wells, and intermittent and permanent floodplains. The quality of these waters, particularly related to chemistry, is important due to isolated populations of obligate aquatic reptiles and amphibians at these sites (See Appendix 3). There are also many species that tend to congregate at such waters, particularly spring heads (e.g. Lampropeltis pyromelana). I recommend water quality tests at each of these sites to determine any problems that may exist.

Land-Use Conflicts and Mitigation

There are several land-use actions that detrimentally affect reptiles and amphibians (Table 10). Presently, the most severe effects within the Hualapai-Aquarius Planning Area are due to livestock grazing and mining operations (Table 10).

Livestock grazing pressures that result in habitat structural degradation have reduced herpetofauna abundance and diversity throughout the planning area. Jones (1979b and 1981a) demonstrated reduced lizard abundance and diversity when livestock grazing reduced plant structural diversity. My studies and information obtained by the range survey crew (BLM 1979) indicate that large portions of the planning area's range is in poor to fair condition. The elimination of livestock from the rangeland is not necessarily the answer nor is it feasible in a multiple-use land management system. Reduction of numbers and rest-rotational grazing systems are feasible ways of improving range condition throughout the planning area.

Riparian areas are of particular concern in regards to livestock grazing as these habitats can be totally eliminated by overutilization. Livestock feed upon cottonwood seedlings and other deciduous trees, resulting in sterile, non-reproductive riparian communities. In these areas, seedlings must be protected by some type of exclosure, whether fencing of the entire riparian area or sections possessing trees. Table 10 summarizes the planning area's livestock related problems and recommends mitigation.

Mining activities affect native herpetofauna by disturbing and destroying habitat in and around the mining area, degrading water quality in adjacent floodplains, and reducing surface flow of perennial drainages.

Widespread habitat disturbance and habitat destruction occur during exploration and establishment of roads to claims and mines. Vegetation and soil are torn up leaving cleared paths for vehicles and other mining equipment. This type of habitat degradation reduces reptile and amphibian diversity and abundance by reducing cover sites and habitat structure.

Detrimental impacts of mining on water quality and quantity are limited to operations that utilize ground, spring, and stream water. Water quality is important at all sites because both aquatic and terrestrial reptiles and amphibians utilize, to varying degrees, water. All operations throughout the planning area should be tested in regards to water quality.
<table>
<thead>
<tr>
<th>Conflict</th>
<th>Area/s</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livestock grazing</td>
<td>Planning area-wide</td>
<td>Adopt rest-rotational grazing systems planning area-wide. Fence off areas with large tortoise populations and riparian SHSs. In these areas, eliminate grazing. See Table 9 for more detailed recommendations pertaining to range improvement.</td>
</tr>
<tr>
<td>Mining</td>
<td>Boriana Mine</td>
<td>Conduct studies to determine water quality of McKenzie Wash. Prohibit any activities in violation of EPA water quality standards.</td>
</tr>
<tr>
<td></td>
<td>Cyprus-Bagdad</td>
<td>As above with the addition of prohibiting any further dewatering of the Upper Bill Williams drainage by the mine.</td>
</tr>
<tr>
<td></td>
<td>Planning area-wide</td>
<td>Monitor all operations involved with water utilization of the natural aquifer and any involved with road construction. Require all claim holders and active operations to file exploration and mining plans once a year.</td>
</tr>
<tr>
<td>Habitat Improvement</td>
<td>Chaparral SHSs</td>
<td>Restrict elimination of scrub-oak from large areas. Thinning should be conducted on areas of no more than 100 acres.</td>
</tr>
<tr>
<td></td>
<td>Planning area-wide</td>
<td>Restrict spring development where surface water may be eliminated.</td>
</tr>
<tr>
<td>Recreation (other than ORV)</td>
<td>Planning area-wide</td>
<td>Prohibit campground development in the areas of Rattlesnake dens (See Appendix). Prohibit collection of dead trees and tree limbs from all SHSs. and particularly dead Nolina bigelovi, Yucca schidegra, Yucca bacata, and Yucca brevifolia.</td>
</tr>
<tr>
<td>ORV</td>
<td>Planning area-wide</td>
<td>Prohibit off-road usage in drainages riparian areas and roadless areas.</td>
</tr>
<tr>
<td>Commercial Plant Harvest</td>
<td>Planning area-wide</td>
<td>Prohibit collection and harvest of plants listed under recreational use. Also prevent removal of deciduous trees from riparian SHSs.</td>
</tr>
<tr>
<td>Commercial Reptile and</td>
<td></td>
<td>Prohibit any collection of significant species of Table 8. Uphold AZ Game and Fish collecting laws.</td>
</tr>
<tr>
<td>Amphibian Collection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
to identify any existing problems. Operations that involve perennial streams should be strictly monitored for water quality because of obligate, aquatic reptiles and amphibians that occur there. These operations should also be monitored as to how much water is being removed from the riparian aquifer. In all cases, water use by mines should be restricted to a level that will allow for continued existence both in quantity and quality of present aquatic species diversity.

Harvesting of vegetation for commercial use also may have some long-term detrimental effects on reptiles and amphibians, particularly those species whose existence in the area is dependent on a single plant. Harvesting Yucca schidegra and Nolina bigelovi could severely impact Xantusia vigilis vigilis. My inventory data demonstrated this species to be strictly associated with these plants, particularly Nolina bigelovi. I found individuals of X. v. vigilis spent great amounts of time in and under individual plants. This is consistent with Zweifel and Lowe's (1966) studies on this lizard. Dead trunks deposited on the ground are as important for inhabitance as the live plant. Without N. bigelovi or Y. schidegra, it is unlikely this species of lizard would occur within the planning area. Presently, harvest of Y. schidegra is ongoing in the planning area. This activity should be restricted until data is obtained on reproductive capacities of this plant species. There are no harvest operations of N. bigelovi. I recommend no harvest be allowed until reproductive information is obtained.

Alteration of habitat through use of chaining and burning to improve range quality may detrimentally affect reptiles and amphibians. If burning is employed, it should be restricted to small areas and winter months when most reptiles and amphibians are inactive.

The U. S. Forest Service has, for the past 10 years, recommended and implemented prescribed burning and clearing of chaparral to increase perennial grass composition. My studies demonstrated chaparral SHSs to possess extremely high reptile and amphibian diversity when compared to other SHSs. It also possessed several species that were almost totally restricted to this SHS. I therefore do not recommend elimination of chaparral to expand other habitats. Thinning of Quercus turbinella to allow for seeding and establishment of perennial grasses is acceptable but should never involve elimination of this species of oak from a large area.

There are other activities such as off-road vehicle races that result in habitat destruction and species' disturbance. These activities should be restricted to habitats which are large and not discontinuous, that have few significant species (Table 8) and possess stable populations of resident herpetofauna. Although off-road vehicle races are a prime concern to many diverse interest groups, there is presently very little of these activities associated with the planning area.

Table 10 summarizes land-use conflicts for the planning area and makes recommendations for mitigation of such conflicts.
LITERATURE CITED

Cowles, R. B. and C. M. Bogert. 1936. Seasonal and daily activity patterns and thermoregulation in the southwestern speckled rattlesnake (Crotalus mitchelli pyrrhus) and the Colorado desert sidewinder (Crotalus cerastes). Herpetologica 1:41.

Jacob, J. S. 1977. An evaluation of the possibility of hybridization between the rattlesnakes Crotalus atrox and Crotalus scutulatus in the southwestern USA. Southwest Nat. 22(4):469-486.

APPENDIX 1 - Snout-vent measurements (mm) for adult/juvenile cutoffs of 23 species of lizards - (less than) (greater than) -

<table>
<thead>
<tr>
<th>Species</th>
<th>Juvenile</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleonyx variegatus</td>
<td>- 40 mm</td>
<td>41 mm</td>
</tr>
<tr>
<td>Heloderma suspectum</td>
<td>-175 mm</td>
<td>176 mm</td>
</tr>
<tr>
<td>Callisaurus draconoides</td>
<td>- 50 mm</td>
<td>51 mm</td>
</tr>
<tr>
<td>Cophosaurus texana</td>
<td>- 50 mm</td>
<td>51 mm</td>
</tr>
<tr>
<td>Crotaphytus collaris</td>
<td>- 55 mm</td>
<td>56 mm</td>
</tr>
<tr>
<td>Dipsosaurus dorsalis</td>
<td>- 65 mm</td>
<td>66 mm</td>
</tr>
<tr>
<td>Gambelia wislizenii</td>
<td>- 55 mm</td>
<td>56 mm</td>
</tr>
<tr>
<td>Phrynosoma douglasi</td>
<td>- 40 mm</td>
<td>41 mm</td>
</tr>
<tr>
<td>Phrynosoma platyrhinos</td>
<td>- 35 mm</td>
<td>36 mm</td>
</tr>
<tr>
<td>Phrynosoma solare</td>
<td>- 40 mm</td>
<td>41 mm</td>
</tr>
<tr>
<td>Sauromalus obesus</td>
<td>-105 mm</td>
<td>106 mm</td>
</tr>
<tr>
<td>Sceloporus magister</td>
<td>- 60 mm</td>
<td>61 mm</td>
</tr>
<tr>
<td>Sceloporus undulatus</td>
<td>- 45 mm</td>
<td>46 mm</td>
</tr>
<tr>
<td>Urosaurus orantus</td>
<td>- 35 mm</td>
<td>36 mm</td>
</tr>
<tr>
<td>Urosaurus graciusus</td>
<td>- 35 mm</td>
<td>36 mm</td>
</tr>
<tr>
<td>Uta stansburniana</td>
<td>- 35 mm</td>
<td>36 mm</td>
</tr>
<tr>
<td>Eumeces g. arizonensis</td>
<td>- 60 mm</td>
<td>61 mm</td>
</tr>
<tr>
<td>Eumeces obsoletus</td>
<td>- 55 mm</td>
<td>56 mm</td>
</tr>
<tr>
<td>Cnemidophorus exanguis</td>
<td>- 50 mm</td>
<td>51 mm</td>
</tr>
<tr>
<td>Cnemidophorus tigris</td>
<td>- 55 mm</td>
<td>56 mm</td>
</tr>
<tr>
<td>Cnemidophorus velox</td>
<td>- 50 mm</td>
<td>51 mm</td>
</tr>
<tr>
<td>Xantusia arizonae</td>
<td>- 30 mm</td>
<td>31 mm</td>
</tr>
<tr>
<td>Xantusia v. vigilis</td>
<td>- 20 mm</td>
<td>21 mm</td>
</tr>
</tbody>
</table>
APPENDIX 2 - Scientific - common name cross-reference.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaphiopus couchi</td>
<td>Couch's Spadefoot Toad</td>
</tr>
<tr>
<td>Bufo alvarius</td>
<td>Colorado River Toad</td>
</tr>
<tr>
<td>Bufo microscaphus</td>
<td>Southwest Toad</td>
</tr>
<tr>
<td>Bufo punctatus</td>
<td>Red-spotted Toad</td>
</tr>
<tr>
<td>Bufo woodhousei</td>
<td>Woodhouse's Toad</td>
</tr>
<tr>
<td>Rana pipiens</td>
<td>Leopard Frog</td>
</tr>
<tr>
<td>Hyla arenicolor</td>
<td>Canyon Tree Frog</td>
</tr>
<tr>
<td>Ambystoma tigrinum</td>
<td>Tiger Salamander</td>
</tr>
<tr>
<td>Kinosternon flavescens</td>
<td>Yellow Mud Turtle</td>
</tr>
<tr>
<td>Kinosternon sonoriense</td>
<td>Sonora Mud Turtle</td>
</tr>
<tr>
<td>Gopherus agassizi</td>
<td>Desert Tortoise</td>
</tr>
<tr>
<td>Trionyx spiniferus</td>
<td>Soft-shelled Turtle</td>
</tr>
<tr>
<td>Coleonyx variegatus</td>
<td>Banded Gecko</td>
</tr>
<tr>
<td>Heldorma suspectum</td>
<td>Gila Monster</td>
</tr>
<tr>
<td>Callisaurus draconoides</td>
<td>Zebra-tailed Lizard</td>
</tr>
<tr>
<td>Cophosaurus texana</td>
<td>Greater Earless Lizard</td>
</tr>
<tr>
<td>Crotaphytus collaris</td>
<td>Collared Lizard</td>
</tr>
<tr>
<td>Dipsosaurus dorsalis</td>
<td>Desert Iguana</td>
</tr>
<tr>
<td>Gambelia wislizeni</td>
<td>Leopard Lizard</td>
</tr>
<tr>
<td>Phrynosoma douglassi</td>
<td>Short-horned Lizard</td>
</tr>
<tr>
<td>Phrynosama platyrhinos</td>
<td>Desert Horned Lizard</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Phrynosoma solare</td>
<td>Regal Horned Lizard</td>
</tr>
<tr>
<td>Sauromalus obesus</td>
<td>Chuckwalla</td>
</tr>
<tr>
<td>Sceloporus magister</td>
<td>Desert Spiny Lizard</td>
</tr>
<tr>
<td>Sceloporus undulatus</td>
<td>Southern Plateau Lizard</td>
</tr>
<tr>
<td>Urosaurus graciosus</td>
<td>Long-tail Brush Lizard</td>
</tr>
<tr>
<td>Urosaurus ornatus</td>
<td>Tree Lizard</td>
</tr>
<tr>
<td>Uta stansburiana</td>
<td>Size-blotched Lizard</td>
</tr>
<tr>
<td>Eumeces g. arizonensis</td>
<td>Gilbert's (Arizona) Skink</td>
</tr>
<tr>
<td>Eumeces obsoletus</td>
<td>Great Plains Skink</td>
</tr>
<tr>
<td>Cnemidophorus</td>
<td>Chihuahuan Whiptail</td>
</tr>
<tr>
<td>Cnemidophorus tigris</td>
<td>California Whiptail</td>
</tr>
<tr>
<td>Cnemidophorus velox</td>
<td>Plateau Whiptail</td>
</tr>
<tr>
<td>Xantusia arizonae</td>
<td>Arizona Night Lizard</td>
</tr>
<tr>
<td>Xantusia v. vigilis</td>
<td>Desert Night Lizard</td>
</tr>
<tr>
<td>Lichanura t. gracia</td>
<td>Rosy Boa</td>
</tr>
<tr>
<td>Arizona elegans</td>
<td>Glossy Snake</td>
</tr>
<tr>
<td>Chionactus occipitalus</td>
<td>Western Shovel-nose Snake</td>
</tr>
<tr>
<td>Diadophis punctatus</td>
<td>Ring-neck Snake</td>
</tr>
<tr>
<td>Hypsiglena torquata</td>
<td>Night Snake</td>
</tr>
<tr>
<td>Lampropeltis getulus</td>
<td>California King Snake</td>
</tr>
<tr>
<td>Lampropeltis pyromelana</td>
<td>Mountain King Snake</td>
</tr>
<tr>
<td>Masticophis flagellum</td>
<td>Coachwhip</td>
</tr>
<tr>
<td></td>
<td>Striped Racer</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name Index</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Masticophis taeniatus</td>
<td>Striped Whipsnake</td>
</tr>
<tr>
<td>Phyllorhynchus decurtatus</td>
<td>Spotted Leaf-nose Snake</td>
</tr>
<tr>
<td>Pituophis melanoleucus</td>
<td>Gopher Snake</td>
</tr>
<tr>
<td>Rhinocheilus leconti</td>
<td>Long-nosed Snake</td>
</tr>
<tr>
<td>Salvador hexalepis</td>
<td>Western Patch-nosed Snake</td>
</tr>
<tr>
<td>Sonora semiannulata</td>
<td>Western Ground Snake</td>
</tr>
<tr>
<td>Tantilla p. atriceps</td>
<td>Mexican Black-headed Snake</td>
</tr>
<tr>
<td>Thamnophis cyrtopsis</td>
<td>Black-necked Garter Snake</td>
</tr>
<tr>
<td>Thamnophis marcianus</td>
<td>Checkered Garter Snake</td>
</tr>
<tr>
<td>Trimorphodon b. lambda</td>
<td>Lyre Snake</td>
</tr>
<tr>
<td>Crotalus atrox</td>
<td>Western Diamondback Rattlesnake</td>
</tr>
<tr>
<td>Crotalus cerastes</td>
<td>Sidewinder</td>
</tr>
<tr>
<td>Crotalus mitchelli</td>
<td>Speckled Rattlesnake</td>
</tr>
<tr>
<td>Crotalus molossus</td>
<td>Black-tailed Rattlesnake</td>
</tr>
<tr>
<td>Crotalus scutulatus</td>
<td>Mohave Rattlesnake</td>
</tr>
<tr>
<td>Crotalus v. cerberus</td>
<td>Arizona Black Rattlesnake</td>
</tr>
<tr>
<td>Micruroides euryxanthus</td>
<td>Coral Snake</td>
</tr>
<tr>
<td>Leptotyphlops humilis</td>
<td>Western Blind Snake</td>
</tr>
</tbody>
</table>
Appendix 3. - Distributions and type localities for reptiles and amphibians of the Hualapai-Aquarius planning area. Numbers indicate type localities on file at the Phoenix District, Phoenix, Arizona. Areas cross-hatched indicate estimated herpetofauna distributions based on habitat associations and distribution. Pages 68-128.

Scaphiopus couchi
Bufo alvarius

Scale 1" = 8 Miles

- PLANNING UNIT BOUNDARY
- ROADS
- DRAINAGE
- PEAKS
- TOWNS
- COUNTY LINE
APPENDIX 3 (CONT'D)

Scale 1" = 8 Miles

PLANNING UNIT BOUNDARY
ROADS
DRAINAGE
PEAKS
TOWNS
COUNTY LINE

Bufo punctatus
Rana pipiens
Hyla arenicolor

Scale 1" = 8 Miles
Ambystoma tigrinum
APPENDIX 3 (CONT'D)

I R I8W I R I6W I R I4W I R I2W I R I0W I R 8W I

KINGMAN

HUALAPAI PLANNING UNIT-01

HUALAPAI MTN PARK

YUCCA

AQUARIUS PLANNING UNIT-05

PIKE PK.

WICKIEUP

MONROE CO.

SCALE 1" = 8 MILES

PLANNING UNIT BOUNDARY
ROADS
DRAINAGE
PEAKS
TOWNS
COUNTY LINE

Gopherus agassizi

78
APPENDIX 3 (CONT'D)

HUALAPAI PLANNING UNIT-01

KINGMAN

HUALAPAI MTN. PARK

HUALAPAI PK

YUCCA

AQUARIUS PLANNING UNIT-05

MOHAVE CO.

YAVAPAI CO.

BAGDAD

SANTA MARIA A.

Scale 1" = 8 Miles

Trionyx spiniferus

PLANNING UNIT BOUNDARY

ROADS

DRAINAGE

PEAKS

TOWNS

COUNTY LINE
APPENDIX 3 (CONT’D)

HUALAPAI PLANNING UNIT-01

Coleonyx variegatus

PLANNING UNIT BOUNDARY
ROADS
DRAINAGE
PEAKS
TOWNS
COUNTY LINE
APPENDIX 3 (CONT'D)

Heloderma suspectum
APPENDIX 3 (CONT'D)

KINGMAN

HUALAPAI
PLANNING UNIT-01

HUALAPAI
PK

AQUARIUS
PLANNING UNIT-05

Callisaurus draconoides

PLANNING UNIT BOUNDARY
ROADS
DRAINAGE
PEAKS
TOWNS
COUNTY LINE
APPENDIX 3 (CONT'D)

HUALAPAI PLANNING UNIT-01

Cophosaurus texana

- PLANNING UNIT BOUNDARY
- ROADS
- DRAINAGE
- PEAKS
- TOWNS
- COUNTY LINE

83
Gambelia wislizenii

Scale 1" = 8 Miles
Phrynosoma douglassi

Scale 1" = 8 Miles
APPENDIX 3 (CONT’D)

Phrynosoma platyrhinos
APPENDIX 3 (CONT'D)

KINGMAN
HUALAPAI PLANNING UNIT-01
HUALAPAI PK
YUCCA
AQUARIUS PLANNING UNIT-05
GROOM PK
AUBREY PK
ARTILLERY PK
ALAMO RESERVOIR

--- PLANNING UNIT BOUNDARY ---
----- ROADS -----
------ DRAINAGE ------
△ PEAKS
○ TOWNS
----- COUNTY LINE -----

Phrynosoma solare
APPENDIX 3 (CONT'D)

HUALAPAI PLANNING UNIT-01

Cnemidophorus exsanguis

Scale 1" = 8 Miles
APPENDIX 3 (CONT'D)

HUALAPAI PLANNING UNIT-01

Cnemidophorus tigris
Xantusia vigilis arizonae
APPENDIX 3 (CONT'D)

HUALAPAI PLANNING UNIT-01

Lampropeltis pyromelana

Scale 1" = 8 Miles
Masticophis bilineatus
APPENDIX 3 (CONT'D)

Masticophis taeniatus

Scale 1" = 8 Miles
Pituophis melanoleucus
APPENDIX 3 (CONT'D)

Rhinocheilus leconti
Salvadora hexalepis
Thamnophis cyrtopsis
Thamnophis marcianus
Trimorphodon bicuculatus lambda
APPENDIX 3 (CONT'D)

Crotalus atrox

3.5 Rattlesnake dens
APPENDIX 3 (CONT'D)

Crotalus cerastes

Scale 1" = 8 Miles
Crotalus scutulatus
APPENDIX 3 (CONT'D)

HUALAPAI PLANNING UNIT-01

Crotalus viridis cerberus

AQUARIUS PLANNING UNIT-05

Scale 1" = 8 Miles

PLANNING UNIT BOUNDARY
--- ROADS
--- DRAINAGE
▲ PEAKS
O TOWNS
--- COUNTY LINE
Micruroides euryxanthus
APPENDIX 4 - Amphibian sample sites.
APPENDIX 5 - Array sample sites.

- Planning unit boundary
- Roads
- Drainage
- Peaks
- Towns
- County line
- Array sites
APPENDIX 6 - Road riding sample sites.

- Planning Unit Boundary
- Roads
- Drainage
- Peaks
- Towns
- County Line
- Road Riding Sample Sites
Standard Habitat Site Abbreviations

<table>
<thead>
<tr>
<th>Standard Habitat Site</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponderosa Pine</td>
<td>PP</td>
</tr>
<tr>
<td>Ponderosa-Aspen</td>
<td>PA</td>
</tr>
<tr>
<td>Pinyon-Juniper</td>
<td>PJ</td>
</tr>
<tr>
<td>Juniper Mix</td>
<td>JM</td>
</tr>
<tr>
<td>Interior (Closed) Chaparral</td>
<td>IC</td>
</tr>
<tr>
<td>Open Chaparral</td>
<td>OC</td>
</tr>
<tr>
<td>Desert Grassland</td>
<td>DG</td>
</tr>
<tr>
<td>Joshua Tree</td>
<td>JT</td>
</tr>
<tr>
<td>Creosote Bush</td>
<td>CB</td>
</tr>
<tr>
<td>Saguaro-Paloverde (Paloverde-Saguaro)</td>
<td>SP or PS</td>
</tr>
<tr>
<td>Canotia Mix</td>
<td>CM</td>
</tr>
<tr>
<td>Mixed Broadleaf Riparian (Broadleaf Riparian)</td>
<td>BR</td>
</tr>
<tr>
<td>Cottonwood-Willow</td>
<td>CW</td>
</tr>
<tr>
<td>Mesquite Bosque</td>
<td>MB</td>
</tr>
</tbody>
</table>
APPENDIX 8 - Standard habitat site distributions within the Hualapai-Aquarius planning area.
Appendix 9. Conflict areas within the Hualapai-Aquarius planning area.
Distribution, ecology, and habitat man of the reptiles and amphibians...
Additional copies of Technical Notes are available from DSC, Federal Center Building 50, Denver, Colo., 80225

BLM-YA-PT-81-032-6660