REPORT NUMBER: 208-MGA-2008-021

VEHICLE SAFETY COMPLIANCE TESTING
FOR
FMVSS 208, OCCUPANT CRASH PROTECTION
FMVSS 212, WINDSHIELD MOUNTING
FMVSS 219, WINDSHIELD INTRUSION (PARTIAL)
FMVSS 301, FUEL SYSTEM INTEGRITY

DAIMLERCHRYSLER AG STUTTGART
2008 MERCEDES C300 PASSENGER CAR
NHTSA NO.: C80504

PREPARED BY:
MGA RESEARCH CORPORATION
5000 WARREN ROAD
BURLINGTON, WI 53105

TEST DATES: JANUARY 18, 2008 – SEPTEMBER 9, 2008

FINAL REPORT DATE: NOVEMBER 14, 2008

FINAL REPORT

PREPARED FOR:
U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
OFFICE OF ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
1200 NEW JERSEY AVENUE, S.E., NVS-220
WASHINGTON, D.C. 20590
This final test report was prepared for the U.S. Department of Transportation, National Highway Traffic Safety Administration, in response to Contract Number DTNH22-03-D-11002.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared by: Jeff Lewandowski, Project Engineer Date: November 14, 2008

Reviewed by: David Winkelbauer, Facility Director Date: November 14, 2008

FINAL REPORT ACCEPTED BY OVSC:

Accepted By:

Acceptance Date: November 14, 2008
Technical Report Documentation Page

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>208-MGA-2008-021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Report of FMVSS 208 Compliance Testing of a 2008 Mercedes C300 NHTSA No.: C80504</td>
<td>November 14, 2008</td>
<td>MGA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeff Lewandowski, Project Engineer</td>
<td>208-MGA-2008-021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Performing Organization Name and Address</th>
<th>10. Work Unit No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA Research Corporation</td>
<td></td>
</tr>
<tr>
<td>5000 Warren Road</td>
<td></td>
</tr>
<tr>
<td>Burlington, WI 53105</td>
<td></td>
</tr>
</tbody>
</table>

|--------------------------|--------------------------------------|----------------------------------|--------------------------|

15. Supplementary Notes

16. Abstract

Compliance tests were conducted on the subject 2008 Mercedes C300 in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP208-13 for the determination of FMVSS 208 compliance. Test failures identified were as follows:

TEST FAILURES:

None

17. Key Words

Frontal Impact
40 kmph Vehicle Safety Compliance Testing
FMVSS 208, “Occupant Crash Protection”
FMVSS 212, “Windshield Mounting”
FMVSS 219, (partial), “Windshield Zone Intrusion”
FMVSS 301, “Fuel System Integrity”

18. Distribution Statement

Copies of this report are available from the following:

U.S. Department of Transportation National Highway Traffic Safety Administration Technical Information Services (TIS), NPO-411 1200 New Jersey Avenue, S.E. (Room E12-100) Washington, DC 20590

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

417

22. Price

Form DOT F1700.7 (8-72)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Purpose of Compliance Tests</td>
<td>1</td>
</tr>
<tr>
<td>2 Tests Performed</td>
<td>2</td>
</tr>
<tr>
<td>3 Injury Result Summary For FMVSS 208 Tests</td>
<td>4</td>
</tr>
<tr>
<td>4 Discussion of Tests (if applicable)</td>
<td>10</td>
</tr>
<tr>
<td>5 Test Data Sheets</td>
<td>11</td>
</tr>
</tbody>
</table>

Data Sheet

<table>
<thead>
<tr>
<th>Data Sheet</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 COTR Vehicle Work Order</td>
<td>12</td>
</tr>
<tr>
<td>2 Report of Vehicle Condition</td>
<td>16</td>
</tr>
<tr>
<td>3 Certification Label and Tire Placard Information</td>
<td>18</td>
</tr>
<tr>
<td>4 Rear Outboard Seating Position Seat Belts</td>
<td>19</td>
</tr>
<tr>
<td>5 Air Bag Labels</td>
<td>20</td>
</tr>
<tr>
<td>6 Readiness Indicator</td>
<td>31</td>
</tr>
<tr>
<td>7 Passenger Air Bag Manual Cut-Off Device</td>
<td>32</td>
</tr>
<tr>
<td>8 Lap Belt Lockability</td>
<td>35</td>
</tr>
<tr>
<td>9 FMVSS 208 Seat Belt Warning System Check</td>
<td>47</td>
</tr>
<tr>
<td>10 Belt Contact Force</td>
<td>49</td>
</tr>
<tr>
<td>11 Latch Plate Access</td>
<td>52</td>
</tr>
<tr>
<td>12 Seat Belt Retraction</td>
<td>54</td>
</tr>
<tr>
<td>13 Seat Belt Guides and Hardware</td>
<td>56</td>
</tr>
<tr>
<td>14 Marking of Reference Points for Various Test Positions & Points</td>
<td>62</td>
</tr>
<tr>
<td>15 Air Bag Suppression Telltale</td>
<td>71</td>
</tr>
<tr>
<td>16 Suppression Test Using 12-Month CRABI Dummy</td>
<td>72</td>
</tr>
<tr>
<td>17 Suppression Test Using Newborn Infant Dummy</td>
<td>79</td>
</tr>
<tr>
<td>25 Summary of LRD Using an Unbelted 3-Year-Old Dummy (S22.4.2) Position 1</td>
<td>80</td>
</tr>
<tr>
<td>26 Summary of LRD Using an Unbelted 3-Year-Old Dummy (S22.4.3) Position 2</td>
<td>81</td>
</tr>
<tr>
<td>27 Summary of LRD Using an Unbelted 6-Year-Old Dummy (S24.4.2) Position 1</td>
<td>82</td>
</tr>
<tr>
<td>28 Summary of LRD Using an Unbelted 6-Year-Old Dummy (S24.4.3) Position 2</td>
<td>83</td>
</tr>
<tr>
<td>29 Summary of LRD Using an Unbelted 5th% Dummy (S26.2) Position 1 Trial 1</td>
<td>84</td>
</tr>
<tr>
<td>29 Summary of LRD Using an Unbelted 5th% Dummy (S26.2) Position 1 Trial 2</td>
<td>85</td>
</tr>
<tr>
<td>29 Summary of LRD Using an Unbelted 5th% Dummy (S26.2) Position 1 Trial 3</td>
<td>86</td>
</tr>
<tr>
<td>29 Summary of LRD Using an Unbelted 5th% Dummy (S26.2) Position 1 Trial 4</td>
<td>87</td>
</tr>
<tr>
<td>29 Summary of LRD Using an Unbelted 5th% Dummy (S26.3) Position 2</td>
<td>88</td>
</tr>
<tr>
<td>32 Vehicle Weight, Fuel Tank, and Attitude Data</td>
<td>89</td>
</tr>
<tr>
<td>33 Vehicle Accelerometer Locations and Measurements</td>
<td>93</td>
</tr>
<tr>
<td>34 Photographic Targets</td>
<td>96</td>
</tr>
<tr>
<td>Data Sheet</td>
<td>Page No</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>35 Camera Locations</td>
<td>102</td>
</tr>
<tr>
<td>36 Dummy Positioning</td>
<td>104</td>
</tr>
<tr>
<td>37 Dummy Measurements</td>
<td>116</td>
</tr>
<tr>
<td>38 Crash Test</td>
<td>119</td>
</tr>
<tr>
<td>40 Accident Investigation Measurements</td>
<td>121</td>
</tr>
<tr>
<td>41 Windshield Mounting (FMVSS 212)</td>
<td>123</td>
</tr>
<tr>
<td>42 Windshield Zone Intrusion (FMVSS 219)</td>
<td>126</td>
</tr>
<tr>
<td>43 Fuel System Integrity (FMVSS 301)</td>
<td>127</td>
</tr>
</tbody>
</table>

Appendix

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Crash Test Data</td>
<td>A-1</td>
</tr>
<tr>
<td>B</td>
<td>Low Risk Test Data</td>
<td>B-1</td>
</tr>
<tr>
<td>C</td>
<td>Crash Test Photographs</td>
<td>C-1</td>
</tr>
<tr>
<td>D</td>
<td>Low Risk Photographs</td>
<td>D-1</td>
</tr>
<tr>
<td>E</td>
<td>Suppression Photographs</td>
<td>E-1</td>
</tr>
<tr>
<td>F</td>
<td>Instrumentation Calibration</td>
<td>F-1</td>
</tr>
<tr>
<td>G</td>
<td>Notice of Test Failure (If Applicable)</td>
<td>G-1</td>
</tr>
</tbody>
</table>
SECTION 1
PURPOSE OF COMPLIANCE TESTS

The tests performed are part of a program conducted for the National Highway Traffic Safety Administration (NHTSA) by MGA Research Corporation (MGA) under Contract No. DTNH22-03-D-11002. The purpose of this test was to determine whether the subject vehicle, a 2008 Mercedes C300, NHTSA No. C80504, meets certain performance requirements of FMVSS 208, "Occupant Crash Protection"; FMVSS 212, "Windshield Mounting"; FMVSS 219, "Windshield Zone Intrusion"; and FMVSS 301, "Fuel System Integrity". The compliance test was conducted in accordance with OVSC Laboratory Test Procedure No. TP208-13 dated July 27, 2005.
The following checked items indicate the tests that were performed:

1. Rear outboard seating position seat belts (S4.1.1.2(b) & (S4.2.4)
2. Air bag labels (S4.5.1)
3. Readiness indicator (S4.5.2)
4. Passenger air bag manual cut-off device (S4.5.4)
5. Lap belt lockability (S7.1.1.5)
6. Seat belt warning system (S7.3)
7. Seat belt contact force (S7.4.4)
8. Seat belt latch plate access (S7.4.4)
9. Seat belt retraction (S7.4.5)
10. Seat belt guides and hardware (S7.4.6)
11. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R)
12. Suppression tests with newborn infant (Part 572, Subpart K)
13. Suppression tests with 3-year-old dummy (Part 572, Subpart P)
14. Suppression tests with 6-year-old dummy (Part 572, Subpart N)
15. Test of reactivation of the passenger air bag system with an unbelted 5th percentile female dummy
16. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R)
17. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P)
18. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N)
19. Low risk deployment test with 5th female dummy (Part 572, Subpart O)

Impact Tests

- Frontal Oblique
 - Belted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.1(a))
 - Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))
 - Unbelted 50th male dummy driver and passenger (32 to 40 kmph) (S5.1.2(a) (1) or S5.1.2(b))

- Frontal 0°
 - Belted 50th male dummy driver (0 to 48 kmph) (S5.1.1.b)(1) or S5.1.1(a))
 - Belted 50th male dummy passenger (0 to 48 kmph) (S5.1.1.b)(1) or S5.1.1(a))
 - Belted 5th female dummy driver (0 to 48 kmph) (S16.1(a))
 - Belted 5th female dummy passenger (0 to 48 kmph) (S16.1(a))
 - Belted 50th male dummy driver and passenger (0 to 56 kmph) (S5.1.1.b)(2))
 - Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a) (1))
 - Unbelted 50th male dummy driver (32 to 40 kmph) (S5.1.2.(a2) or S5.1.2(b))
Unbelted 50th male dummy passenger (32 to 40 kmph)
(S5.1.2.(a)(2) or S5.1.2(b))

Unbelted 5th female dummy driver (32 to 40 kmph) (S16.1(b))

Unbelted 5th female dummy passenger (32 to 40 kmph) (S16.1(b))

40% Offset 0° Belted 5th female dummy driver and passenger (0 to 40 kmph) (S18.1)

21. Sled Test: Unbelted 50th male dummy driver and passenger (S13)
22. FMVSS 204 Indicant Test
23. FMVSS 212 Indicant Test
24. FMVSS 219 Indicant Test
25. FMVSS 301 Frontal Indicant Test

For the crash tests, the vehicle was instrumented with 8 accelerometers. The accelerometer data from the vehicle and dummies were sampled at 10,000 samples per second and processed as specified in SAE J211/1 MAR95 and FMVSS 208, S4.13.

The dynamic tests were recorded using high-speed digital video.

The vehicle appears to meet all of the performance requirements to which it was tested.
5th Percentile Female Low Risk Deployments

5th Percentile Female SN 124 Position 1 (Chin On Module) 5/7/08 Trial 1

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>69</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>1.0 (1.024)</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>23.2</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>39.2</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>142.2</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>188.1</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>1288</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>426</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>18</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>15</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>120</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>181</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms

5th Percentile Female SN 124 Position 1 (Chin On Module) 7/14/08 Trial 2

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>35</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>13.9</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>33.9</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>154.2</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>239.2</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>661</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>543</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>14</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>9</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>124</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>159</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms
5th Percentile Female Low Risk Deployments

5th Percentile Female SN 124 Position 1 (Chin On Module) 7/14/08 Trial 3

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>73</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>24.6</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>34.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>139.9</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>271.8</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>1155</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>756</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>13</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>9</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>148</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>172</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms

5th Percentile Female SN 124 Position 1 (Chin On Module) 7/14/08 Trial 4

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>114</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>24.6</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>34.5</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>132.4</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>261.3</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>1237</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>749</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>14</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>12</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>101</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>161</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms
SECTION 3
INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
NHTSA No.: C80504
Test Date: 7/15/08

5th Percentile Female Low Risk Deployments

5th Percentile Female SN 124 Position 2 (Chin On Rim) 7/15/08

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>16</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>15.5</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>47.5</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>212.8</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>56.2</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>762</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>156</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>32</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>24</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>75</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>91</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms
3-Year-Old Low Risk Deployments

3-Year-Old SN 031 Position 1 (Chest On Instrument Panel) 5/6/08

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>12</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>47.8</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>9.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>1.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>4.0</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>266</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>4</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>7</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>6</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 100 ms

3-Year-Old SN 031 Position 2 (Head On Instrument Panel) 5/6/08

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>79</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>34.6</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>9.9</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>3.2</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>7.7</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>444</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>133</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>7</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>2</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 100 ms
6-Year-Old Low Risk Deployments

6-Year-Old SN 155 Position 1 (Chest On Instrument Panel) 5/6/08

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>22</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>99.2</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>35.4</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>2.6</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>0.1</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>492</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>92</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>10</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>4</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 100 ms

6-Year-Old SN 155 Position 2 (Head On Instrument Panel) 5/5/08

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>145</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>58.7</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>14.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>2.5</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>10.7</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>403</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>417</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>6</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 100 ms
SECTION 3
INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
NHTSA No.: C80504
Test Date: 9/9/08

40 kmph Frontal Crash

Impact Angle: Zero degrees

Belted Dummies: Yes No

Speed Range: 0 to 40 kmph 32 to 40 kmph
0 to 48 kmph 0 to 56 kmph

Test Speed: 39.8 kmph
Test Weight: 1791.3 kg

Driver Dummy: 5th female 50th male
Passenger Dummy: 5th female 50th male

5th Percentile Female Frontal Crash Test
Vehicles certified to S16.1(a), S16.1(b), or S18.1

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>99</td>
<td>169</td>
</tr>
<tr>
<td>Nte</td>
<td>1.0</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Nf</td>
<td>1.0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Nsce</td>
<td>1.0</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Ntf</td>
<td>1.0</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2620 N</td>
<td>1244</td>
<td>376</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>150</td>
<td>1002</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>31</td>
<td>41</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>3005</td>
<td>3817</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>4380</td>
<td>3696</td>
</tr>
</tbody>
</table>

There was no valid data after 170 msec on the Passenger Chest Displacement (mm) during the frontal impact crash test.
A blanket and visor were not used in the suppression testing because they did not affect the sensing system used on the vehicle.

The 3-year-old low risk deployment position 1 test conducted on 5/6/08 cracked the windshield on the passenger side. Subsequent low risk deployment tests were conducted with this cracked windshield. The windshield was replaced for the frontal impact test.

The Nte value met the performance requirement, but was higher than expected in the initial 5th female driver low risk deployment position 1 test conducted on 5/7/08. Additional tests were performed to confirm the Nte value met the performance requirement.

There was no valid data after 170 msec on the Passenger Chest Displacement (mm) during the frontal impact crash test.
<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2008 MERCEDES C300</th>
<th>NHTSA No.:</th>
<th>C80504</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Dates:</td>
<td>1/18/08 – 9/9/08</td>
</tr>
</tbody>
</table>
DATA SHEET 1
COTR VEHICLE WORK ORDER

Test Vehicle: 2008 MERCEDES C300 NHTSA No.: C80504
Test Program: FMVSS 208 Compliance Test Dates: 1/18/08 - 9/9/08

COTR Signature: Charles R. Case

Test to be performed for this vehicle are checked below:

1. Rear Outboard Seating Position Seat Belts (S4.1.2(b)) & (S4.2.4)
2. Air Bag Labels (S4.5.1)
3. Readiness Indicator (S4.5.2)
4. Passenger Air Bag Manual Cut-off Device (S4.5.4)
5. Lap Belt Lockability (S7.1.1.5)
6. Seat Belt Warning System (S7.3)
7. Seat Belt Contact Force (S7.4.4)
8. Seat Belt Latch Plate Access (S7.4.4)
9. Seat Belt Retraction (S7.4.5)
10. Seat Belt Guides and Hardware (S7.4.6)
11. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R) using the following indicated child restraints.
 Section B
 - Britax Handle with Care 191
 - Century Assura 4553
 - Century Avanta SE 41530
 - Century Smart Fit 4543
 - Cosco Arriva 02727
 - Cosco Opus 35 02603
 - Evenflo Discovery Adjust Right 212
 - Evenflo On My Way Position Right V 282
 - Graco Infant 8457

 Section C
 - Britax Roundabout 161
 - Century Encore 4612
 - Century STE 1000 4416
 - Cosco Olympian 02803
 - Cosco Touriva 02519
 - Evenflo Horizon V 425
 - Evenflo Medallion 254

12. Suppression tests with newborn infant (Part 572, Subpart K) using the following indicated child restraints.
 Section A
 - Cosco Dream Ride 02-719

13. Suppression tests with 3-year-old dummy (Part 572, Subpart P) using the following indicated child restraints where a child restraint is required.
14. Suppression tests with representative 3-year-old child using the following indicated child restraints where a child restraint is required. (Appendix H, Data Sheet 16H and 17H)

Section C

- Britax Roundabout 161
- Century Encore 4612
- Century STE 1000 4416
- Cosco Olympian 02803
- Cosco Touriva 02519
- Evenflo Horizon V 425
- Evenflo Medallion 254

Section D

- Britax Roadster 9004
- Century Next Step 4920
- Cosco High Back Booster 02-442
- Evenflo Right Fit 245

15. Suppression tests with 3-year-old dummy (Part 572, Subpart P) in the following Forward, Middle, and Rearward seat track positions

- Sitting on seat with back against seat back (S22.2.2.1)
- Sitting on seat with back against reclined seat back (S22.2.2.2)
- Sitting on seat with back not against seat back (S22.2.2.3)
- Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
- Standing on seat, facing forward (S22.2.2.5)
- Kneeling on seat facing forward (S22.2.2.6)
- Kneeling on seat facing rearward (S22.2.2.7)
- Lying on seat (S22.2.2.8)

16. Suppression tests with representative 3-year-old child in the following positions

- Sitting on seat with back against seat back (S22.2.2.1)
- Sitting on seat with back against reclined seat back (S22.2.2.2)
- Sitting on seat with back not against seat back (S22.2.2.3)
- Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
- Standing on seat, facing forward (S22.2.2.5)
- Kneeling on seat facing forward (S22.2.2.6)
- Kneeling on seat facing rearward (S22.2.2.7)
- Lying on seat (S22.2.2.8)

17. Suppression tests with 6-year-old dummy (Part 572, Subpart N) using the following indicated child restraints where a child restraint is required.
18. Suppression tests with representative 6-year-old child using the following indicated child restraints where a child restraint is required.

<table>
<thead>
<tr>
<th>Section D</th>
<th>Britax Roadster 9004</th>
<th>Century Next Step 4920</th>
<th>Cosco High Back Booster 02-442</th>
<th>Evenflo Right Fit 245</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Rearward</td>
<td>Full Rearward</td>
<td>Full Rearward</td>
<td>Full Rearward</td>
</tr>
<tr>
<td></td>
<td>Mid Position</td>
<td>Mid Position</td>
<td>Mid Position</td>
<td>Mid Position</td>
</tr>
<tr>
<td></td>
<td>Full Forward</td>
<td>Full Forward</td>
<td>Full Forward</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

19. Suppression tests with 6-year-old dummy (Part 572, Subpart N) in the following Forward, Middle, and Rearward seat track positions

<table>
<thead>
<tr>
<th>Section D</th>
<th>Britax Roadster 9004</th>
<th>Century Next Step 4920</th>
<th>Cosco High Back Booster 02-442</th>
<th>Evenflo Right Fit 245</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Rearward</td>
<td>Full Rearward</td>
<td>Full Rearward</td>
<td>Full Rearward</td>
</tr>
<tr>
<td></td>
<td>Mid Position</td>
<td>Mid Position</td>
<td>Mid Position</td>
<td>Mid Position</td>
</tr>
<tr>
<td></td>
<td>Full Forward</td>
<td>Full Forward</td>
<td>Full Forward</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

20. Suppression tests with representative 6-year-old child in the following positions

<table>
<thead>
<tr>
<th>Section D</th>
<th>Britax Roadster 9004</th>
<th>Century Next Step 4920</th>
<th>Cosco High Back Booster 02-442</th>
<th>Evenflo Right Fit 245</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Rearward</td>
<td>Full Rearward</td>
<td>Full Rearward</td>
<td>Full Rearward</td>
</tr>
<tr>
<td></td>
<td>Mid Position</td>
<td>Mid Position</td>
<td>Mid Position</td>
<td>Mid Position</td>
</tr>
<tr>
<td></td>
<td>Full Forward</td>
<td>Full Forward</td>
<td>Full Forward</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

X 21. Test of Reactivation of the Passenger Air Bag System with an Unbelted 5th percentile female dummy (S20.3, 22.3, S24.3). Perform this test after the following suppression tests: After each restraint.

<table>
<thead>
<tr>
<th>Section D</th>
<th>Britax Handle with Care 191</th>
<th>Century Assura 4553</th>
<th>Century Avanta SE 41530</th>
<th>Century Smart Fit 4543</th>
<th>Cosco Arriva 02727</th>
<th>Cosco Opus 35 02603</th>
<th>Evenflo Discovery Adjust Right 212</th>
<th>Evenflo First Choice 204</th>
<th>Evenflo On My Way Position Right V 282</th>
<th>Graco Infant 8457</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Rearward</td>
</tr>
<tr>
<td></td>
<td>Mid Position</td>
</tr>
<tr>
<td></td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

22. Test of Reactivation of the passenger air bag system with a representative 5th percentile female (S20.3, 22.3, S24.3). Perform this test after the following suppression tests:

<table>
<thead>
<tr>
<th>Section D</th>
<th>Britax Handle with Care 191</th>
<th>Century Assura 4553</th>
<th>Century Avanta SE 41530</th>
<th>Century Smart Fit 4543</th>
<th>Cosco Arriva 02727</th>
<th>Cosco Opus 35 02603</th>
<th>Evenflo Discovery Adjust Right 212</th>
<th>Evenflo First Choice 204</th>
<th>Evenflo On My Way Position Right V 282</th>
<th>Graco Infant 8457</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Rearward</td>
</tr>
<tr>
<td></td>
<td>Mid Position</td>
</tr>
<tr>
<td></td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

23. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R) using the following indicated child restraints.

<table>
<thead>
<tr>
<th>Section B</th>
<th>Britax Handle with Care 191</th>
<th>Century Assura 4553</th>
<th>Century Avanta SE 41530</th>
<th>Century Smart Fit 4543</th>
<th>Cosco Arriva 02727</th>
<th>Cosco Opus 35 02603</th>
<th>Evenflo Discovery Adjust Right 212</th>
<th>Evenflo First Choice 204</th>
<th>Evenflo On My Way Position Right V 282</th>
<th>Graco Infant 8457</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Rearward</td>
</tr>
<tr>
<td></td>
<td>Mid Position</td>
</tr>
<tr>
<td></td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section C</th>
<th>Britax Roundabout 161</th>
<th>Century Encore 4612</th>
<th>Century STE 1000 4416</th>
<th>Cosco Olympian 02803</th>
<th>Cosco Touriva 02519</th>
<th>Evenflo Horizon V 425</th>
<th>Evenflo Medallion 254</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Rearward</td>
</tr>
<tr>
<td></td>
<td>Mid Position</td>
</tr>
<tr>
<td></td>
<td>Full Forward</td>
</tr>
</tbody>
</table>
24. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P) in the following positions
 - Position 1
 - Position 2

25. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N) in the following positions
 - Position 1
 - Position 2

26. Low risk deployment test with 5th percentile female dummy (Part 572, Subpart O) in the following positions
 - Position 1
 - Position 2

27. Impact Tests

 Frontal Oblique – Test Speed:
 - Belted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.1(a))
 - Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))
 - Unbelted 50th male dummy driver and passenger (32 to 40 kmph) (S5.1.2(a)(1) or S5.1.2(b))

 Frontal 0° - Test Speed: 39.8 kmph
 - Belted 50th male dummy driver (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
 - Belted 50th male dummy passenger (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
 - Belted 5th female dummy driver (0 to 48 kmph) (S16.1(a))
 - Belted 5th female dummy passenger (0 to 48 kmph) (S16.1(a))
 - Belted 50th male dummy driver and passenger (0 to 56 kmph) (S5.1.2(a)(1))
 - Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1) or S5.1.2(b))
 - Unbelted 50th male dummy driver (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
 - Unbelted 5th female dummy driver (32 to 40 kmph) (S16.1(b))
 - Unbelted 5th female dummy passenger (32 to 40 kmph) (S16.1(b))
 - Unbelted 5th female dummy driver and passenger (32 to 40 kmph) (S16.1(b))
 - 40% Offset 0° Belted 5th female dummy driver and passenger (0 to 40 kmph) (S18.1) – Test Speed:

28. Sled Test: Unbelted 50th male dummy driver and passenger (S13)

29. FMVSS 204 Indicant Test

30. FMVSS 212 Indicant Test

31. FMVSS 219 Indicant Test

32. FMVSS 301 Frontal Indicant Test
DATA SHEET 2
REPORT OF VEHICLE CONDITION

Test Vehicle: 2008 MERCEDES C300 NHTSA No.: C80504
Test Program: FMVSS 208 Compliance Test Dates: 1/18/08 – 9/9/08

CONTRACT NO.: DTNH22-03-D-11002 Date: 9/16/08
FROM (Lab and rep name): MGA Research Corporation
TO: NHTSA, OVSC (NVS-220)

PURPOSE: (X) Initial Receipt () Received via Transfer (X) Present vehicle condition

MODEL YEAR/MAKE/MODEL/BODY STYLE: 2008 MERCEDES C300 Passenger Car
MANUFACTURE DATE: 10/07
NHTSA NO. C80504 GVWR: 2120 kg (4672 lbs)
BODY COLOR: Silver GAWR (Fr): 1070 kg (2358 lbs)
VIN: WDDGF81X88F081190 GAWR (Rr): 1085 kg (2391 lbs)

ODOMETER READINGS: ARRIVAL (miles): 92 DATE: 1/14/08
COMPLETION (miles): 110 DATE: 9/9/08
PURCHASE PRICE: ($) 35,893
DEALER’S NAME: Mercedes Benz of Elmbrook, Waukesha, WI 53186

A. All options listed on window sticker are present on the test vehicle:
 X Yes ___No
B. Tires and wheel rims are new and the same as listed: _X_ Yes ___No
C. There are no dents or other interior or exterior flaws: _X_ Yes ___No
D. The vehicle has been properly prepared and is in running condition:
 X Yes ___No
E. Keyless remote is available and working: _X_ Yes ___No
F. The glove box contains an owner’s manual, warranty document, consumer information,
 and extra set of keys: _X_ Yes ___No
G. Proper fuel filler cap is supplied on the test vehicle: _X_ Yes ___No
H. Using permanent marker, identify vehicle with NHTSA number and FMVSS test type(s)
 on roof line above driver door or for school buses, place a placard with NHTSA number
 inside the windshield and to the exterior front and rear side of bus:
 X Yes ___No
I. Place vehicle in storage area: _X_ Yes ___No
J. Inspect the vehicle’s interior and exterior, including all windows, seats, doors, etc. to
 confirm that each system is complete and functional per the manufacturer’s
 specifications. Any damage, misadjustment, or other unusual condition that could
 influence the test program or test results shall be recorded. Report any abnormal
 condition to the NHTSA COTR before beginning any test:
 X Vehicle OK ___Conditions reported below
REPORT OF VEHICLE CONDITION AT THE COMPLETION OF TESTING

LIST OF FMVSS TESTS PERFORMED BY THIS LAB:
FMVSS 208, 212, 219, 301

VEHICLE:
2008 MERCEDES C300

NHTSA NO.:
C80504

REMARKS:

Equipment that is no longer on the test vehicle as noted on previous page:
Rear Seat, Rear Middle Head Rest, Spare tire, Tools, Trunk Floor and Carpet

Explanation for equipment removal:
Components removed for instrumentation installation and to meet target weight.

Test Vehicle Condition:
25 mph frontal impact damage- front suspension & structure damaged, hood & front quarter panels damaged, radiator damaged, air bags & pretensioners deployed, Stoddard in fuel system

RECORDED BY:
Jeff Lewandowski

DATE:
9/16/2008

APPROVED BY:
David Winkelbauer

DATE:
9/16/2008

RELEASE OF TEST VEHICLE

The vehicle described above is released from MGA to be delivered to:

Date:
Time:
Odometer:

Lab Rep’s Signature:
Title:
Carrier/Customer Rep:
Date:
Certification Label

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>Daimlerchrysler AG Stuttgart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Manufacture:</td>
<td>10/07</td>
</tr>
<tr>
<td>VIN:</td>
<td>WDDGF81X88F081190</td>
</tr>
<tr>
<td>Vehicle Certified As (Pass. Car/MPV/Truck/Bus):</td>
<td>Passenger Car</td>
</tr>
<tr>
<td>Front Axle GVWR:</td>
<td>1070 kg (2358 lbs)</td>
</tr>
<tr>
<td>Rear Axle GVWR:</td>
<td>1085 kg (2391 lbs)</td>
</tr>
<tr>
<td>Total GVWR:</td>
<td>2120 kg (4672 lbs)</td>
</tr>
</tbody>
</table>

Tire Placard

Not applicable, vehicle is not a passenger car and does not have a tire placard.	Passenger Car
This is not a passenger car, but all or part of this information is still contained on a vehicle label and is reported here.	Passenger Car
Vehicle Capacity Weight:	370 kg (815 lbs)
Designated Seating Capacity Front:	2
Designated Seating Capacity Rear:	3
Total Designated Seating Capacity:	5
Recommended Cold Tire Inflation Pressure Front:	210 kpa (30 psi)
Recommended Cold Tire Inflation Pressure Rear:	240 kpa (35 psi)
Recommended Tire Size: (Front)	225/45 R17
Recommended Tire Size: (Rear)	245/40 R17

Signature: [Signature]

Date: 9/9/08
DATA SHEET 4
REAR OUTBOARD SEATING POSITION SEAT BELTS

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Do all rear outboard seating positions have Type 2 seat belts?

If NO, describe the seat belt installed, the seat location, and any other information about the seat that would explain why a Type 2 seat belt was not installed.

REMARKS:

Signature:

Date: 1/18/08
DATA SHEET 5
AIR BAG LABELS (S4.5.1)

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul

1. Air bag maintenance label and owner’s manual instructions: (S4.5.1(a))
 1.1 Does the manufacturer recommend periodic maintenance or replacement of the air bag?
 □ Yes, go to 1.2
 X No – go to 2
 1.2 Does the vehicle have a label specifying air bag maintenance or replacement?
 □ Yes – Pass
 □ No – Fail
 1.3 Does the label contain one of the following?
 □ Yes – Pass
 □ No – Fail
 Check applicable schedule:
 ___ Schedule on label specifies month and year (Record date_______)
 ___ Schedule on label specified vehicle mileage (Record mileage______)
 ___ Schedule on label specifies interval measured from date on certification label
 Record interval______)
 1.4 Is the label permanently affixed within the passenger compartment such that it cannot be removed without destroying or defacing the label or the sunvisor? (3/19/01 legal interpretation to Todd Mitchell)
 □ Yes – Pass
 □ No – Fail
 1.5 Is the label lettered in English?
 □ Yes – Pass
 □ No – Fail
 1.6 Is the label in block capitals and numerals?
 □ Yes – Pass
 □ No – Fail
 1.7 Are the letters and numerals at least 3/32 inches high?
 □ Yes – Pass
 □ No – Fail
 1.8 Does the owner’s manual set forth the recommended schedule for maintenance or replacement?

2. Does the owner’s manual: (S4.5.1(f))
 2.1 Include a description of the vehicle’s air bag system in an easily understandable format?
 X Yes – Pass
 □ No – Fail
 2.2 Include a statement that the vehicle is equipped with an air bag and a lap/shoulder belt at the front outboard seating position?
 X Yes – Pass
 □ No – Fail
| 2.3 | Include a statement that the air bag is a supplemental restraint at the front outboard seating position? | Yes – Pass | No – Fail |
| 2.4 | Emphasize that all occupants, including the driver, should always wear their seat belts whether or not an air bag is also provided at their seating positions to minimize the risk of severe injury or death in the event of a crash? | Yes – Pass | No – Fail |
| 2.5 | Provide any necessary precautions regarding the proper positioning of occupants, including children, at seating positions equipped with air bags to ensure maximum safety protection for those occupants? | Yes – Pass | No – Fail |
| 2.6 | Explain that no objects should be placed over or near the air bag on the steering wheel or on the instrument panel, because any such objects could cause harm if the vehicle is in a crash severe enough to cause the air bag to inflate? | Yes – Pass | No – Fail |
| 2.7 | Is the vehicle certified to meet the requirements of S14.5, S15, S17, S19, S21, S23, and S25? (Obtain answer from COTR) (S4.5.1(f)(2)) | Yes – (Go to 2.7.1) | No – (Go to 3.) |
| 2.7.1 | Explain the proper functioning of the advanced air bag system? (S4.5.1(f)(2)) | Yes – Pass | No – Fail |
| 2.7.2 | Provide a summary of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2)) | Yes – Pass | No – Fail |
| 2.7.3 | Present and explain the main components of the advanced passenger air bag system? (S4.5.1(f)(2)(i)) | Yes – Pass | No – Fail |
| 2.7.4 | Explain how the components function together as part of the advanced passenger air bag system? (S4.5.1(f)(2)(ii)) | Yes – Pass | No – Fail |
| 2.7.5 | Contain the basic requirements for proper operation, including an explanation of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2)(iii)) | Yes – Pass | No – Fail |
| 2.7.6 | Is the vehicle certified to the requirements of S19.2, S21.2, or 23.2 (automatic suppression)? | Yes, continue with 2.7.6 | No, go to 2.7.7 |
| 2.7.6.1 | Contain a complete description of the passenger air bag suppression system installed in the vehicle, including a discussion of any suppression zone? (S4.5.1(f)(2)(iv)) | Yes – Pass | No – Fail |
2.7.6.2 Discuss the telltale light, specifying its location in the vehicle and explaining when the light is illuminated?

- Yes – Pass
- No – Fail

2.7.7 Explain the interaction of the advanced passenger air bag system with other vehicle components, such as seat belts, seats or other components? (S4.5.1(f)(2)(v))

- Yes – Pass
- No – Fail

2.7.8 Summarize the expected outcomes when child restraint systems, children and small teenagers or adults are both properly and improperly positioned in the passenger seat, including cautionary advice against improper placement of child restraint systems? (S4.5.1(f)(2)(vi))

- Yes – Pass
- No – Fail

2.7.9 Provide information on how to contact the vehicle manufacturer concerning modifications for persons with disabilities that may affect the advanced air bag system? (S4.5.1(f)(2)(vii))

- Yes – Pass
- No – Fail

3. Sun Visor Air Bag Warning Label (S4.5.1(b)) Check only one of the following:

- The vehicle is not certified to meet the requirements of S19, S21, and S23 (Obtain answer from COTR) (S4.5.1(b)(1)) Go to 3.1 and skip 3.2
- The vehicle is certified to meet the requirements of S19, S21, and S23 on 9/1/03 or later. (Obtain answer from COTR) (S4.5.1(b)(3)) Go to 3.2 and skip 3.1

3.1 Vehicles not certified to meet the requirements of S19, S21, and S23.

3.1.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or sun visor? (S4.5.1(b)(1)) (3/19/01 legal interpretation to Todd Mitchell)

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail
3.1.2 Does the label conform in content to the label shown in either Figure 6A or 6B (Figure 6b is for vehicles with passenger air bag on-off switches), as appropriate, at each front outboard seating position? (S4.5.1(b)(1)) (Vehicles without back seats may omit the statement: "The back seat is the safest place for children." (S4.5.1(b)(1)(iv))

<table>
<thead>
<tr>
<th>Side</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Passenger Side</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

3.1.3 Is the label heading area yellow with the word "WARNING" and the alert symbol in black? (S4.5.1(b)(1)(i))

<table>
<thead>
<tr>
<th>Side</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Passenger Side</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

3.1.4 Is the message area white with black text? (S4.5.1(b)(1)(ii))

<table>
<thead>
<tr>
<th>Side</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Passenger Side</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
3.1.5 Is the message area at least 30 cm²? (S4.5.1(b)(1)(ii))

The message area consists of the total label area minus the yellow heading area and the pictogram. The pictogram is enclosed on the left side and bottom by the edge of the label and on the top by line that borders the yellow heading area. The right side of the pictogram is defined by a vertical line midway between the rightmost edge of the pictogram and the left most edge of the text, including any bullets. (See 5/6/03 interpretation to Gerald Plante on behalf of Subaru)

Driver Side: Length_______, Width________
Passenger Side: Length_______, Width________
Actual message area __________ cm²

<table>
<thead>
<tr>
<th>Driver Side, Yes – Pass</th>
<th>Driver Side, No – Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Side, Yes – Pass</td>
<td>Passenger Side, No – Fail</td>
</tr>
</tbody>
</table>

3.1.6 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(b)(2)(iii))

<table>
<thead>
<tr>
<th>Driver Side, Yes – Pass</th>
<th>Driver Side, No – Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Side, Yes – Pass</td>
<td>Passenger Side, No – Fail</td>
</tr>
</tbody>
</table>

3.1.7 Is the pictogram at least 30 mm in diameter? (S4.5.1(b)(2)(iii))

Actual diameter__________mm

<table>
<thead>
<tr>
<th>Driver Side, Yes – Pass</th>
<th>Driver Side, No – Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Side, Yes – Pass</td>
<td>Passenger Side, No – Fail</td>
</tr>
</tbody>
</table>

3.2 Vehicles certified to meet the requirements of S19, S21, and S23 on 9/1/03 and later. (S4.5.1(b)(3))

X 3.2.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(b)(3)) (3/19/01 legal interpretation to Todd Mitchell)

X Driver Side, Yes – Pass
<table>
<thead>
<tr>
<th>Driver Side, No – Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Side, Yes – Pass</td>
</tr>
<tr>
<td>Passenger Side, No – Fail</td>
</tr>
</tbody>
</table>
3.2.2 Does the label conform in content to the label shown in Figure 11 at each front outboard seating position? (S4.5.1(b)(2)) (Vehicles without back seats may omit the statement: “The back seat is the safest place for children.” (S4.5.1(b)(3)(iv)) Vehicles without back seats or the back seat is too small to accommodate a rear-facing child restraint may omit the statement “Never put a rear-facing child seat in the front.”(S4.5.1(b)(3)(v))

![Figure 11. Sun Visor Label Visible when Visor is in Down Position.](image)

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.2.3 Is the label heading area yellow with the word “WARNING” and the alert symbol in black? (S4.5.1(b)(3)(i))

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.2.4 Is the message area white with black text? (S4.5.1(b)(3)(ii))

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.2.5 Is the message area at least 30 cm²? (S4.5.1(b)(3)(ii)) The message area consists of the total label area minus the yellow heading area and the pictogram. The pictogram is enclosed on the left side and bottom by the edge of the label. The top edge of the pictogram area is defined by a horizontal line midway between the uppermost edge of the pictogram and the lowermost edge of the text. The right side of the pictogram is defined by a vertical line midway between the rightmost edge of the pictogram and the left most edge of the text, including any bullets. (See 5/6/03 interpretation to Gerald Plante on behalf of Subaru)

Driver Side: Length 7.7 cm, Width 4.3 cm
Passenger Side: Length 7.7 cm, Width 4.3 cm

Actual message area 33.1 cm²

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail
3.2.6 Is the pictogram black on a white background? (S4.5.1(b)(3)(iii))
- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.2.7 Is the pictogram at least 30 mm (1.2 inches) in length? (S4.5.1(b)(3)(iii))
- Driver Side: Length 47 mm
- Passenger Side: Length 47 mm
- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.3 Is the same side of the sun visor that contains the air bag warning label free of other information with the exception of the air bag maintenance label and/or the rollover-warning label? (S4.5.1(b)(5)(i))
- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.4 Is the sun visor free of other information about air bags or the need to wear seat belts with the exception of the air bag alert label and/or the rollover-warning label? (S4.5.1(b)(5)(ii))
- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.5 Does the driver side visor contain a rollover-warning label on the same side of the visor as the air bag warning label?
- Yes, go to 3.5.1
- No, go to 4 (skipping 3.5.1 through 3.5.3)

3.5.1 Are both the rollover-warning label and the air bag warning label surrounded by a continuous solid-lined border?
- Yes, go to 3.5.2 and skip 3.5.3
- No, go to 3.5.3 and skip 3.5.2

3.5.2 Is the shortest distance from the border of the rollover label to the border of the air bag warning label at least 1 cm? (575.105 (d)(1)(iv)(B))
- Actual distance

3.5.3 Is the shortest distance from any of the lettering or graphics on the rollover-warning label to any of the lettering or graphics of the air bag warning label at least 3 cm? (575.105 (d)(1)(iv)(A))
- Actual distance
- Yes-Pass
- No-FAIL
4. Air Bag Alert Label (S4.5.1(c)) (A “Rollover Warning Label” or “Rollover Alert Label” may be on the same side of the driver’s sun visor as the “Air Bag Alert Label.” 575.105(d))

4.1 Is the sun visor warning label visible when the sun visor is in the stowed position?

<table>
<thead>
<tr>
<th></th>
<th>If yes for driver and passenger, go to 5.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Driver Side, Yes</td>
<td>Driver Side, No</td>
</tr>
<tr>
<td>Passenger Side, Yes</td>
<td>Passenger Side, No</td>
</tr>
</tbody>
</table>

4.2 Is the air bag alert label permanently affixed (including permanent marking on the visor material or molding into the visor material) to the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(c)) (3/19/01 legal interpretation to Todd Mitchell)

<table>
<thead>
<tr>
<th></th>
<th>Driver Side, Yes – Pass</th>
<th>Driver Side, No – Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Passenger Side, Yes – Pass</td>
<td>Passenger Side, No – Fail</td>
</tr>
</tbody>
</table>

4.3 Is the air bag alert label visible when the visor is in the stowed position? (S4.5.1(c))

<table>
<thead>
<tr>
<th></th>
<th>Driver Side, Yes – Pass</th>
<th>Driver Side, No – Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Passenger Side, Yes – Pass</td>
<td>Passenger Side, No – Fail</td>
</tr>
</tbody>
</table>

4.4 Does the label conform in content to the label shown in Figure 6C? (S4.5.1(c))

<table>
<thead>
<tr>
<th></th>
<th>Driver Side, Yes – Pass</th>
<th>Driver Side, No – Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Passenger Side, Yes – Pass</td>
<td>Passenger Side, No – Fail</td>
</tr>
</tbody>
</table>

4.5 Is the message area black with yellow text? (S4.5.1(c)(1))

<table>
<thead>
<tr>
<th></th>
<th>Driver Side, Yes – Pass</th>
<th>Driver Side, No – Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Passenger Side, Yes – Pass</td>
<td>Passenger Side, No – Fail</td>
</tr>
</tbody>
</table>

![Figure 6c: Sun Visor Label Visible When Visor is in Up Position.](image)
4.6 Is the message area at least 20 cm²? (S4.5.1(c)(1)) The message area consists of the black part of the label.

Driver Side: Length______, Width________
Passenger Side: Length______, Width________
Actual message area __________ cm²

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

4.7 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(c)(2))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

4.8 Is the pictogram at least 20 mm in diameter? (S4.5.1(c)(2))

Driver Side Diameter ______ mm
Passenger Side Diameter ______ mm

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

X 5. Label on the Dashboard

X 5.1 Is the vehicle certified to meet the requirements of S19, S21, and S23? (Obtain answer from COTR) (S4.5.1(e)(3))

- Yes, go to 5.1.1 and skip 5.2
- No, go to 5.2, skipping 5.1.1 through 5.1.6

X 5.1.1 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(3))

- Yes – Pass
- No – Fail

X 5.1.2 Is the label clearly visible from all front seating positions? (S4.5.1(e)(3))

- Yes – Pass
- No - Fail
5.1.3 Does the label conform in content to the label shown in Figure 12? (S4.5.1(e)(3))

Vehicles without back seats may omit the statement: “The back seat is the safest place for children.” Vehicles without back seats or too small to accommodate a rear-facing child restraint consistent with S4.5.4.1 as determined in DATA SHEET 7 may omit the statement “Never put a rear-facing child seat in the front.” (S4.5.1(e)(3)(iii))

- Yes – Pass
- No - Fail

5.1.4 Is the heading area yellow with black text? (S4.5.1(e)(3)(i))

- Yes – Pass
- No - Fail

5.1.5 Is the message white with black text? (S4.5.1(e)(3)(ii))

- Yes – Pass
- No - Fail

5.1.6 Is the message area at least 30 cm²? (S4.5.1(e)(3)(ii)) The message area consists of the total label area minus the yellow heading area. (See 5/6/03 interpretation to Gerald Plante on behalf of Subaru)

- Yes – Pass
- No - Fail

5.2 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(1))

- Yes – Pass
- No - Fail

5.2.1 Is the label clearly visible from all front seating positions? (S4.5.1(e)(1))

- Yes – Pass
- No - Fail
5.2.2 Does the label conform in content to the label shown in Figure 7? (S4.5.1(e)(1)(iii))

Vehicles without back seats may omit the statement: "The back seat is the safest place for children." (S4.5.1(e)(1)(iii))

- Yes – Pass
- No - Fail

5.2.3 Is the heading area yellow with the word "WARNING" and the alert symbol in black? (S4.5.1(e)(1)(i))

- Yes – Pass
- No - Fail

5.2.4 Is the message white with black text? (S4.5.1(e)(1)(ii))

- Yes – Pass
- No - Fail

5.2.5 Is the message area at least 30 cm²? (S4.5.1(e)(1)(ii)) The message area consists of the total label area minus the yellow heading area. (See 5/6/03 interpretation to Gerald Plante on behalf of Subaru)

Length________, Width________
Actual message area __________ cm²

- Yes – Pass
- No - Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: ________________________________

Date: 1/18/08
An occupant restraint system that deploys in the event of a crash shall have a monitoring system with a readiness indicator. A totally mechanical system is exempt from this requirement. (11/8/94 legal interpretation to Lawrence F. Hennegerger on behalf of Breed)

1. Is the system totally mechanical? If Yes, this data sheet is complete.
 - Yes
 - No

2. Describe the location of the readiness indicator: Center console panel

3. Is the readiness indicator clearly visible to the driver?
 - Yes – Pass
 - No - Fail

4. Is a list of the elements in the occupant restraint system, being monitored by the readiness indicator, provided on a label or in the owner’s manual?
 - Yes – Pass
 - No - Fail

5. Does the vehicle have an on-off switch for the passenger air bag?
 - If Yes, go to 6
 - If No, this form is complete.

6. Is the air bag readiness indicator off when the passenger air bag switch is in the off position?
 - Yes – Pass
 - No - Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/18/08
1. Is the vehicle equipped with an on-off switch that deactivates the air bag installed at the right front outboard seating position?
 - Yes, go to 2
 - X No, this sheet is complete

2. Does the vehicle have any forward-facing rear designated seating positions? (S4.5.4.1(a))
 - Yes, go to 3
 - No, go to 4

3. Verification there is room for a child restraint in the rear seat behind the driver’s seat. (S4.5.4.1(b))
 - 3.1 Using all the controls that affect the fore-aft movement of the seat, move the seat to the rearmost position. Mark this position.
 - N/A, the seat does not have fore-aft adjustment
 - 3.2 Using all the controls that affect the fore-aft movement of the seat, move the seat to the foremost position. Mark this position.
 - N/A, the seat does not have fore-aft adjustment
 - 3.3 Move the seat to the middle of the foremost and rearmost positions. (S8.1.2)
 - N/A, the seat does not have a fore-aft adjustment
 - 3.4 If the driver’s seat height is adjustable, use all the controls that affect height to put it in the lowest position while maintaining the middle fore-aft position. (S8.1.2)
 - N/A, No seat height adjustment
 - 3.5 Position the driver’s seat adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A, No lumbar adjustment
 - 3.6 The driver’s seat back angle, if adjustable, is set at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1(b) and S8.1.3)
 - N/A, No seat back angle adjustment
 - Manufacturer’s design driver’s seat back angle _____________
 - Tested driver’s seat back angle _____________

4. Is the driver seat a bucket seat?
 - Yes, go to 3.7.1 and skip 3.7.2.
 - No, go to 3.7.2 and skip 3.7.1.

 3.7.1 Bucket seats:
 - Locate and mark a vertical Plane B through the longitudinal centerline of the driver’s seat cushion. The longitudinal centerline of a bucket seat cushion is determined at SgRP. (S16.3.1.10) (S4.5.4.1(b)(1))
3.7.1.2 Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion behind the driver’s seat. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the driver’s seat.

____ mm distance
__less than 720 mm – Pass
__more than 720 mm – FAIL
Go to 4

3.2 Bench seats (including split bench seats):

3.7.2.1 Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline. (S4.5.4.1(b)(2))

3.7.2.2 Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the front seat.

____ mm distance
__less than 720 mm – Pass
__more than 720 mm – FAIL
Go to 4

4. Does the device turn the air bag on and off using the vehicle’s ignition key? (S4.5.4.2)

| Yes – Pass | No – Fail |

5. Is the on-off device separate from the ignition switch? (S4.5.4.2)

| Yes – Pass | No – Fail |

6. Is there a telltale light that comes on when the passenger air bag is turned off? (S4.5.4.2)

| Yes – Pass | No – Fail |

7. Telltale light (S4.5.4.3)

7.1 Is the light yellow? S4.5.4.3(a))

| Yes – Pass | No – Fail |

7.2 Are the words “PASSENGER AIR BAG OFF” or “PASS AIR BAG OFF” (S4.5.4.3(b))

7.2.1 on the telltale?

| Yes – Pass, go to 7.3 | No – go to 7.2.2 |

7.2.2 within 25 mm of the telltale?

| Measurement from the edge of the telltale light (mm): |

| Yes – Pass | No – Fail |

7.3 Does the telltale remain illuminated while the air bag is turned off? (S4.5.4.3c)) (Leave the air bag off for 5 minutes.)

| Yes – Pass | No – Fail |
7.4 Is the telltale illuminated while the air bag is turned on? (S4.5.4.3(d))

- Yes – Fail
- No – Pass

7.5 Is the telltale combined with the air bag readiness indicator? (S4.5.4.3(e))

- Yes – Fail
- No – Pass

8. Owner’s Manual

8.1 Does the owner’s manual contain complete instructions on the operation of the on-off switch? (S4.5.4.4(a))

- Yes – Pass
- No – Fail

8.2 Does the owner’s manual contain a statement that the on-off switch should only be used when a member of one of the following risk groups is occupying the right front passenger seating position? (S4.5.4.4(b))

- Infant: there is no back seat
 - the rear seat is too small to accommodate a child restraint
 - there is a medical condition that must be monitored constantly
- Child aged 1 to 12: there is no back seat
 - space is not always available in the rear seat
 - there is a medical condition that must be monitored constantly
- Medical condition: greater risk for harm than with the air bag on

- Yes – Pass
- No – Fail

8.3 Does the owner’s manual contain a warning about the safety consequences of using the on-off switch at other times?

- Yes – Pass
- No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: ______________________________

Date: 1/18/08
DATA SHEET 8

LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

DESIGNATED SEATING POSITION: Front Passenger

1. Record test fore-aft seat position: FULL AFT (S7.1.1.5(c)(1)) (Any position is acceptable)
 - X Yes – Pass
 - No – Fail

2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 - X Yes – Pass
 - No – Fail

3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 - X Yes – Pass
 - No – Fail

4. Place any adjustable seat belt anchorage in the lowest adjustment position.
 - N/A The anchorage is not adjustable.

5. Buckle the seat belt. (S7.1.1.5(c)(1))
 - X Yes – Pass
 - No – Fail

6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 - X Yes, go to 8.1
 - No, go to 9.

8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 - X Yes – Pass
 - No – Fail

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul
NHTSA No.: C80504
Test Date: 1/21/08
9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

 Measured distance between A and B (inches): 64 inches

11. Readjust the belt system so that the webbing between points A and B is at 1/2 the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle (Spec. 5-15 degrees): 10°

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B (inches): 26 inches

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate (lb/sec) (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5)): 20 lbs/sec

 Measured distance between A and B (inches) (S7.1.1.5(c)(6)): 26 ½ inches

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle: 10° spec. 5 - 15 degrees)

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B: 16 inches
18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate: 20 lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))
Measured distance between A and B: 16 ½ inches (S7.1.1.5(c)(6))

19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))

14-13 = 26 ½ - 26 = ½ inch
18-17 = 16 ½ - 16 = ½ inch

X Yes – Pass
X No – Fail

20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))

10-14 = 64 – 26 ½ = 37 ½ inches
10-18 = 64 – 16 ½ = 47 ¼ inches

X Yes – Pass
X No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: ___________________________

Date: 1/21/08

Figure 5. - Webbing Tension Pull Device
DATA SHEET 8
LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Left Rear Passenger</th>
</tr>
</thead>
</table>

1. Record test fore-aft seat position: (S7.1.1.5(c)(1)) (Any position is acceptable) **FIXED**
 - Yes – Pass
 - No – Fail

2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does **NOT** have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 - Yes – Pass
 - No – Fail

3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does **NOT** require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 - Yes – Pass
 - No – Fail

4. Place any adjustable seat belt anchorage in the lowest adjustment position.
 - N/A The anchorage is not adjustable.

5. Buckle the seat belt. (S7.1.1.5(c)(1))

6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 - Yes, go to 8.1
 - No, go to 9.

8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 - Yes – Pass
 - No – Fail
9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

 Measured distance between A and B (inches): 75 inches

11. Readjust the belt system so that the webbing between points A and B is at 1/2 the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle (Spec. 5-15 degrees): 10°

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B (inches): 31½ inches

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate (lb/sec) (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5)): 20 lbs/sec

 Measured distance between A and B (inches) (S7.1.1.5(c)(6)): 31 ¾ inches

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle: 10° (spec. 5 - 15 degrees)

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B: 24 inches

18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate: 20 lbs/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))

 Measured distance between A and B: 24 ½ inches (S7.1.1.5(c)(6))
19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both?
(S7.1.1.5(c)(7))

14-13 = 31 ¾ - 31 ½ = ¼ inch
18-17 = 24 ½ - 24 = ¼ inch

Yes – Pass
No – Fail

20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both?
(S7.1.1.5(c)(8))

10-14 = 75 – 31 ¾ = 43 ¼ inches
10-18 = 75 – 24 ½ = 50 ½ inches

Yes – Pass
No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: _______________________

Date: 1/22/08
DATA SHEET 8

LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Test Vehicle: 2008 MERCEDES C300 NHTSA No.: C80504
Test Program: FMVSS 208 Compliance Test Date: 1/22/08
Test Technician: Alyssa Paul

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

DESIGNATED SEATING POSITION: Center Rear Passenger

1. Record test fore-aft seat position: FIXED (S7.1.1.5(c)(1)) (Any position is acceptable)
 - Yes – Pass
 - No – Fail

2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 - Yes – Pass
 - No – Fail

3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 - Yes – Pass
 - No – Fail

4. Place any adjustable seat belt anchorage in the lowest adjustment position.
 - N/A The anchorage is not adjustable.

5. Buckle the seat belt. (S7.1.1.5(c)(1))

6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 - Yes, go to 8.1
 - No, go to 9.

8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 - Yes – Pass
 - No – Fail
9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

 Measured distance between A and B (inches): 89 inches

11. Readjust the belt system so that the webbing between points A and B is at 1/2 the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle (Spec. 5-15 degrees): 10°

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B (inches): 44 ½ inches

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate (lb/sec) (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5)): 20 lbs/sec

 Measured distance between A and B (inches) (S7.1.1.5(c)(6)): 44 ½ inches

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle: 10° (spec. 5 - 15 degrees)

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B: 27 inches
18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractor are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))
 Record onset rate: 20 lbs/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))
 Measured distance between A and B: 27 inches (S7.1.1.5(c)(6))

19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))
 14-13 = 44 ½ - 44 ½ = 0 inches
 18-17 = 27 – 27 = 0 inches
 Yes – Pass
 No – Fail

20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))
 10-14 = 89 – 44 ½ = 44 ½ inches
 10-18 = 89 – 27 = 62 inches
 Yes – Pass
 No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 1/22/08

Figure 5. - Webbing Tension Pull Device
Complete one of these forms for **each** designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), **and** that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

DESIGNATED SEATING POSITION: Right Rear Passenger

<table>
<thead>
<tr>
<th></th>
<th>N/A – no retractor is at this position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A – the retractor is an automatic locking retractor ONLY</td>
</tr>
<tr>
<td>X</td>
<td>1. Record test fore-aft seat position: FIXED (S7.1.1.5(c)(1)) (Any position is acceptable)</td>
</tr>
<tr>
<td>X</td>
<td>2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))</td>
</tr>
<tr>
<td></td>
<td>Yes – Pass</td>
</tr>
<tr>
<td></td>
<td>No – Fail</td>
</tr>
<tr>
<td>X</td>
<td>3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))</td>
</tr>
<tr>
<td></td>
<td>Yes – Pass</td>
</tr>
<tr>
<td></td>
<td>No – Fail</td>
</tr>
<tr>
<td>X</td>
<td>4. Place any adjustable seat belt anchorage in the lowest adjustment position.</td>
</tr>
<tr>
<td></td>
<td>N/A The anchorage is not adjustable.</td>
</tr>
<tr>
<td>X</td>
<td>5. Buckle the seat belt. (S7.1.1.5(c)(1))</td>
</tr>
<tr>
<td>X</td>
<td>6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))</td>
</tr>
<tr>
<td>X</td>
<td>7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))</td>
</tr>
<tr>
<td>X</td>
<td>8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?</td>
</tr>
<tr>
<td></td>
<td>Yes, go to 8.1</td>
</tr>
<tr>
<td></td>
<td>No, go to 9.</td>
</tr>
<tr>
<td>X</td>
<td>8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))</td>
</tr>
<tr>
<td></td>
<td>Yes – Pass</td>
</tr>
<tr>
<td></td>
<td>No – Fail</td>
</tr>
</tbody>
</table>
9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

 Measured distance between A and B (inches): 74 inches

11. Readjust the belt system so that the webbing between points A and B is at 1/2 the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle (Spec. 5-15 degrees): 10°

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B (inches): 37 inches

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate (lb/sec) (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5)): 20 lbs/sec

 Measured distance between A and B (inches) (S7.1.1.5(c)(6)): 37 ½ inches

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle: 10° (spec. 5 - 15 degrees)

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B: 26 inches
18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))
 Record onset rate: \(20 \text{ lbs/sec}\) (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))
 Measured distance between A and B: \(26 \frac{1}{2} \text{ inches}\) (S7.1.1.5(c)(6))

19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))
 \[14-13 = 37 \frac{1}{2} - 37 = \frac{1}{2} \text{ inch}\]
 \[18-17 = 26 \frac{1}{2} - 26 = \frac{1}{2} \text{ inch}\]
 Yes – Pass
 No – Fail

20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))
 \[10-14 = 74 - 37 \frac{1}{2} = 36 \frac{1}{2} \text{ inches}\]
 \[10-18 = 74 - 26 \frac{1}{2} = 47 \frac{1}{2} \text{ inches}\]
 Yes – Pass
 No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: ______________________

Date: 1/22/08
DATA SHEET 9
FMVSS 208 SEAT BELT WARNING SYSTEM CHECK (S7.3)

Test Vehicle: 2008 MERCEDES C300 NHTSA No.: C80504
Test Program: FMVSS 208 Compliance Test Date: 1/21/08
Test Technician: Alyssa Paul

1. The occupant is in the driver’s seat.
2. The seat belt is in the stowed position.
3. The key is in the “on” or “start” position.
4. The time duration of the audible signal beginning with key “on” or “start” is
 Seconds: 6
5. The occupant is in the driver’s seat.
6. The seat belt is in the stowed position.
7. The key is in the “on” or “start” position.
8. The time duration of the warning light beginning with key “on” or “start” is
 Seconds: 6 sec
9. The occupant is in the driver’s seat.
10. The seat belt is in the latched position and with at least 4 inches of belt webbing extended.
11. The key is in the “on” or “start” position.
12. The time duration of the warning light beginning with key “on” or “start” is
 Seconds: 7 sec
13. Complete the following table with the data from 4, 8, and 12 to determine which option is used.

<table>
<thead>
<tr>
<th></th>
<th>Warning light specification</th>
<th>Audible signal specification*</th>
</tr>
</thead>
<tbody>
<tr>
<td>S7.3 (a)(1)</td>
<td>Belt stowed & key on or start</td>
<td>Item 8: 60 seconds minimum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Item 4: 6</td>
</tr>
<tr>
<td>S7.3 (a)(2)</td>
<td>Belt latched & key on or start</td>
<td>Item 12: 4 to 8 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Item 4: 4 to 8 seconds</td>
</tr>
</tbody>
</table>

* 49 USCS @ 30124 does NOT allow an audible signal to operate for more than 8 seconds.
A voluntary audible signal after the 4 to 8 second required signal may be provided. It must be differentiated from the required signal (5/25/2001 legal interpretation to Longacre and Associates).
14. The seat belt warning system meets the requirements of (manufacturers may comply with either section)

- S7.3 (a)(1)
- X S7.3 (a)(2)
- FAIL – does not meet the requirements of either option

15. Note wording of visual warning: (S7.3(a)(1) and S7.3(a)(2))

- Fasten seat belts
- Fasten belts
- X Symbol 101 -
- FAIL – does not use any of the above wording or symbol

REMARKS:

I certify that I have read and performed each instruction.

Signature: _________________________

Date: 1/21/08
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2008 MERCEDES C300
NHTSA No.: C80504
Test Program: FMVSS 208 Compliance
Test Date: 1/21/08
Test Technician: Alyssa Paul

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Rear Passenger

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Does the vehicle incorporate a webbing tension-relieving device?</td>
</tr>
<tr>
<td></td>
<td>Yes, this form is complete</td>
</tr>
<tr>
<td></td>
<td>No, continue with this check sheet</td>
</tr>
<tr>
<td>2.</td>
<td>Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)</td>
</tr>
<tr>
<td></td>
<td>N/A, no lumbar adjustment</td>
</tr>
<tr>
<td>3.</td>
<td>Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)</td>
</tr>
<tr>
<td></td>
<td>N/A, no additional support adjustment</td>
</tr>
<tr>
<td>4.</td>
<td>Is the fore-aft position of the seat adjustable?</td>
</tr>
<tr>
<td></td>
<td>No- go to 5</td>
</tr>
<tr>
<td></td>
<td>Yes – Put the seat in the mid fore-aft and full down height position determined in Data Sheet 14.2</td>
</tr>
<tr>
<td>5.</td>
<td>Is the seat back angle adjustable?</td>
</tr>
<tr>
<td></td>
<td>No- go to 6</td>
</tr>
<tr>
<td></td>
<td>Yes-Use the seat back angle determined in Data Sheet 14.2</td>
</tr>
<tr>
<td>6.</td>
<td>Position the test dummies according to dummy position placement instructions in Appendix F. Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.</td>
</tr>
<tr>
<td>7.</td>
<td>Fasten the seat belt latch.</td>
</tr>
<tr>
<td>8.</td>
<td>Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.</td>
</tr>
<tr>
<td>9.</td>
<td>Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy’s chest and release until it is within one inch from the dummy’s chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.</td>
</tr>
<tr>
<td>Contact Force (lb):</td>
<td>0.0 to 0.7 pounds – Pass 0.5 lbs.</td>
</tr>
<tr>
<td></td>
<td>Greater than 0.7 pounds - Fail</td>
</tr>
</tbody>
</table>

REMARKS:

Signature: ________________________
Date: 1/21/08
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2008 MERCEDES C300 NHTSA No.: C80504
Test Program: FMVSS 208 Compliance Test Date: 1/21/08
Test Technician: Alyssa Paul

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Center Rear Passenger

1. Does the vehicle incorporate a webbing tension-relieving device?
 - Yes, this form is complete
 - No, continue with this check sheet

2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A, no lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A, no additional support adjustment

4. Is the fore-aft position of the seat adjustable?
 - No- go to 5
 - Yes – Put the seat in the mid fore-aft and full down height position determined in Data Sheet 14.2

5. Is the seat back angle adjustable?
 - No- go to 6
 - Yes-Use the seat back angle determined in Data Sheet 14.2

6. Position the test dummies according to dummy position placement instructions in Appendix F. **Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.**

7. Fasten the seat belt latch.

8. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy’s chest.

9. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy’s chest. At that point pull the belt webbing out 3 inches from the dummy’s chest and release until it is within one inch from the dummy’s chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy’s chest exerted by the belt webbing.

 Contact Force (lb):
 - 0.0 to 0.7 pounds – Pass 0.6 lbs.
 - Greater than 0.7 pounds - Fail

REMARKS:

Signature: ________________________ Date: 1/21/08
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2008 MERCEDES C300 NHTSA No.: C80504
Test Program: FMVSS 208 Compliance Test Date: 1/21/08
Test Technician: Alyssa Paul

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Rear Passenger

1. Does the vehicle incorporate a webbing tension-relieving device?
 - Yes, this form is complete
 - No, continue with this check sheet

2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A, no lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A, no additional support adjustment

4. Is the fore-aft position of the seat adjustable?
 - No- go to 5
 - Yes – Put the seat in the mid fore-aft and full down height position determined in Data Sheet 14.2

5. Is the seat back angle adjustable?
 - No- go to 6
 - Yes-Use the seat back angle determined in Data Sheet 14.2

6. Position the test dummies according to dummy position placement instructions in Appendix F. Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.

7. Fasten the seat belt latch.

8. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

9. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy’s chest and release until it is within one inch from the dummy’s chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy’s chest exerted by the belt webbing.

 Contact Force (lb):
 - 0.0 to 0.7 pounds – Pass 0.6 lbs.
 - Greater than 0.7 pounds - Fail

REMARKS:

Signature: ____________________
Date: 1/21/08
DATA SHEET 11
LATCH PLATE ACCESS (S7.4.4)

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul
NHTSA No.: C80504
Test Date: 1/18/08

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION:

Not Applicable For Any Position - Passenger Car

1. Put the seat in the forwardmost fore-aft and full down height position determined in Data Sheet 14.2. (S10.7)
2. Put the seat back angle in the position determined in Data Sheet 14.2.
3. Position the test dummy using the procedures in Appendix F. (Some modifications to the positioning procedure may need to be made because the seat is in its forward most position. Note on the Appendix F positioning check sheet any deviations necessary to position the Part 572, Subpart E dummy.) Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.
4. Position the adjustable seat belt anchorage in the manufacturer's nominal design position for a 50th percentile adult male occupant.
5. Attach the inboard reach string to the base of the head following the instructions on Figure 3.
6. Attach the outboard reach string to the torso sheath following the instructions on Figure 3.
7. Place the latch plate in the stowed position.
8. Extend inboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?
 Yes – Pass
 No
9. Extend outboard reach string in front of the dummy and then backward and outboard to the latch plate to generate arcs of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?
 Yes – Pass
 No
10. Is the latch plate within the inboard (item 10) or outboard (item 11) reach envelope?
 Yes – Pass
 No – Fail
11. Using the clearance test block, specified in Figure 4, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?
 Yes – Pass
 No – Fail
REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/18/08
DATA SHEET 12
SEAT BELT RETRACTION (S7.4.5)

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Not Applicable For Any Position - Passenger Car

1. Is the vehicle a passenger car or walk-in van-type vehicle?
 X Yes, this form is complete
 □ No

2. Put the seat in the mid fore-aft and full down height position determined in Data Sheet 14.2. (S8.1.2)

3. Put the seat back angle in the position determined in Data Sheet 14.2. (S8.1.3)

4. Position the Part 572 Subpart E test dummy according to dummy position placement instructions in Appendix F. Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.

5. Fasten the seat belt around the dummy.

6. Remove all slack from the lap belt portion. (S10.9)
 □ N/A, the seat does not have a fore-aft adjustment

7. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)

8. Apply a 2 to 4 pound tension load to the lap belt. (S10.9)

 Pound load applied:

9. Is the belt system equipped with a tension relieving device?
 □ Yes, continue
 □ No, go to 12

10. Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner’s manual. (S10.9).

11. Check the statement that applies to this test vehicle:

 11.1 The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released.
 □ Yes – Pass go to 12
 □ No – go to 11.2

 11.2 The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released.
 □ Yes – Pass go to 12
 □ No – go to 11.3

 11.3 Neither 11.1 nor 11.2 apply.
 □ Fail

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul
NHTSA No.: C80504
Test Date: 1/18/08
12. With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?
 - Yes – Pass
 - No – Fail

13. If this test vehicle has an open body (without doors) and has a belt system with a tension-relieving device, does the belt system fully retract when the tension-relieving device is deactivated?
 - N/A – Not an open body vehicle
 - Yes – Pass
 - No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: __________________________

Date: 1/18/08
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Rear Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1 (b))
 - Yes, this form is complete
 - No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - Yes, go to 5
 - No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - Yes – Pass
 - No – Fail
 Identify the part(s) on top or above the seat.
 - Seat belt latch plate
 - Buckle
 - Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - Yes – Pass
 - No – Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul
NHTSA No.: C80504
Test Date: 1/18/08
8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 1/18/08
Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Center Rear Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
 - [] Yes, this form is complete
 - [X] No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - [] Yes, this form is complete
 - [X] No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - [] Yes, this form is complete
 - [X] No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - [X] Yes, go to 5
 - [] No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - [X] Yes – Pass
 - [] No – Fail

 Identify the part(s) on top or above the seat.
 - [X] Seat belt latch plate
 - [X] Buckle
 - [X] Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - [X] Yes – Pass
 - [] No – Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - [X] Yes – Pass
 - [] No – Fail
8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:

I certify that I have read and performed each instruction.

Signature: ____________________________

Date: 1/18/08
Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Rear Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1 (b))
 - X Yes, this form is complete
 - No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - X Yes, this form is complete
 - No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - Yes, this form is complete
 - X No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - X Yes, go to 5
 - No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - X Yes – Pass
 - No – Fail
 - Identify the part(s) on top or above the seat.
 - X Seat belt latch plate
 - X Buckle
 - X Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - X Yes – Pass
 - No – Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - X Yes – Pass
 - No – Fail
8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 X Yes – Pass
 X No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 X Yes – Pass
 X No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 X Yes – Pass
 X No – Fail
 X N/A – Rear seat

REMARKS:

I certify that I have read and performed each instruction.

Signature: __________________________

Date: 1/18/08
DATA SHEET 14
MARKING OF REFERENCE POINTS FOR VARIOUS TEST POSITIONS AND POINTS

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jordan Haynes

Test Vehicle:
2008 MERCEDES C300
Test Program:
FMVSS 208 Compliance
Test Technician:
Jordan Haynes
NHTSA No.: C80504
Test Date: 9/9/08

DATA SHEET 14.1
MARKING OF REFERENCE POINTS FOR 5th FEMALE

X Driver Seat __Passenger Seat

1. Seat Position
X 1.1 Position the seat’s adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment positions. (S16.2.10.1, S20.1.9.1, S20.4.1, S22.1.7.1)
__ N/A – No lumbar adjustment
X 1.2 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2, S20.1.9.2, S20.4.1, S22.1.7.1, S22.4.2.1, S22.4.3.1, S24.4.2.1, S26.2.3, S26.3.1)
X N/A – No additional support adjustment
X 1.3 Position an adjustable leg support system in its rearmost position. (8/27/04 interpretation to Toyota)
X N/A – No adjustable leg support system
X 1.4 Mark a point (seat cushion reference point) on the side of the seat cushion that is between 150 mm and 250 mm from the front edge of the seat cushion. (S16.3.1.12)
X 1.5 Draw a line (seat cushion reference line) through the seat cushion reference point. (S16.3.1.13)
X 1.6 Use only the controls that primarily move the seat in the fore-aft direction to move the seat cushion reference point to the rearmost position. (S16.2.10.3.1, S22.1.7.3)
X 1.7 If the seat cushion adjusts fore-aft, independent of the seat back, use only the controls that primarily move the seat cushion in the fore-aft direction to move the seat cushion reference point to the rearmost position. (S16.2.10.3.1, S20..1.9.3)
__ N/A – No independent fore-aft seat cushion adjustment
X 1.8 Use any part of any control, other than the parts just used for fore-aft positioning, to determine the range of angles of the seat cushion reference line and to set the seat cushion reference line at the mid-angle. (S16.2.10.3.1)
Maximum angle 14.2 Nose Up
Minimum angle 9.2 Nose Up
Mid-angle 11.7 Nose Up
X 1.9 If the seat and/or seat cushion height is adjustable, use any part of any control other than the parts which primarily move the seat or seat cushion fore-aft, to put the seat cushion reference point in its lowest position with the seat cushion reference line angle at the mid-angle found in 1.8. (S16.2.10.3.1)
__ N/A – No seat height adjustment
X 1.10 Use only the controls that primarily move the seat in the fore-aft direction to verify the seat is in the rearmost position.
1.11 Use only the controls that primarily move the seat in the fore-aft direction to mark for future reference the fore-aft seat positions. Mark each position so that there is a visual indication when the seat is at a particular position. For manual seats, move the seat forward one detent at a time and mark each detent. For power seats, mark only the rearmost, middle, and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost.

1.12 Use only the controls that primarily move the seat in the fore-aft direction to place the seat in the rearmost position.

1.13 Use any part of any control, other than the parts which primarily move the seat or seat cushion fore-aft, to find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.8. (S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S22.4.3.1, S24.1.2, S24.3.1, S24.4.3.1, S26.2.3, S26.3.1)

__N/A – No seat height adjustment. Go to 1.18

1.14 Use only the controls that primarily move the seat and/or seat cushion in the fore-aft direction to place the seat in the mid-fore-aft position.

1.15 Use any part of any control, other than the parts which primarily move the seat or seat cushion fore-aft, to find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.8. (S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1)

1.16 Use only the control that change the seat in the fore-aft direction to place the seat in the foremost position. (S16.2.10.3.2)

1.17 Use any part of any control, other than the parts which primarily move the seat or seat cushion fore-aft, to find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.8. (S16.2.10.3.3, S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1)

1.18. Visually mark for future reference the seat back angle at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer for the rearmost, mid, and foremost seat positions. (S20.1.9.5, S22.1.7.5, S22.4.2.1, S22.4.3.1, S24.1.2, S24.4.2.1, S26.2.3, S26.3.1)

__ N/A – No seat back angle adjustment

Manufacturer’s design seat back angle 21°

1.19 Is the seat a bucket seat?

X Yes, go to 1.20 and skip 1.21
__No, go to 1.21 and skip 1.20

1.20 Bucket seats:

Locate and mark for future reference the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S16.3.1.10 & S20.1.10)

__1.21 Bench seats (complete ONLY the one that is applicable to the seat being marked):

__1.21.1 Driver Seat

Locate and mark for future reference the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface.
1.21.2 Passenger Seat

Locate and **mark** for future reference the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S20.2.1.3, S22.2.1.3, S24.2.3, S20.4.4, S22.2.2.1(b), S22.2.2.3(b), S22.2.2.4(a), S22.2.2.5(a), S22.2.2.6(a), S22.2.2.7(a), S24.2.3(a))

Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. _______

Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. (The vertical plane through this longitudinal centerline is Plane B for suppression.) _______

2. Head Restraint Position

__N/A Vehicle contains automatic head restraints.____

__N/A, there is no head restraint adjustment____

X 2.1 Adjust the head restraint to its lowest position. (S16.2.10.2, S20.1.9.6 S20.4.1, S22.1.7.6, S22.4.2.1, S22.4.3.1, S24.4.3.1, S26.2.3, S26.3.1)

X 2.2 All adjustments of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible. **Mark** the foremost position. (S16.2.10.2 & S16.3.4.4 & S20.1.9.6, S20.4.1, S22.4.2.1, S22.4.3.1, S24.4.3.1, S26.2.3, S26.3.1)

X 2.3 Measure the vertical distance from the top most point of the head restraint to the bottom most point. Locate and **mark** a horizontal plane through the midpoint of this distance. (S16.3.4.3)

Vertical height of head restraint 190 mm
Mid-point height 95 mm

____________________ ______________
I certify that I have read and performed each instruction. Date

9/9/08
DATA SHEET 14.1
MARKING OF REFERENCE POINTS FOR 5th FEMALE

__Driver Seat X Passenger Seat

1. Seat Position
 X 1.1 Position the seat's adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment positions. (S16.2.10.1, S20.1.9.1, S20.4.1, S22.1.7.1)
 N/A – No lumbar adjustment
 X 1.2 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2, S20.1.9.2, S20.4.1, S22.1.7.1, S22.4.2.1, S22.4.3.1, S24.4.2.1, S26.2.3, S26.3.1)
 N/A – No additional support adjustment
 X 1.3 Position an adjustable leg support system in its rearmost position. (8/27/04 interpretation to Toyota)
 N/A – No adjustable leg support system
 X 1.4 Mark a point (seat cushion reference point) on the side of the seat cushion that is between 150 mm and 250 mm from the front edge of the seat cushion. (S16.3.1.12)
 X 1.5 Draw a line (seat cushion reference line) through the seat cushion reference point. (S16.3.1.13)
 X 1.6 Use only the controls that primarily move the seat in the fore-aft direction to move the seat cushion reference point to the rearmost position. (S16.2.10.3.1, S22.1.7.3)
 X 1.7 If the seat cushion adjusts fore-aft, independent of the seat back, use only the controls that primarily move the seat cushion in the fore-aft direction to move the seat cushion reference point to the rearmost position. (S16.2.10.3.1, S20.1.9.3)
 N/A – No independent fore-aft seat cushion adjustment
 X 1.8 Use any part of any control, other than the parts just used for fore-aft positioning, to determine the range of angles of the seat cushion reference line and to set the seat cushion reference line at the mid-angle. (S16.2.10.3.1)
 Maximum angle: 9.8° Nose Up
 Minimum angle: Zero
 Mid-angle: 4.9° Nose Up
 X 1.9 If the seat and/or seat cushion height is adjustable, use any part of any control other than the parts which primarily move the seat or seat cushion fore-aft, to put the seat cushion reference point in its lowest position with the seat cushion reference line angle at the mid-angle found in 1.8. (S16.2.10.3.1)
 N/A – No seat height adjustment
 X 1.10 Use only the controls that primarily move the seat in the fore-aft direction to verify the seat is in the rearmost position.
 X 1.11 Use only the controls that primarily move the seat in the fore-aft direction to mark for future reference the fore-aft seat positions. Mark each position so that there is a visual indication when the seat is at a particular position. For manual seats, move the seat forward one detent at a time and mark each detent. For power seats, mark only the rearmost, middle, and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost.
 X 1.12 Use only the controls that primarily move the seat in the fore-aft direction to place the seat in the rearmost position.
1.13 Use any part of any control, other than the parts which primarily move the seat or seat cushion fore-aft, to find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.8. (S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S22.4.3.1, S24.1.2, S24.3.1, S24.4.3.1, S26.2.3, S26.3.1)

N/A – No seat height adjustment. Go to 1.18

1.14 Use only the controls that primarily move the seat and/or seat cushion in the fore-aft direction to place the seat in the mid-fore-aft position.

1.15 Use any part of any control, other than the parts which primarily move the seat or seat cushion fore-aft, to find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.8. (S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1)

1.16 Use only the control that change the seat in the fore-aft direction to place the seat in the foremost position. (S16.2.10.3.2)

1.17 Use any part of any control, other than the parts which primarily move the seat or seat cushion fore-aft, to find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.8. (S16.2.10.3.3, S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1)

1.18 Visually mark for future reference the seat back angle at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer for the rearmost, mid, and foremost seat positions. (S20.1.9.5, S22.1.7.5, S22.4.2.1, S22.4.3.1, S24.1.2, S24.4.2.1, S26.2.3, S26.3.1)

N/A – No seat back angle adjustment

Manufacturer's design seat back angle 21°

1.19 Is the seat a bucket seat?

X Yes, go to 1.20 and skip 1.21

No, go to 1.21 and skip 1.20

1.20 Bucket seats:

Locate and mark for future reference the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S16.3.1.10 & S20.1.10)

1.21 Bench seats (complete ONLY the one that is applicable to the seat being marked):

1.21.1 Driver Seat

Locate and mark for future reference the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface.

1.21.2 Passenger Seat

Locate and mark for future reference the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S20.2.1.3, S22.2.1.3, S24.2.3, S20.4.4, S22.2.2.1(b), S22.2.2.3(b), S22.2.2.4(a), S22.2.2.5(a), S22.2.2.6(a), S22.2.2.7(a), S24.2.3(a))

Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel.

Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. (The vertical plane through this longitudinal centerline is Plane B for suppression.)
2. Head Restraint Position
 __N/A Vehicle contains automatic head restraints.
 __N/A, there is no head restraint adjustment

X 2.1 Adjust the head restraint to its lowest position. (S16.2.10.2, S20.1.9.6 S20.4.1,
 S22.1.7.6, S22.4.2.1, S22.4.3.1, S24.4.3.1, S26.2.3, S26.3.1)

X 2.2 All adjustments of the head restraint shall be used to position it full forward. For
 example, if it rotates, rotate it such that the head restraint extends as far forward as
 possible. **Mark** the foremost position. (S16.2.10.2 & S16.3.4.4 & S20.1.9.6, S20.4.1,
 S22.4.2.1, S22.4.3.1, S24.4.3.1, S26.2.3, S26.3.1)

X 2.3 Measure the vertical distance from the top most point of the head restraint to the bottom
 most point. Locate and **mark** a horizontal plane through the midpoint of this distance.
 (S16.3.4.3)
 Vertical height of head restraint 190 mm
 Mid-point height 85 mm

I certify that I have read and performed each instruction. Date 9/9/08
DATA SHEET 14.3
MARKING OF REFERENCE POINTS FOR STEERING WHEEL

X 1. Is the steering wheel adjustable up and down and/or in and out?
 X Yes – go to 2
 ___No – this form is complete

X 2. Find and **mark** for future reference each up and down position. Label three of the positions with the following: H for highest, M for mid-position (if there is no mid-position, label the next lowest adjustment position), and L for lowest.
 ___N/A – steering wheel is not adjustable up and down

X 3. Find and **mark** for future references each in and out position. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the next rearmost adjustment position), and R for rearmost.
 ___N/A – steering wheel is not adjustable in and out.

______________________________ 5/7/08________________
Brian Roach Date

I certify that I have read and performed each instruction.
X Position 1 X Position 2

1. Position the steering wheel so the front wheels are in the straight-ahead position. (S26.2.1)

2. Position any adjustable parts of the steering controls to the mid-position as determined in Data Sheet 14.3 above. If a mid-position adjustment is not achievable, position the controls to the next lowest detent position. (S26.2.1)

3. Locate and mark the point that is defined by the intersection of the steering wheel cover and a line between the volumetric center of the smallest volume that can encompass the folded undeployed air bag and the volumetric center of the static fully inflated air bag. The vertical plane parallel to the vehicle longitudinal centerline through this point is referred to as “Plane E.” (Check determination method below.) (S26.2.2)

Measurements with respect to measurement reference points:
__
__ _____5/7/08_____
I certify that I have read and performed each instruction. Date
DATA SHEET 14.5
MARKING OF REFERENCE POINTS FOR PASSENGER LOW RISK DEPLOYMENT

X Position 1 X Position 2

X Locate and **mark** the point that is defined by the intersection of the instrument panel and a line between the volumetric center of the smallest volume that can encompass the folded undeployed air bag and the volumetric center of the static fully inflated air bag. (S22.4.1.2, S24.4.1.2) The horizontal plane thru this point is referred to as “Plane C” (S22.4.1.4 and S24.4.1.4). The vertical plane parallel to the vehicle longitudinal centerline and through this point is referred to as “Plane D” (S22.4.1.3 and S24.4.1.3). (Check determination method below.)

Measurements with respect to measurement reference points:

__
__

X Point determined using manufacturer’s information supplied by the COTR. (Include manufacturer’s information in the test report.) See Appendix D-61

OR

__ Point determined by test lab personnel and approved by the COTR. (Include supporting documentation in the test report.)

__

I certify that I have read and performed each instruction. Date

[Signature]

5/5/08
DATA SHEET 16
AIR BAG SUPPRESSION TELLTALE (S19.2.2)

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jeff Lewandowski
Test Date: 1/23/08
NHTSA No.: C80504

1. Is the vehicle certified to any suppression performance standards of FMVSS 208?
 Yes – go to 2
 No – this form is complete

2. Does telltale emit yellow light when the air bag is suppressed? (S19.2.2(a))
 Yes - Pass ___ NO – FAIL

3. Are the words “PASSENGER AIR BAG OFF” or “PASS AIR BAG OFF” (S19.2.2(b))
 on the telltale? (S19.2.2(b))
 Yes – Pass, go to 4
 No – go to 3.2

3.2 Within 25 mm of the telltale? (S19.2.2 (b)) ___ mm from the edge of the telltale light
 Yes - Pass ___ NO – FAIL

4. Is the telltale separate from the air bag readiness indicator? (S19.2.2(c))
 Yes - Pass ___ NO – FAIL

5. Is the telltale within the interior of the vehicle? (S19.2.2(d))
 Yes - Pass ___ NO – FAIL

6. Is the telltale forward of and above the design H-point of both the driver’s and the front
 outboard passenger’s seat when the seats are in their forwardmost seating positions? (S19.2.2(d))
 Yes - Pass ___ NO – FAIL

7. Is the telltale away from surfaces that can be used for temporary or permanent storage
 of objects that could obscure the telltale from either the driver’s or front outboard
 passenger’s view? (S19.2.2(d))
 Yes - Pass ___ NO – FAIL

8. Is the telltale located so that it is not obscured from the driver or front outboard
 passenger by a rear-facing child restraint in Appendix A installed in the front outboard
 passenger seat? (S19.2.2(d))
 Yes - Pass ___ NO – FAIL

9. Is the telltale visible or recognizable during the night? (S19.2.2(e))
 Yes - Pass ___ NO – FAIL

10. Is the telltale visible or recognizable during the day? (S19.2.2(e))
 Yes - Pass ___ NO – FAIL

11. If there is a visibility adjustment, do all the adjustment levels make the telltale visible and
 recognizable? (S19.2.2(g))
 N/A-No visibility adjustment
 Yes - Pass ___ NO – FAIL

12. Does the telltale remain illuminated while the air bag is suppressed? (S19.2.2(h)) (Leave
 the air bag suppressed for 5 minutes.)
 Yes - Pass ___ NO – FAIL

13. Is the telltale off while the air bag is activated? (S19.2.2(h)) (Leave the air bag activated
 for 5 minutes.)
 Yes - Pass ___ NO – FAIL

I certify that I have read and performed each instruction. Date

Jeff Lewandowski
1/23/08
DATA SHEET 17 SUMMARY
Suppression Test Using 12 Month Old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C80504</th>
<th>TEST DATE:</th>
<th>1/23/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Britax</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Handle With Care 191</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>5-26-2000</td>
</tr>
</tbody>
</table>

Base: __On __Off _X_ N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 21°
Tested seat back angle: 21°
Manufacturer's specified anchorage position: Highest
Tested anchorage position: Highest

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward 25 *</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 35 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 40 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN507)

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft position in mm with respect to the foremost position. (1 = Full Forward; 220 = Full Rearward; 220 total mm of Seat Slide)
DATA SHEET 17 SUMMARY
Suppression Test Using 12 Month Old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C80504</th>
<th>TEST DATE:</th>
<th>1/23/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Evenflo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>First Choice 204</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>6-20-2000</td>
</tr>
</tbody>
</table>

Base: __On __Off _X_ N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 21°
Tested seat back angle: 21°
Manufacturer's specified anchorage position: Highest
Tested anchorage position: Highest

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward 80 *</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Won’t Fit</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>75 *</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN507)

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft position in mm with respect to the foremost position. (1 = Full Forward; 220 = Full Rearward; 220 total mm of Seat Slide)
DATA SHEET 17 SUMMARY
Suppression Test Using 12 Month Old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C80504</th>
<th>TEST DATE:</th>
<th>1/23/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

CHILD RESTRAINT NAME:	Graco
CHILD RESTRAINT MODEL:	Infant 8457
DATE OF MANUFACTURE:	8-31-2000

Base: X On __ Off __ N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 21°
Tested seat back angle: 21°
Manufacturer's specified anchorage position: Highest
Tested anchorage position: Highest

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted Rear Facing</td>
<td>Forward 10 *</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted Rear Facing</td>
<td>Middle</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted Rear Facing</td>
<td>Rearward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted Rear Facing</td>
<td>Forward 15 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted Rear Facing</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted Rear Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted Forward</td>
<td>Forward 35 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted Forward</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft position in mm with respect to the foremost position. (1 = Full Forward; 220 = Full Rearward; 220 total mm of Seat Slide)
DATA SHEET 17 SUMMARY
Suppression Test Using 12 Month Old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C80504</th>
<th>TEST DATE:</th>
<th>1/23/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RERAINT NAME:</th>
<th>Graco</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Infant 8457</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>8-31-2000</td>
</tr>
</tbody>
</table>

Base: On X Off N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 21°
Tested seat back angle: 21°
Manufacturer's specified anchorage position: Highest
Tested anchorage position: Highest

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward 60 *</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 85 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Forward position. (SN507)

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft position in mm with respect to the foremost position. (1 = Full Forward; 220 = Full Rearward; 220 total mm of Seat Slide)
DATA SHEET 17 SUMMARY
Suppression Test Using 12 Month Old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C80504</th>
<th>TEST DATE:</th>
<th>1/24/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

CHILD RESTRAINT NAME:	Britax
CHILD RESTRAINT MODEL:	Roundabout 161
DATE OF MANUFACTURE:	7-21-2000

Base: _On _Off _X N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 21°
Tested seat back angle: 21°
Manufacturer's specified anchorage position: Highest
Tested anchorage position: Highest

A blanket was not used in the suppression testing because it did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Rear</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Rear</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN507)
DATA SHEET 17 SUMMARY
Suppression Test Using 12 Month Old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

NHTSA NO.: C80504 TEST DATE: 1/24/08
LABORATORY: MGA TECHNICIANS: JL
DUMMY TYPE: 12 Month Old DUMMY SERIAL NO.: 062

CHILD RESTRAINT NAME: Century
CHILD RESTRAINT MODEL: Encore 4612
DATE OF MANUFACTURE: 8-16-2000

Base: __On __Off X N/A-Restraint does not have a removable base

Manufacturer’s design seat back angle: 21°
Tested seat back angle: 21°
Manufacturer’s specified anchorage position: Highest
Tested anchorage position: Highest

A blanket was not used in the suppression testing because it did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>129</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>128</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Rearward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN507)

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft position in mm with respect to the foremost position. (1 = Full Forward; 220 = Full Rearward; 220 total mm of Seat Slide)
DATA SHEET 17 SUMMARY
Suppression Test Using 12 Month Old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C80504</th>
<th>TEST DATE:</th>
<th>1/25/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Evenflo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Medallion 254</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>6-1-2000</td>
</tr>
</tbody>
</table>

Base: __On __Off _X_ N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 21°
Tested seat back angle: 21°
Manufacturer's specified anchorage position: Highest
Tested anchorage position: Highest

A blanket was not used in the suppression testing because it did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>128</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>129</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 10 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Forward position. (SN507)

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft position in mm with respect to the foremost position. (1 = Full Forward; 220 = Full Rearward; 220 total mm of Seat Slide)
DATA SHEET 18 SUMMARY
Suppression Test Using Newborn Infant Dummy (Part 572, Subpart K)
Section A Car Bed

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C80504</th>
<th>TEST DATE:</th>
<th>1/25/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>Newborn Infant</td>
<td>DUMMY SERIAL NO.:</td>
<td>003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAR BED NAME:</th>
<th>Cosco</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR BED MODEL:</td>
<td>Dream Ride 02-719</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>6-16-2000</td>
</tr>
</tbody>
</table>

Base: On Off X N/A-Restraint does not have a removable base
(A car bed with a removable base shall be treated as two separate models, i.e. this form and test procedure will be completed with the base on and then repeated on a new form with the base off.

Manufacturer's design seat back angle: 21°
Tested seat back angle: 21°
Manufacturer's specified anchorage position: Highest
Tested anchorage position: Highest

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

<table>
<thead>
<tr>
<th>Test Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Belt</td>
</tr>
<tr>
<td>Belted</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN507)
DATA SHEET 25 SUMMARY
Low Risk Deployment Tests Using an Unbelted 3-Year-Old Dummy
(Part 572, Subpart P) (S22) Position 1 – Chest On Instrument Panel (S22.4.2)

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C80504</th>
<th>TEST DATE:</th>
<th>5/6/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>BR</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>3-Year-Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>032</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 21°
Tested seat back angle: 21°
Tested seat position: Full Aft

Thorax cavity angle: 0.0°
Thigh angle: 50.0°
Point 1 height: 0 mm - At Plane C Air Bag Height

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.1</td>
</tr>
</tbody>
</table>

3-Year-Old SN 031 Position 1 (Chest on Instrument Panel) 5/6/08

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>12</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>47.8</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>9.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>1.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>4.0</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>266</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>4</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>7</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>6</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))

A new air bag and instrument panel were used for this deployment.
DATA SHEET 26 SUMMARY
Low Risk Deployment Tests Using an Unbelted 3-Year-Old Dummy
(Part 572, Subpart P) (S22) Position 2 – Head On Instrument Panel (S22.4.3)

Manufacturer’s design seat back angle: 21°
Tested seat back angle: 21°
Tested seat position: Full Forward

Thorax cavity angle: 0.4°
Thigh angle: 3.0°

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.1</td>
</tr>
</tbody>
</table>

3-Year-Old SN 031 Position 2 (Head on Instrument Panel) 5/6/08

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>79</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>34.6</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>9.9</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>3.2</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>7.7</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>444</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>133</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>7</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))

A new air bag and instrument panel were used for this deployment.
DATA SHEET 27 SUMMARY
Low Risk Deployment Tests Using an Unbelted 6-Year-Old Dummy
(Part 572, Subpart P) (S24) Position 1 – Chest On Instrument Panel (S24.4.2)

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C80504</th>
<th>TEST DATE:</th>
<th>5/6/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>BR</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>6-Year-Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>155</td>
</tr>
</tbody>
</table>

Manufacturer’s design seat back angle: 21°
Tested seat back angle: 21°
Tested seat position: Full Aft
Thorax cavity angle: 6.0°
Point 1 height: 32 mm Below Plane C Air Bag Height

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.2</td>
</tr>
</tbody>
</table>

6-Year-Old SN 155 Position 1 (Chest on Instrument Panel) 5/6/08

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>22</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>99.2</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>35.4</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>2.6</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>0.1</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>492</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>92</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>10</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>4</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))

A new air bag and instrument panel were used for this deployment.
DATA SHEET 28 SUMMARY
Low Risk Deployment Tests Using an Unbelted 6-Year-Old Dummy
(Part 572, Subpart N) (S24) Position 2 – Head On Instrument Panel (S24.4.3)

<table>
<thead>
<tr>
<th>NHTSA NO.</th>
<th>C80504</th>
<th>TEST DATE:</th>
<th>5/5/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>BR</td>
</tr>
<tr>
<td>DUMMY TYPE</td>
<td>6-Year-Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>155</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 21°
Tested seat back angle: 21°
Tested seat position: Full Forward

Thorax cavity angle: 28.5°
Thigh angle: 7.0°

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.2</td>
</tr>
</tbody>
</table>

6-Year-Old SN 155 Position 2 (Head on Instrument Panel) 5/5/08

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>145</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>58.7</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>14.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>2.5</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>10.7</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>403</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>417</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>6</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))

The original equipment parts were used for this deployment.
DATA SHEET 29 SUMMARY
Low Risk Deployment Tests Using an Unbelted 5th Percentile Female Dummy
(Part 572, Subpart O) (S26) Position 1 - Chin On Module (S26.2)

<table>
<thead>
<tr>
<th>NHTSA NO.</th>
<th>TEST DATE</th>
<th>LABORATORY</th>
<th>TECHNICIANS</th>
<th>DUMMY TYPE</th>
<th>DUMMY SERIAL NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C80504</td>
<td>5/7/08</td>
<td>MGA</td>
<td>BR</td>
<td>5th Percentile Female</td>
<td>124</td>
</tr>
</tbody>
</table>

Manufacturer’s design seat back angle: 21°
Tested seat back angle: 21°
Tested seat position: Full Aft
Tested steering wheel angle: 22.1°
Thorax cavity angle: 28.2°
Bottom of chin height: 2 mm Above Module

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.3</td>
</tr>
</tbody>
</table>

5th Percentile Female SN 124 Position 1 (Chin On Module) 5/7/08 Trial 1

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>69</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>1.0 (1.024)</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>23.2</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>39.2</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>142.2</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>188.1</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>1288</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>426</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>18</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>15</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>120</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>181</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 325 ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 26 km/h. (S4.11(d))
Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms

The original equipment parts were used for this deployment.
DATA SHEET 29 SUMMARY
Low Risk Deployment Tests Using an Unbelted 5th Percentile Female Dummy (Part 572, Subpart O) (S26) Position 1 - Chin On Module (S26.2)

<table>
<thead>
<tr>
<th>NHTSA NO.</th>
<th>TEST DATE</th>
<th>LABORATORY</th>
<th>TECHNICIANS</th>
<th>DUMMY TYPE</th>
<th>DUMMY SERIAL NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C80504</td>
<td>7/14/08</td>
<td>MGA</td>
<td>WD/AP</td>
<td>5th Percentile Female</td>
<td>124</td>
</tr>
</tbody>
</table>

Manufacturer’s design seat back angle: 21.0°
Tested seat back angle: 21.0°
Tested seat position: Full Aft

Tested steering wheel angle: 22.5°
Thorax cavity angle: 28.5°
Bottom of chin height: 0 mm – At Module

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.3</td>
</tr>
</tbody>
</table>

5th Percentile Female SN 124 Position 1 (Chin On Module) 7/14/08 Trial 2

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>35</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>13.9</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>33.9</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>154.2</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>239.2</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>661</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>543</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>14</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>9</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>124</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>159</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 325 ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 26 km/h. (S4.11(d))
Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms

A new air bag, steering column, and steering wheel were used for this deployment.
DATA SHEET 29 SUMMARY
Low Risk Deployment Tests Using an Unbelted 5th Percentile Female Dummy (Part 572, Subpart O) (S26) Position 1 - Chin On Module (S26.2)

NHTSA NO.: C80504 TEST DATE: 7/14/08
LABORATORY: MGA TECHNICIANS: WD/AP
DUMMY TYPE: 5th Percentile Female DUMMY SERIAL NO.: 124

Manufacturer’s design seat back angle: 21.0°
Tested seat back angle: 21.0°
Tested seat position: Full Aft

Tested steering wheel angle: 22.4°
Thorax cavity angle: 28.5°
Bottom of chin height: 0 mm – At Module

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.3</td>
</tr>
</tbody>
</table>

5th Percentile Female SN 124 Position 1 (Chin On Module) 7/14/08 Trial 3

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>73</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>24.6</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>34.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>139.9</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>271.8</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>1155</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>756</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>13</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>9</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>148</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>172</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 325 ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 26 km/h. (S4.11(d))
Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms

A new air bag, steering column, and steering wheel were used for this deployment.
NHTSA NO.: C80504 TEST DATE: 7/14/08
LABORATORY: MGA TECHNICIANS: WD/AP
DUMMY TYPE: 5th Percentile Female DUMMY SERIAL NO.: 124

Manufacturer’s design seat back angle: 21.0°
Tested seat back angle: 21.0°
Tested seat position: Full Aft
Tested steering wheel angle: 22.7°
Thorax cavity angle: 28.5°
Bottom of chin height: 0 mm - At Module

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.1</td>
</tr>
</tbody>
</table>

5th Percentile Female SN 124 Position 1 (Chin On Module) 7/14/08 Trial 4

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>114</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>24.6</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>34.5</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>132.4</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>261.3</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>1237</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>749</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>14</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>12</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>101</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>161</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 325 ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 26 km/h. (S4.11(d))
Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms

A new air bag, steering column, and steering wheel were used for this deployment.
DATA SHEET 30 SUMMARY
Low Risk Deployment Tests Using an Unbelted 5th Percentile Female Dummy
(Part 572, Subpart O) (S26) Position 2 - Chin On Rim (S26.3)

NHTSA NO.: C80504 TEST DATE: 7/15/08
LABORATORY: MGA TECHNICIANS: WD/AP
DUMMY TYPE: 5th Percentile Female DUMMY SERIAL NO.: 124

Manufacturer’s design seat back angle: 21°
Tested seat back angle: 21°
Tested seat position: Full Aft

Tested steering wheel angle: 21.1° *
Thorax cavity angle: 27.0°
Chin Point height: 0 mm – at Steering Wheel Target
Note: The chin on rim steering wheel target is 10 mm below the highest point on the steering wheel

*The dummy contacted the windshield with the steering wheel at mid position. The steering controls were adjusted to lower the upper steering wheel rim the necessary amount to bring the Chin Point coincident with the upper steering wheel rim. The rear thorax cavity was adjusted along with the steering wheel angle.

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.3</td>
</tr>
</tbody>
</table>

5th Percentile Female SN 124 Position 2 (Chin On Rim) 7/15/08

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>16</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>15.5</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>47.5</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>212.8</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>56.2</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>762</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>156</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>32</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>24</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>75</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>91</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 325 ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 26 km/h. (S4.11(d))
Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms

A new air bag, steering column, and steering wheel were used for this deployment.
DATA SHEET 32
VEHICLE WEIGHT, FUEL TANK, AND ATTITUDE DATA

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide
NHTSA No.: C80504
Test Date: 9/9/08

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No
TEST SPEED: _X_ 32 to 40 kmph | _X_ 0 to 48 kmph | _X_ 0 to 56 kmph

DRIVER DUMMY: _X_ 5th female | _X_ 50th male
PASSENGER DUMMY: _X_ 5th female | _X_ 50th male

1. Fill the transmission with transmission fluid to the satisfactory range.
2. Drain fuel from vehicle
3. Run the engine until fuel remaining in the fuel delivery system is used and the engine stops.
4. Record the useable fuel tank capacity supplied by the COTR
 Useable Fuel Tank Capacity supplied by COTR: 66.2 liters (17.5 gallons)
5. Record the fuel tank capacity supplied in the owner's manual.
 Useable Fuel Tank Capacity in owner's manual: 66.2 liters (17.5 gallons)
6. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, “Standard Specifications for Hydrocarbon Dry-cleaning Solvents,” or gasoline, fill the fuel tank.
 Amount Added: 66.2 liters (17.5 gallons)
7. Fill the coolant system to capacity.
8. Fill the engine with motor oil to the Max. mark on the dip stick.
9. Fill the brake reservoir with brake fluid to its normal level.
10. Fill the windshield washer reservoir to capacity.
11. Inflate the tires to the tire pressure on the tire placard. If no tire placard is available, inflate the tires to the recommended pressure in the owner’s manual.

<table>
<thead>
<tr>
<th>Tire placard pressure:</th>
<th>RF: 30 psi</th>
<th>LF: 30 psi</th>
<th>RR: 35 psi</th>
<th>LR: 35 psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner’s manual pressure:</td>
<td>RF: 30 psi</td>
<td>LF: 30 psi</td>
<td>RR: 35 psi</td>
<td>LR: 35 psi</td>
</tr>
<tr>
<td>Actual inflated pressure:</td>
<td>RF: 30 psi</td>
<td>LF: 30 psi</td>
<td>RR: 35 psi</td>
<td>LR: 35 psi</td>
</tr>
</tbody>
</table>

12. Record the vehicle weight at each wheel to determine the unloaded vehicle weight (UVW), i.e. "as delivered" weight.

<table>
<thead>
<tr>
<th>Right Front (kg):</th>
<th>460.4</th>
<th>Right Rear (kg):</th>
<th>380.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Front (kg):</td>
<td>453.6</td>
<td>Left Rear (kg):</td>
<td>377.4</td>
</tr>
<tr>
<td>Total Front (kg):</td>
<td>914.0</td>
<td>Total Rear (kg):</td>
<td>758.0</td>
</tr>
<tr>
<td>% Total Weight:</td>
<td>54.7%</td>
<td>% Total Weight:</td>
<td>45.3%</td>
</tr>
</tbody>
</table>

| UVW = TOTAL FRONT PLUS TOTAL REAR (KG): | 1672.0 |

13. UVW Test Vehicle Attitude: (All dimensions in millimeters)
13.1 Mark a point on the vehicle above the center of each wheel.
13.2 Place the vehicle on a level surface.
13.3 Measure perpendicular to the level surface to the 4 points marked on the body and record the measurements.

- RF: 655
- LF: 659
- RR: 663
- LR: 661

14. Calculate the Rated Cargo and Luggage Weight (RCLW): 30 kg

14.1 Does the vehicle have the vehicle capacity weight (VCW) on the certification label or tire placard?

- Yes, go to 14.3
- No, go to 14.2

14.2 VCW = Gross Vehicle Weight – UVW

VCW = __________ - __________ = __________

14.3 VCW = 370 kg (815 lbs)

14.4 Does the certification or tire placard contain the Designated Seating Capacity (DSC)?

- Yes, go to 14.6
- No, go to 14.5 and skip 14.6

14.5 DSC = Total number of seat belt assemblies = __________

14.6 DSC = 5

14.7 RCLW = VCW – (68 kg x DSC) = 370 kg - (68 kg x 5) = 30 kg

14.8 Is the vehicle certified as a truck, MPV or bus (see the certification label on the door jamb)?

- Yes, if the calculated RCLW is greater than 136 kg, use 136 kg as the RCLW. (S8.1.1)
- No, use the RCLW calculated in 14.7

15. Fully Loaded Weight (100% fuel fill): 1799.4 kg

15.1 Place the appropriate test dummy in both front outboard seating positions.

- Driver: X 5th female ___ 50th male
- Passenger: X 5th female ___ 50th male

15.2 Load the vehicle with the RCLW from 14.7 or 14.8 whichever is applicable.

15.3 Place the RCLW in the cargo area. Center the load over the longitudinal centerline of the vehicle. (S8.1.1 (d))

15.4 Record the vehicle weight at each wheel to determine the Fully Loaded Weight.

<table>
<thead>
<tr>
<th>Right Front (kg):</th>
<th>482.2</th>
<th>Right Rear (kg):</th>
<th>421.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Front (kg):</td>
<td>476.7</td>
<td>Left Rear (kg):</td>
<td>418.7</td>
</tr>
<tr>
<td>Total Front (kg):</td>
<td>958.9</td>
<td>Total Rear (kg):</td>
<td>840.5</td>
</tr>
<tr>
<td>% Total Weight:</td>
<td>53.3</td>
<td>% Total Weight:</td>
<td>46.7</td>
</tr>
<tr>
<td>% GVW</td>
<td>50.5</td>
<td>% GVW</td>
<td>51.2</td>
</tr>
</tbody>
</table>

(Fully Loaded Weight = Total Front Plus Total Rear (kg): 1799.4)

16. Fully Loaded Test Vehicle Attitude: (All dimensions in millimeters)

16.1 Place the vehicle on a level surface.
16.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 13.1 above) and record the measurements

RF: 645 LF: 649 RR: 650 LR: 648

17. Drain the fuel system

18. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, “Standard Specifications for Hydrocarbon Dry-cleaning Solvents,” fill the fuel tank to 92 - 94 percent of usable capacity.

Fuel tank capacity x .94 = 66.2 liters (17.5 gallons) x .94 = 62.3 liters (16.5 gallons)

Amount added 61.7 liters (16.3 gallons) 93.1%

19. Crank the engine to fill the fuel delivery system with Stoddard solvent

20. Calculate the test weight range.

20.1 Calculated Weight = UVW (see 12 above) + RCLW (see 14 above) + 2x (dummy weight)

1800.0 kg = 1672.0 kg + 30.0 kg + 98.0 kg

20.2 Test Weight Range = Calculated Weight (- 4.5 kg, - 9 kg.)

Max. Test Weight = Calculated Test Weight – 4.5 kg = 1795.0 kg

Min. Test Weight = Calculated Test Weight – 9 kg = 1790.0 kg

21. Remove the RCLW from the cargo area.

22. Drain transmission fluid, engine coolant, motor oil, and windshield washer fluid from the test vehicle so that Stoddard solvent leakage from the fuel system will be evident.

23. Vehicle Components Removed For Weight Reduction:

Rear Seat, Rear Middle Head Rest, Spare tire, Tools, Trunk Floor and Carpet

24. Secure the equipment and ballast in the load carrying area and distribute it, as nearly as possible, to obtain the proportion of axle weight indicated by the gross axle weight ratings and center it over the longitudinal centerline of the vehicle.

25. If necessary, add ballast to achieve the actual test weight.

N/A

Weight of Ballast:

26. Ballast, including test equipment, must be contained so that it will not shift during the impact event or interfere with data collection or interfere with high-speed film recordings or affect the structural integrity of the vehicle or do anything else to affect test results. Care must be taken to assure that any attachment hardware added to the vehicle is not in the vicinity of the fuel tank or lines.

27. Record the vehicle weight at each wheel to determine the actual test weight.

<table>
<thead>
<tr>
<th>Right Front (kg):</th>
<th>488.1</th>
<th>Right Rear (kg):</th>
<th>411.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Front (kg):</td>
<td>480.8</td>
<td>Left Rear (kg):</td>
<td>411.0</td>
</tr>
<tr>
<td>Total Front (kg):</td>
<td>968.9</td>
<td>Total Rear (kg):</td>
<td>822.4</td>
</tr>
<tr>
<td>% Total Weight:</td>
<td>54.1</td>
<td>% Total Weight:</td>
<td>45.9</td>
</tr>
<tr>
<td>% GVW</td>
<td>50.5</td>
<td>% GVW</td>
<td>49.5</td>
</tr>
</tbody>
</table>

(% GVW = Axle GVW divided by Vehicle GVW)

TOTAL FRONT PLUS TOTAL REAR (kg): 1791.3
28. Is the test weight between the Max. Weight and the Min. Weight (See 20.2)?
 - Yes
 - No, explain why not.

29. Test Weight Vehicle Attitude: (all dimensions in millimeters)
 29.1 Place the vehicle on a level surface
 29.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 13 above) and record the measurements

 RF: 648 LF: 652 RR: 651 LR: 651

30. Summary of test attitude
 30.1 AS DELIVERED:

 RF: 655 LF: 659 RR: 663 LR: 661

 AS TESTED:

 RF: 648 LF: 652 RR: 651 LR: 651

 FULLY LOADED:

 RF: 645 LF: 649 RR: 650 LR: 648

30.2 Is the “as tested” test attitude equal to or between the “fully loaded” and “as delivered” attitude?
 - Yes
 - No, explain why not.

REMARKS:

I certify that I have read and performed each instruction.

Signature: ___________________________ Date: _____________
DATA SHEET 33

VEHICLE ACCELEROMETER LOCATIONS AND MEASUREMENT

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

1. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the left front outboard seating position intersects the left rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

2. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the right front outboard seating position intersects the right rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

3. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect at the top of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

4. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect the bottom of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

5. Install an accelerometer on the right front brake caliper to record x-direction accelerations. Record the location on the following chart.

6. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the top of the instrument panel. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

7. Install an accelerometer on the left front brake caliper to record x-direction accelerations. Record the location on the following chart.

8. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the floor of the trunk. Install an accelerometer on the trunk floor at this intersection to record z-direction accelerations. Record the location on the following chart.

REMARKS:

I certify that I have read and performed each instruction.

Signature: Jamie Aide
Date: 9/9/08
Dimensions Corresponding To The Letters “A” Through “K” (Excluding “I”) Are Recorded In The Table On The Following Page. Accelerometers Corresponding To The Numbers 1 Through 8 Are Specified On The Preceding Page.
<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>LENGTH (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRETEST VALUES</td>
<td></td>
</tr>
<tr>
<td>A (LH Rear Seat Xmbr)</td>
<td>178</td>
</tr>
<tr>
<td>B (RH Rear Seat Xmbr)</td>
<td>178</td>
</tr>
<tr>
<td>C (Engine Top)</td>
<td>3841</td>
</tr>
<tr>
<td>D (Engine Bottom)</td>
<td>3990</td>
</tr>
<tr>
<td>E (Caliper) Right Side:</td>
<td>3715</td>
</tr>
<tr>
<td>E (Caliper) Left Side:</td>
<td>3715</td>
</tr>
<tr>
<td>F (Left Caliper)</td>
<td>654</td>
</tr>
<tr>
<td>G (IP)</td>
<td>3048</td>
</tr>
<tr>
<td>H (Seat)</td>
<td>1784</td>
</tr>
<tr>
<td>J (Right Caliper)</td>
<td>654</td>
</tr>
<tr>
<td>K (Trunk)</td>
<td>785</td>
</tr>
<tr>
<td>POST TEST VALUES</td>
<td></td>
</tr>
<tr>
<td>A (LH Rear Seat Xmbr)</td>
<td>178</td>
</tr>
<tr>
<td>B (RH Rear Seat Xmbr)</td>
<td>178</td>
</tr>
<tr>
<td>C (Engine Top)</td>
<td>3778</td>
</tr>
<tr>
<td>D (Engine Bottom)</td>
<td>3896</td>
</tr>
<tr>
<td>E (Caliper) Right Side:</td>
<td>3616</td>
</tr>
<tr>
<td>E (Caliper) Left Side:</td>
<td>3595</td>
</tr>
<tr>
<td>F (Left Caliper)</td>
<td>675</td>
</tr>
<tr>
<td>G (IP)</td>
<td>3060</td>
</tr>
<tr>
<td>H (Seat)</td>
<td>1784</td>
</tr>
<tr>
<td>J (Right Caliper)</td>
<td>675</td>
</tr>
<tr>
<td>K (Trunk)</td>
<td>785</td>
</tr>
</tbody>
</table>
DATA SHEET 34
PHOTOGRAPHIC TARGETS

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide
NHTSA No.: C80504
Test Date: 9/9/08

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
</tbody>
</table>
| TEST SPEED: | X 32 to 40 kmph
| | __ 0 to 48 kmph
| | __ 0 to 56 kmph |
| DRIVER DUMMY: | X 5th female
| | __ 50th male |
| PASSENGER DUMMY: | X 5th female
| | __ 50th male |

1. FMVSS 208 vehicle targeting requirements (See Figures 28A and 28B)
 1.1 Targets A1 and A2 are on flat rectangular panels.
 1.2 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted at the front on the outboard sides of A1 and A2. The center of each circular target is 100 mm from the one next to it.

 Distance between targets (mm): 100 mm

 1.3 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted at the back on the outboard sides of on A1 and A2. The center of each circular target is 100 mm from the one next to it.

 Distance between targets (mm): 100 mm

 1.4 The distance between the first circular target at the front of A1 and A2 and the last circular target at the back of A1 and A2 is at least 915 mm.

 Distance between the first and last circular targets (mm): 915 mm

 1.5 Firmly fix target A1 on the vehicle roof in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy.

 1.6 Firmly fix target A2 on the vehicle roof in the vertical longitudinal plane that is coincident with the midsagittal plane of the passenger dummy.

 1.7 Two circular targets (C1 and C2) at least 90 mm in diameter and with black and yellow quadrants are mounted on the outside of the driver door. The centers of each circular target are at least 610 mm apart.

 Distance between targets (mm): 612 mm

 1.8 Two circular targets (C1 and C2) at least 90 mm in diameter and with black and yellow quadrants are mounted on the outside of the passenger door. The centers of each circular target are at least 610 mm apart.

 Distance between targets (mm): 612 mm

 1.9 Place tape with squares having alternating colors on the top portion of the steering wheel.

 1.10 Chalk the bottom portion of the steering wheel

 1.11 Is this an offset test?

 | Yes, continue with this section |
 | No, go to 2. |

 1.12 Measure the width of the vehicle.

 Vehicle width (mm):
1.13 Find the centerline of the vehicle. (½ of the vehicle width)

1.14 Find the line parallel to the centerline of the vehicle and 0.1 x vehicle width from the centerline of the vehicle.

1.15 Apply 25 mm wide tape with alternating black and yellow squares parallel to and on each side of the line found in 1.14. The edge of each tape shall be 50 mm from the line found in 1.14. The tape shall extend from the bottom of the bumper to the front edge of the windshield. (Figure 28D

2. Barrier Targeting

2.1 Fix two stationary targets D1 and D2 to the barrier as shown in the Figure 28A. One target is in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy. The other is in the vertical longitudinal plane that is coincident with the midsagittal plane of the passenger dummy

2.2 Targets D1 and D2 are on a rectangular panel.

2.3 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted on the sides of the rectangular panel away from the longitudinal centerline of the vehicle. The center of each circular target is 100 mm from the one next to it.

Distance between circular targets on D1 (mm): 100 mm
Distance between circular targets on D2 (mm): 100 mm

3. FMVSS 208 Dummy Targeting Requirements

3.1 Place a circular target with black and yellow quadrants on both sides of the driver dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

3.2 Place a circular target with black and yellow quadrants on both sides of the passenger dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

3.3 Place a circular target with black and yellow quadrants on the outboard shoulder of the driver dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

3.4 Place a circular target with black and yellow quadrants on the outboard shoulder of the passenger dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

4. FMVSS 204 Targeting Requirements

4.1 Is an FMVSS 204 indicant test ordered on the “COTR Vehicle Work Order?”

Yes, continue with this form.

No, this form is complete.

4.2 Resection panel (Figure 28C)

4.2.1 The panel deviates no more than 6 mm from perfect flatness when suspended vertically

4.2.2 The 8 targets on the panel are circular targets at least 90 mm in diameter and with black and yellow quadrants.

4.2.3 The center of each of the 4 outer targets are placed within 1 mm of the corners of a square measuring 914 mm on each side.

4.2.4 Locate another square with 228 mm sides and with the center of this square coincident with the center of the 914 mm square.

4.2.5 The center of the 4 inner targets are placed at the midpoints of each of the 228 mm sides.
4.3 Place a circular target at least 90 mm in diameter and with black and yellow quadrants on a material (cardboard, metal, etc.) that can be taped to the top of the steering column.

4.4 Tape the target from 4.3 to the top of the steering column in a manner that does not interfere with the movement of the steering column in a crash.

I certify that I have read and performed each instruction.

Signature: __________________ Date: 9/9/08
RESECTION PANEL TARGETING ALIGNMENT

RESECTION CONTROL POINTS PANEL

CAR TOP TARGETS A1 & A2

STEERING WHEEL

TEST RUN STEERING COLUMN CAMERA VIEW OF TYPICAL TIME ZERO VEHICLE POSITION

LEFT SIDE VIEW

REAR VIEW
PRE-RUN STEERING COLUMN HIGH SPEED CAMERA VIEW

LEFT SIDE VIEW

914 mm
Camera Locations

<table>
<thead>
<tr>
<th>Camera No.</th>
<th>View</th>
<th>Camera Positions (mm) *</th>
<th>Lens (mm)</th>
<th>Speed (fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Real Time Left Side View</td>
<td>13 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Left Side View (Barrier face to front seat backs)</td>
<td>1130 4910 1170</td>
<td>24 1000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Left Side View (Driver)</td>
<td>1420 5470 1480</td>
<td>35 1000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Left Side View (B-post aimed toward center of steering wheel)</td>
<td>5490 4910 2110</td>
<td>50 1000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Left Side View (Steering Column)</td>
<td>800 5220 1270</td>
<td>25 1000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Left Side View (Steering Column)</td>
<td>800 5220 870</td>
<td>25 1000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Right Side View (Overall)</td>
<td>1950 6245 1280</td>
<td>24 1000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Right Side View (Passenger)</td>
<td>1460 5160 1440</td>
<td>35 1000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Right Side View (Angle)</td>
<td>5930 4800 2060</td>
<td>50 1000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Right Side View (Front door)</td>
<td>1040 4865 1220</td>
<td>24 1000</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Front View Windshield</td>
<td>-285 0 2860</td>
<td>12.5 1000</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Front View Driver</td>
<td>-135 -470 2180</td>
<td>24 1000</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Front View Passenger</td>
<td>-110 420 2180</td>
<td>24 1000</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Overhead Barrier Impact View</td>
<td>1620 0 5050</td>
<td>14 1000</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pit Camera Engine View</td>
<td>1100 0 -3150</td>
<td>24 1000</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Pit Camera Fuel Tank View</td>
<td>3400 0 -3150</td>
<td>24 1000</td>
<td></td>
</tr>
</tbody>
</table>

*Coordinates:

+X - Forward of impact plane
+Y - Right of monorail centerline
+Z - Above ground level

Test Vehicle: 2008 Mercedes C300
Test Program: FMVSS 208 Compliance
NHTSA No.: C80504
Test Date: 9/9/08
Time: 10:10 AM
CAMERA POSITIONS FOR FMVSS 208

TOP VIEW

CONCRETE BARRIER

REAL TIME CAMERA

COVERED PHOTO PIT

LEFT SIDE VIEW

CONCRETE PAD

TOW ROAD

MONORAIL

CONCRETE BARRIER
DATA SHEET 36

APPENDIX G

DUMMY POSITIONING PROCEDURES
FOR 5th% DRIVER TEST DUMMY CONFORMING TO SUBPART O OF PART 572

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jordan Haynes

NHTSA No.: C80504
Test Date: 9/9/08

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

1. Using the markings made from data sheet 14.3 (If not done previously or steering repairs have been made, complete data sheet 14.3 at this time) to position the steering controls in the mid-position or if applicable next lowest detent position. (S16.2.9)

2. Place the SCRP in the full rearward, mid-height position, and mid-seat cushion angle, determined during the completion of Data Sheet 14.1. (S16.3.2.1.1)

3. If the vehicle has an adjustable accelerator pedal, place it in the full forward position. (S16.3.2.2.1)
 N/A accelerator pedal not adjustable

4. Fully recline the seat back. (S16.3.2.1.2)
 N/A seat back not adjustable.

5. Place the dummy in the seat with the legs at an angle of 120 degrees to the thighs. The calves should not be touching the seat cushion. (S16.3.2.1.2)

6. Position the dummy in the seat such that the midsagittal plane is coincident with the longitudinal seat cushion markings as determined in Data Sheet 14.1. (S16.3.2.1.3 and S16.3.2.1.4)

7. Hold down the dummy’s thighs and push rearward on the upper torso to maximize the pelvic angle. (S16.3.2.1.5)

8. Set the angle between the legs and the thighs to 120 degrees. (S16.3.2.1.6)

9. Set the transverse distance between the centers of the front of the knees at 160 to 170 mm. (6.3 to 6.7 inches) Center the knee separation with respect to the longitudinal seat cushion marking as determined Data Sheet 14.1. (S16.3.2.1.6)
 Record Knee Separation __165__

10. Push rearward on the dummy’s knees until the pelvis contacts the seat back, or the backs of the calves contact the seat cushion, whichever occurs first. (S16.3.2.1.6)
 Pelvis contacted seat back.
 Calves contacted seat cushion.
11. Gently rock the upper torso ± 5 degrees (approximately 51 mm (2 inches)) side-to-side three time. (S16.3.2.1.7)

12. If needed, extend the legs until the feet do not contact the floor pan. The thighs should be resting on the seat cushion. (S16.3.2.1.8)

13. Position the right foot until the foot is in line with a longitudinal vertical plane passing through the center of the accelerator pedal. Maintain the leg and thigh in a vertical plane. (S16.3.2.1.8)

14. Rotate the left leg and thigh laterally to equalize the distance between each knee and the longitudinal seat cushion marking as determined in Data Sheet 14.1. (S16.3.2.1.8)

15. Attempt to return the seat to the foremost fore-aft position, mid-height, and seat cushion mid-angle as determined in Data Sheet 14.2. The foot may contact and depress the accelerator and/or change the angle of the foot with respect to the leg. (S16.3.2.1.8) Foremost position achieved. Proceed to step 20.
 - Foremost not achieved because of foot interference. Proceed to step 17.
 - Foremost not achieved because of steering wheel contact.

16. If either of the dummy’s legs contact the steering wheel, move the steering wheel up the minimum amount required to avoid contact. If the steering wheel is not adjustable separate the knees the minimum required to avoid contact. (S16.3.2.1.8)
 - N/A- there was no leg contact
 - Steering wheel repositioned
 - Knees separated

17. If the left foot interferes with the clutch or brake pedals, rotate the left foot about the leg to provide clearance. If this is not sufficient, rotate the thigh outboard at the hip the minimum amount required for clearance. (S16.3.2.1.8)
 - N/A, No foot interference with pedals.
 - Foot adjusted to provide clearance.
 - Foot and Thigh adjusted to provide clearance.

18. Continue to move the seat. Use seat controls to line up the seat markings determined during the completion of Data Sheet 14.1 to set the foremost fore-aft position, mid-height position and the seat cushion mid-angle. If the dummy contacts the interior move the seat rearward until a maximum clearance of 5 mm (0.2 inches) is achieved or the seat is in the closest detent position that does not cause dummy contact. (S16.3.2.1.8)
 - Foremost, mid-height position and the seat cushion mid-angle reached
 - Dummy contact. Clearance set at maximum of 5mm
 - Measured Clearance______________
 - Dummy Contact. Seat set at nearest detent position.
 - Seat position ____ detent positions rearward of foremost (foremost is position zero)
If the steering wheel was repositioned in step 16, return the steering wheel to the original position. If the steering wheel contacts the dummy before reaching the original position, position the wheel until a maximum clearance of 5mm (.2 inches) is achieved, or the steering wheel is in the closest detent position that does not cause dummy contact. (S16.3.2.1.8)

N/A Steering wheel was not repositioned.
Original position achieved.
Dummy contact. Clearance set at maximum of 5mm
Measured Clearance
Dummy Contact. Steering wheel set at nearest detent position.
Steering wheel position detent positions upward of original position.
(Original position is position zero)

If the seat back is adjustable, rotate the seat back forward while holding the thighs in place. Continue rotating the seat back forward until the transverse instrument platform of the dummy head is level ± 0.5 degrees. If the head cannot be leveled using the seat back adjustment, or the seat back is not adjustable, use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, minimize the angle. (S16.3.2.1.9)

Head Level Achieved. (Check all that apply)
- Head leveled using the adjustable seat back
- Head leveled using the neck bracket.

Head Angle 0.0 degrees

Head Level NOT Achieved. (Check all that apply)
- Head adjusted using the adjustable seat back
- Head adjusted using the neck bracket.

Head Angle degrees

Verify the pelvis is not interfering with the seat bight. (S16.3.2.1.9)

No interference
Pelvis moved forward the minimum amount so that it is not caught in the seat bight.

Verify the dummy abdomen is properly installed. (S16.3.2.1.9)
Abdomen still seated properly into dummy
Abdomen was adjusted because it was not seated properly into dummy

Head Angle
N/A, neither the pelvis nor the abdomen were adjusted.

Head still level (Go to 24)

Head level adjusted
Head Level Achieved. (Check all that apply)
- Head leveled using the adjustable seat back
- Head leveled using the neck bracket.

Head Angle degrees

Head Level NOT Achieved. (Check all that apply)
- Head level adjusted using the adjustable seat back
- Head level adjusted using the neck bracket.

Head Angle degrees

If the dummy torso contacts the steering wheel while performing step 20, reposition the steering wheel in the following order to eliminate contact. (S16.3.2.1.9)
N/A, No dummy torso contact with the steering wheel.
24.1 Adjust telescoping mechanism.
- N/A No telescoping adjustment.
- Adjustment performed (fill in appropriate change)
 Steering wheel moved ____ detent positions in the forward direction.
 Steering wheel moved ____ mm in the forward direction.

24.2 Adjust tilt mechanism.
- N/A No tilt adjustment.
- No adjustment performed.
- Adjustment performed.
 Steering wheel moved ____ detent positions Upward/Downward.
 (circle one)
 Steering wheel moved ____ degrees Upward/Downward

24.3 Adjust Seat in the aft direction.
- No Adjustment performed.
- Seat moved aft ____ mm from original position.
- Seat moved aft ____ detent positions from the original position.

25. Measure and set the pelvic angle using the pelvic angle gage TE-2504. The pelvic angle should be 20.0 degrees ± 2.5 degrees. If the pelvic angle cannot be set to the specified range because the head will not be level or because the dummy will have need major repositioning, adjust the pelvis as closely as possible to the angle range, but keep the head level. (S16.3.2.1.11)
- Pelvic angle set to 20.0 degrees ± 2.5 degrees.
- Pelvic angle of 20.0 degrees not achieved, the angular difference was minimized.
- Record the pelvic angle. ____21.7____ degrees

26. Check the dummy for contact with the interior after completing adjustments. (S16.3.2.1.12)
- No contact.
- Dummy in contact with interior.
 Seat moved aft ____ mm from the previous position.
 Seat moved aft ____ detent positions from the previous position.

27. Check the dummy to see if additional interior clearance is obtained, allowing the seat to be moved forward. (S16.3.2.1.12)
- N/A, Seat already at foremost position.
- Clearance unchanged. No adjustments required.
- Additional clearance available
 Seat moved Forward ____ mm from the previous position.
 Seat moved Forward ____ detent positions from the previous position.

28. Driver’s foot positioning, right foot. Place the foot perpendicular to the leg and determine if the heel contacts the floor pan at any leg position. If the heel contacts the floor pan proceed to step 29 otherwise, proceed to step 30. (S16.3.2.2.1)

29. Perform the following steps until either all steps are completed, or the foot contacts the accelerator pedal. Step 29.6 shall be completed in all cases. (S16.3.2.2.1(a))

29.1 With the rear of the heel contacting the floor pan, move the foot forward until pedal contact occurs or the foot is at the full forward position.
If the vehicle has an adjustable accelerator pedal, move the pedals rearward until pedal contact occurs or the pedals reach the full rearward position.

Extend the leg, allowing the heel to lose contact with the floor until the foot contacts the pedal. Do not raise the toe of the foot higher than the top of the accelerator pedal. If the foot does not contact the pedal, proceed to the next step. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.3)

Angle the foot to achieve contact between the foot and the pedal. If the foot does not contact the pedal, return the foot to the perpendicular orientation. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.3)

Align the centerline of the foot with the vertical-longitudinal plane passing through the center of the accelerator pedal. Place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.3)

Record foot position

Pedal Contact achieved. Contact occurred at step __29.3__.

Heel contacts floor pan

Heel set _____ mm from floor pan.

Pedal Contact not achieved. Heel set _____ mm from the floor pan.

FIGURE G1
30. Perform the following steps until either all steps are completed, or the foot contacts the accelerator pedal. Step 30.5 shall be completed in all cases.

30.1 Extend the leg until the foot contacts the pedal. Do not raise the toe of the foot higher than the top of the accelerator pedal. If the foot does not contact the pedal, proceed to the next step. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.1(b) & S16.3.2.2.3)

30.2 If the vehicle has an adjustable accelerator pedal, move the pedals rearward until pedal contact occurs or the pedals reach the full rearward position. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.1(b) & S16.3.2.2.3) N/A No pedal adjustment

30.3 Angle the foot to achieve contact between the foot and the pedal. If the foot does not contact the pedal, return the foot to the perpendicular orientation. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.2 & S16.3.2.2.3)

30.4 Align the centerline of the foot in the same horizontal plane as the centerline of the accelerator pedal. Place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.3)

30.5 Record foot position
 Pedal Contact achieved. Contact occurred at step ________.
 Heel set _____ mm from floor pan.
 Pedal Contact not achieved. Heel set _____ mm from the floor pan.

X 31. Driver's foot positioning, left foot.

X 31.1 Place the foot perpendicular to the leg and determine if the heel contacts the floor pan at any leg position. If the heel contacts the floor pan proceed to step 31.2, otherwise position the leg as perpendicular to the thigh as possible with the foot parallel to the floor pan. (S16.2.2.6)

X 31.2 Place the foot on the toe board with the heel resting on the floor pan as close to the intersection of the floor pan and the toe board as possible. Adjust the angle of the foot if necessary to contact the toe board. If the foot will not contact the toe board, set the foot perpendicular to the leg, and set the heel on the floor pan as far forward as possible. Avoid contact with the brake pedal, clutch pedal, wheel well projection, and footrest. To avoid this contact use the following three manipulations in the order listed, with each subsequent option incorporating the previous, until contact is avoided: rotate the foot about the lower leg (abduction/adduction), plantar flex the foot, rotate the leg outboard about the hip. Movement should be the minimum amount necessary. If it is not possible to avoid all foot contact, give priority to avoiding brake or clutch pedal contact. (S16.2.2.4 & S16.2.2.5 & S16.2.2.7)
 X No contact
 Foot rotated about the leg (abduction/adduction)
 Foot rotated about the leg, and foot plantar flexed
 Foot rotated about the leg, foot plantar flexed, and the leg rotated about the hip.
31.3 Record foot position.
 - Heel does not contact floor pan.
 - Heel on floor pan and foot on toe board.
 X Heel on floor pan and foot not on toe board.

32. Driver arm/hand positioning.

32.1 Place the dummy’s upper arms adjacent to the torso with the arm centerlines as close to a vertical longitudinal plane as possible. (S16.3.2.3.1)

32.2 Place the palms of the dummy in contact with the outer part of the steering wheel rim at its horizontal centerline with the thumbs over the steering wheel rim. (S16.3.2.3.2)

32.3 If it is not possible to position the thumbs inside the steering wheel rim at its horizontal centerline, then position them above and as close to the horizontal centerline of the steering wheel rim as possible. (S16.3.2.3.3)

32.4 Lightly tape the hands to the steering wheel rim so that if the hand of the test dummy is pushed upward by a force of not less than 9 N (2 lb) and not more than 22 N (5 lb), the tape releases the hand from the steering wheel rim. S16.3.2.3.4

33. Adjustable head restraints
 - N/A, there is no head restraint adjustment

33.1 If the head restraint has an automatic adjustment, leave it where the system positions the restraint after the dummy is placed in the seat. (S16.3.4.1) Go to 34.

33.2 Adjust each head restraint vertically so that the mid-horizontal plane determined in Data Sheet 14.1 is aligned with the center of gravity (CG) of the dummy head. (S16.3.4.3)

33.3 If the above position is not attainable, move the vertical center of the head restraint to the closest detent below the center of the head CG. (S16.3.4.3)
 - N/A midpoint position attained in previous step
 X Headrest set at nearest detent below the head CG

33.4 If the head restraint has a fore and aft adjustment, place the restraint in the foremost position or until contact with the head is made, whichever occurs first. (S16.3.4.4)

34. Driver and passenger manual belt adjustment (for tests conducted with a belted dummy). (S16.3.5) UNBELTED TEST

34.1 If an adjustable seat belt D-ring anchorage exists, place it in the manufacturer’s design position for a 5th percentile adult female. (S16.3.5.1) This information will be supplied by the COTR.
 Manufacturer’s specified position ________________________________
 Actual Position ___

34.2 Place the Type 2 manual belt around the test dummy and fasten the latch. (S16.3.5.2)

34.3 Ensure that the dummy’s head remains as level as possible. (S16.3.5.3)
34.4 Remove all slack from the lap belt. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this operation four times. Apply a 9 N (2 lbf) to 18 N (4 lbf) tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended by the manufacturer. If the belt system is not equipped with a tension-relieving device, allow the excess webbing in the shoulder belt to be retracted by the retractive force of the retractor. (S16.3.5.4)

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature] Date: 9/9/08
APPENDIX G

DUMMY POSITIONING PROCEDURES
FOR 5th% PASSENGER TEST DUMMY CONFORMING TO SUBPART O OF PART 572

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman
NHTSA No.: C80504
Test Date: 9/9/08

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

(Check this item ONLY if it applies to this vehicle.)

The passenger seat adjustments are controlled by the adjustments made to the driver’s seat. Therefore, positioning of the passenger dummy is made simultaneously with the driver dummy. Adjustments made to the seat to position the driver will over ride any adjustments that would normally be made to position the passenger. (S16.2.10.3)

X 1. Place the SCRP in the full rearward, mid-height position, and mid-seat cushion angle, determined during the completion of Data Sheet 14.1. (S16.3.3.1.1)

X 2. Fully recline the seat back. (S16.3.3.1.2)
 __ N/A seat back not adjustable.

X 3. Place the dummy in the seat with the legs at an angle of 120 degrees to the thighs. The calves should not be touching the seat cushion. (S16.3.3.1.2)

X 4. Position the dummy in the seat such that the midsagittal plane is coincident with the longitudinal seat cushion marking that was determined in Data Sheet 14.1. (S16.3.3.1.3 and S16.3.3.1.4)

X 5. Hold down the dummy’s thighs and push rearward on the upper torso to maximize the pelvic angle. (S16.3.3.1.5)

X 6. Set the angle between the legs and the thighs to 120 degrees. (S16.3.3.1.6)

X 7. Set the transverse distance between the centers of the front of the knees at 160 to 170 mm. (6.3 to 6.7 inches). Center the knee separation with respect to the longitudinal seat cushion marking that was determined Data Sheet 14.1. (S16.3.3.1.6)
 Record Knee Separation: 170

X 8. Push rearward on the dummy’s knees until the pelvis contacts the seat back, or the backs of the calves contact the seat cushion, whichever occurs first. (S16.3.3.1.6)
 __ Pelvis contacted seat back.
 X Calves contacted seat cushion.

X 9. Gently rock the upper torso ± 5 degrees (approximately 51 mm (2 inches)) side-to-side three times. (S16.3.3.1.7)
10. If needed, extend the legs until the feet do not contact the floor pan. The thighs should be resting on the seat cushion. (S16.3.3.1.8)

11. Use seat controls to line up the seat markings determined during the completion of Data Sheet 14.1 to set the foremost fore-aft position, mid-height position and the seat cushion mid-angle. If the dummy contacts the interior move the seat rearward until a maximum clearance of 5 mm (0.2 inches) is achieved or the seat is in the closest detent position that does not cause dummy contact. (S16.3.3.1.8)

Foremost, mid-height position and the seat cushion mid-angle reached

- Dummy contact. Clearance set at maximum of 5mm
 Measured Clearance ________________
- Dummy Contact. Seat set at nearest detent position.
 Seat position ___ detent positions rearward of foremost (foremost is position zero)

12. If the seat back is adjustable, rotate the seat back forward while holding the thighs in place. Continue rotating the seat back forward until the transverse instrument platform of the dummy head is level ± 0.5 degrees. If head cannot be leveled using the seat back adjustment, or the seat back is not adjustable, use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, adjust the head as closely as possible to the ± 0.5 degree range. (S16.3.3.1.9 and S16.3.3.1.10)

(Check All That Apply)
- Seat back not adjustable
- Seat back not independent of driver side seat back

Head Level Achieved. (Check all that apply)
- Head leveled using the adjustable seat back
 - Head leveled using the neck bracket.
 Head Angle ________________ degrees
- Head Level NOT Achieved. (Check all that apply)
 - Head adjusted using the adjustable seat back
 Head Angle ________________ degrees

13. Verify the pelvis is not interfering with the seat bight. (S16.3.3.1.9)

- No interference
 Pelvis moved forward the minimum amount so that it is not caught in the seat bight.

14. Verify the dummy abdomen is properly installed. (S16.3.3.1.9)

- Abdomen still seated properly into dummy
- Abdomen was adjusted because it was not seated properly into dummy

15. Head Angle

- N/A, neither the pelvis nor the abdomen were adjusted.

15.1 Head still level (Go to 16)
15.2 Head level adjusted
 __ Head Level Achieved. (Check all that apply)
 __ Head leveled using the adjustable seat back
 __ Head leveled using the neck bracket.
 Head Angle _______ degrees
 __ Head Level NOT Achieved. (Check all that apply)
 __ Head adjusted using the adjustable seat back
 __ Head adjusted using the neck bracket.
 Head Angle _______ degrees

X 16. Measure and set the pelvic angle using the pelvic angle gage TE-2504. The pelvic angle should be 20.0 degrees ± 2.5 degrees. If the pelvic angle cannot be set to the specified range because the head will not be level or because the dummy will have need major repositioning, adjust the pelvis as closely as possible to the angle range, but keep the head level.
 X Pelvic angle set to 20.0 degrees ± 2.5 degrees.
 __ Pelvic angle of 20.0 degrees not achieved, the angular difference was minimized.
 X Record the pelvic angle. 20.3 ______ degrees

X 17. Check the dummy for contact with the interior after completing adjustments.
 X No contact.
 __ Dummy in contact with interior.
 __ Seat moved aft ___ mm from the previous position.
 __ Seat moved aft ___ detent positions from the previous position.

X 18. Verify the transverse instrument platform of the dummy head is level +/- 0.5 degrees.
Use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, minimize the angle. (S16.3.3.1.9, S16.3.3.1.10, and S16.3.3.1.11)
 X Head Level Achieved
 __ Head Level NOT Achieved.
 Head Angle _______ degrees

X 19. Check the dummy to see if additional interior clearance is obtained, allowing the seat to be moved forward. (S16.3.3.1.12)
 __ N/A Bench Seat
 X N/A Seat already at full forward position.
 __ Clearance unchanged. No adjustments required.
 __ Additional clearance available
 __ Seat moved Forward ___ mm from the previous position.
 __ Seat moved Forward ___ detent positions from the previous position.
 __ Seat moved Forward, Full Forward position reached.

X 20. Passenger foot positioning. (Indicate final position achieved) (S16.3.3.2)
 __ 20.1 Place feet flat on the toe board; OR (S16.3.3.2.1)
 X 20.2 If the feet cannot be placed flat on the toe board, set the feet perpendicular to the lower leg, and rest the heel as far forward on the floor pan as possible; OR (S16.3.3.2.2)
 __ 20.3 If the heels do not touch the floor pan, set the legs as perpendicular to the thighs as possible and set the feet parallel to the floor pan. (S16.3.3.2.2)

X 21. Passenger arm/hand positioning. (S16.3.3.3)
21.1 Place the dummy's upper arms adjacent to the torso with the arm centerlines as close to a vertical longitudinal plane as possible. (S16.3.3.3.1)

21.2 Place the palms of the dummy in contact with the outer part of the thighs (S16.3.3.3.2)

21.3 Place the little fingers in contact with the seat cushion. (S16.3.3.3.3)

22. Adjustable head restraints (S16.3.4)
 N/A, there is no head restraint adjustment

 22.1 If the head restraint has an automatic adjustment, leave it where the system positions the restraint after the dummy is placed in the seat. (S16.3.4.1) Go to 23.

22.2Adjust each head restraint vertically so that the horizontal plane determined in Data Sheet 14.1 is aligned with the center of gravity (CG) of the dummy head. (S16.3.4.3)

22.3 If the above position is not attainable, move the vertical center of the head restraint to the closest detent below the center of the head CG. (S16.3.4.3)
 N/A midpoint position attained in previous step
 Headrest set at nearest detent below the head CG

22.4 If the head restraint has a fore and aft adjustment, place the restraint in the foremost position or until contact with the head is made, whichever occurs first. (S16.3.4.4)

23. Manual belt adjustment (for tests conducted with a belted dummy) S16.3.5
 N/A, Unbelted test

 23.1 If an adjustable seat belt D-ring anchorage exists, place it in the manufacturer’s design position for a 5th percentile adult female. (S16.3.5.1) This information will be supplied by the COTR.
 Manufacturer’s specified position ________________________________
 Actual Position ___

 23.2 Place the Type 2 manual belt around the test dummy and fasten the latch. (S16.3.5.2)

 23.3 Ensure that the dummy's head remains as level as possible. (S16.3.5.3)

 23.4 Remove all slack from the lap belt. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this operation four times. Apply a 9 N (2 lbf) to 18 N (4 lbf) tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended by the manufacturer. If the belt system is not equipped with a tension-relieving device, allow the excess webbing in the shoulder belt to be retracted by the retractive force of the retractor. (S16.3.5.4)

REMARKS:

I certify that I have read and performed each instruction.

Signature: ___________________________ Date: 9/9/08
DATA SHEET 37
DUMMY MEASUREMENTS

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jordan Haynes

Test Vehicle:

NHTSA No.: C80504
Test Date: 9/9/08

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Chest to Dash</td>
</tr>
<tr>
<td>CS</td>
<td>Chest to Steering Wheel Hub</td>
</tr>
<tr>
<td>HH</td>
<td>Head to Header</td>
</tr>
<tr>
<td>HW</td>
<td>Head to Windshield</td>
</tr>
<tr>
<td>HZ</td>
<td>Head to Roof</td>
</tr>
<tr>
<td>KDA</td>
<td>Knee to Dash Angle</td>
</tr>
<tr>
<td>KDL</td>
<td>Left Knee to Dash</td>
</tr>
<tr>
<td>KDR</td>
<td>Right Knee to Dash</td>
</tr>
<tr>
<td>NA</td>
<td>Nose to Rim Angle</td>
</tr>
<tr>
<td>NR</td>
<td>Nose to Rim</td>
</tr>
<tr>
<td>PA</td>
<td>Pelvic Angle</td>
</tr>
<tr>
<td>RA</td>
<td>Rim to Abdomen</td>
</tr>
<tr>
<td>SA</td>
<td>Seat Back Angle</td>
</tr>
<tr>
<td>SCA</td>
<td>Steering Column Angle</td>
</tr>
<tr>
<td>SH</td>
<td>Striker to H-Point</td>
</tr>
<tr>
<td>SK</td>
<td>Striker to Knee</td>
</tr>
<tr>
<td>ST</td>
<td>Striker to Head</td>
</tr>
<tr>
<td>SWA</td>
<td>Steering Wheel Angle</td>
</tr>
<tr>
<td>TA</td>
<td>Tibial Angle</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle</td>
</tr>
</tbody>
</table>

Test Program:

FMVSS 208 Compliance

Test Technician:

Jordan Haynes

Test Date:

9/9/08
DATA SHEET 37

DUMMY MEASUREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Measurement Description</th>
<th>Driver SN 516</th>
<th>Passenger SN 511</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length (mm)</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td>SWA</td>
<td>Steering Wheel Angle</td>
<td>67.3</td>
<td></td>
</tr>
<tr>
<td>SCA</td>
<td>Steering Column Angle</td>
<td>22.7</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>Seat Back Angle (On Headrest)</td>
<td>6.6</td>
<td>6.4</td>
</tr>
<tr>
<td>HZ</td>
<td>Head to Roof (Z)</td>
<td>182</td>
<td>176</td>
</tr>
<tr>
<td>HH</td>
<td>Head to Header</td>
<td>280</td>
<td>51.1</td>
</tr>
<tr>
<td>HW</td>
<td>Head to Windshield</td>
<td>574</td>
<td>0.0</td>
</tr>
<tr>
<td>HR</td>
<td>Head to Side Header (Y)</td>
<td>230</td>
<td>216</td>
</tr>
<tr>
<td>NR</td>
<td>Nose to Rim</td>
<td>284</td>
<td>4.4</td>
</tr>
<tr>
<td>CD</td>
<td>Chest to Dash</td>
<td>438</td>
<td>401</td>
</tr>
<tr>
<td>CS</td>
<td>Chest to Steering Hub</td>
<td>205</td>
<td>10.2</td>
</tr>
<tr>
<td>RA</td>
<td>Rim to Abdomen</td>
<td>85</td>
<td>0.0</td>
</tr>
<tr>
<td>KDL</td>
<td>Left Knee to Dash</td>
<td>100</td>
<td>27.9</td>
</tr>
<tr>
<td>KDR</td>
<td>Right Knee to Dash</td>
<td>92</td>
<td>109</td>
</tr>
<tr>
<td>PA</td>
<td>Pelvic Angle</td>
<td>21.7</td>
<td>20.3</td>
</tr>
<tr>
<td>TA</td>
<td>Tibia Angle</td>
<td>47.3</td>
<td>45.4</td>
</tr>
<tr>
<td>KK</td>
<td>Knee to Knee (Y)</td>
<td>255</td>
<td>208</td>
</tr>
<tr>
<td>SK</td>
<td>Striker to Knee</td>
<td>630</td>
<td>77.0</td>
</tr>
<tr>
<td>ST</td>
<td>Striker to Head</td>
<td>403</td>
<td>25.0</td>
</tr>
<tr>
<td>SH</td>
<td>Striker to H-Point</td>
<td>358</td>
<td>37.1</td>
</tr>
<tr>
<td>SHY</td>
<td>Striker to H-Point (Y)</td>
<td>269</td>
<td>268</td>
</tr>
<tr>
<td>HS</td>
<td>Head to Side Window</td>
<td>331</td>
<td>324</td>
</tr>
<tr>
<td>HD</td>
<td>H-Point to Door (Y)</td>
<td>151</td>
<td>153</td>
</tr>
<tr>
<td>AD</td>
<td>Arm to Door (Y)</td>
<td>148</td>
<td>141</td>
</tr>
<tr>
<td>AA</td>
<td>Ankle to Ankle</td>
<td>230</td>
<td>186</td>
</tr>
</tbody>
</table>

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jordan Haynes
NHTSA No.: C80504
Test Date: 9/9/08
SEAT BELT POSITIONING DATA

DUMMY’S CENTERLINE

SHOULDER BELT PORTION

TBI

‘D’ RING

1/8" THICK ALUMINUM PLATE

EMERGENCY LOCKING RETRACTOR

OUTBOARD ANCHORAGE

INBOARD ANCHORAGE

FLOORPAN

LAP BELT PORTION

REEL

BUCKLE ASSEMBLY

MALE BLADE

PBU

PBL

FRONT VIEW OF DUMMY

SEAT BELT POSITIONING MEASUREMENTS

<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Units</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBU - Top surface of reference to belt upper edge</td>
<td>mm</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PBL - Top surface of reference to belt lower edge</td>
<td>mm</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
DATA SHEET 38
CRASH TEST

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jordan Haynes

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No

TEST SPEED: X 32 to 40 kmph, ___ 0 to 48 kmph, ___ 0 to 56 kmph

DRIVER DUMMY: X 5th female, ___ 50th male

PASSENGER DUMMY: X 5th female, ___ 50th male

X 1. Vehicle underbody painted
X 2. The speed measuring devices are in place and functioning.
X 3. The speed measuring devices are 1.0 m from the barrier (spec. 1.5m) and 30 cm from the barrier (spec. is 30 cm)
X 4. Convertible top is in the closed position.

X N/A, not a convertible
X 5. Instrumentation and wires are placed so the motion of the dummies during impact is not affected.

X 6. Tires inflated to pressure on tire placard or if it does not have a tire placard because it is not a passenger car, then inflated to the tire pressure specified in the owner information.

 210 kpa front left tire 210 kpa specified on tire placard or in owner information
 210 kpa front right tire 210 kpa specified on tire placard or in owner information
 240 kpa rear left tire 240 kpa specified on tire placard or in owner information
 240 kpa rear right tire 240 kpa specified on tire placard or in owner information

X 7. Time zero contacts on barrier in place.
X 8. Pre test zero and shunt calibration adjustments performed and recorded
X 9. Dummy temperature meets requirements of section 12.2 of the test procedure.
X 10. Vehicle hood closed and latched
X 11. Transmission placed in neutral
X 12. Parking brake off
X 13. Ignition in the ON position
X 14. Doors closed and latched but not locked
X 15. Posttest zero and shunt calibration checks performed and recorded
X 16. Actual test speed 39.8 kmph
X 17. Vehicle rebound from the barrier 35 cm
X 18. Describe whether the doors open after the test and what method is used to open the doors.

 X Left Front Door: Door remained closed and latched; Door opened without tools
 X Right Front Door: Door remained closed and latched; Door opened without tools
 X Left Rear Door: Door remained closed and latched; Door opened without tools
 X Right Rear Door: Door remained closed and latched; Door opened without tools

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jordan Haynes

NHTSA No.: C80504
Test Date: 9/9/08
19. Describe the contact points of the dummy with the interior of the vehicle.

 ✔ Driver Dummy: Head to Airbag and Headrest; Chest to Air Bag; Knees to Knee Bolster
 ✔ Passenger Dummy: Head to Air Bag, Headrest, and A-Post; Chest to Air Bag; Knees to Glove Box

REMARKS:

I certify that I have read and performed each instruction.

Signature: ___________________________ Date: 9/9/08
Accident Investigation Measurements

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide
NHTSA No.: C80504
Test Date: 9/9/08

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

Vehicle Year/Make/Model/Body Style:	2008 MERCEDES C300 Passenger Car
VIN:	WDDGF81X88F081190
Wheelbase:	2766 mm
Build Date:	10/07
Vehicle Size Category:	3
Test Weight:	1791.3 kg
Front Overhang:	769 mm
Overall Width:	1773 mm
Overall Length Center:	4575 mm

Accelerometer Data

| Location: | As per measurements on Data Sheet 33 |
| Linearity: | >99.9% |

Integration Algorithm:	Trapezoidal
Vehicle Impact Speed:	39.8 kmph
Time of Separation:	102.4 ms
Velocity Change:	44.8 kmph
CRUSH PROFILE

Collision Deformation Classification: 12FDEW6
Midpoint of Damage: Vehicle Longitudinal Centerline
Damage Region Length (mm): 1524
Impact Mode: Frontal Barrier

<table>
<thead>
<tr>
<th>No.</th>
<th>Measurement Description</th>
<th>Units</th>
<th>Pre-Test</th>
<th>Post-Test</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Crush zone 1 at left side</td>
<td>mm</td>
<td>4402</td>
<td>4255</td>
<td>147</td>
</tr>
<tr>
<td>C2</td>
<td>Crush zone 2 at left side</td>
<td>mm</td>
<td>4502</td>
<td>4244</td>
<td>258</td>
</tr>
<tr>
<td>C3</td>
<td>Crush zone 3 at left side</td>
<td>mm</td>
<td>4546</td>
<td>4210</td>
<td>336</td>
</tr>
<tr>
<td>C4</td>
<td>Crush zone 4 at right side</td>
<td>mm</td>
<td>4545</td>
<td>4220</td>
<td>325</td>
</tr>
<tr>
<td>C5</td>
<td>Crush zone 5 at right side</td>
<td>mm</td>
<td>4504</td>
<td>4246</td>
<td>258</td>
</tr>
<tr>
<td>C6</td>
<td>Crush zone 6 at right side</td>
<td>mm</td>
<td>4401</td>
<td>4249</td>
<td>152</td>
</tr>
</tbody>
</table>

REMARKS:

I certify that I have read and performed each instruction.

Signature: __________________ Date: 9/9/08___
DATA SHEET 41
WINDSHIELD MOUNTING (FMVSS 212)

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide
NHTSA No.: C80504
Test Date: 9/9/08

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

1. Pre-Crash

1.1 Describe from visual inspection how the windshield is mounted and describe any trim material.

Retained with glue
Rubber trim and Plastic trim

1.2 Mark the longitudinal centerline of the windshield

1.3 Measure pre-crash A, B, and C for the left side and record in the chart below.

1.4 Measure pre-crash C, D, and E for the right side and record in the chart below.

1.5 Measure from the edge of the retainer or molding to the edge of the windshield.

Dimension G (mm): 22 mm

2. Post Crash

2.1 Can a single thickness of copier type paper (as small a piece as necessary) slide between the windshield and the vehicle body?

No – Pass. Skip to the table of measurements, complete it by repeating the pre-crash measurements in the post crash column, and calculate the retention percentage, which will be 100%.

Yes, go to 2.2

2.2 Visibly mark the beginning and end of the portions of the periphery where the paper slides between the windshield and the vehicle body.

2.3 Measure and record post-crash A, B, C, D, E, and F such that the measurements do not include any of the parts of the windshield where the paper slides between the windshield and the vehicle body.

2.4 Calculate and record the percent retention for the right and left side of the windshield.

2.5 Is total right side percent retention less than 75%?

Yes, Fail

No, Pass

2.6 Is total left side percent retention less than 75%?

Yes, Fail

No, Pass
WINDSHIELD RETENTION MEASUREMENTS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Pre-Crash (mm)</th>
<th>Post-Crash (mm)</th>
<th>Percent Retention (Post-Test ÷ Pre-Crash)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>575</td>
<td>575</td>
<td>100%</td>
</tr>
<tr>
<td>B</td>
<td>778</td>
<td>778</td>
<td>100%</td>
</tr>
<tr>
<td>C</td>
<td>717</td>
<td>717</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>2070</td>
<td>2070</td>
<td>100%</td>
</tr>
</tbody>
</table>

Left Side

Right Side

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Pre-Crash (mm)</th>
<th>Post-Crash (mm)</th>
<th>Percent Retention (Post-Test ÷ Pre-Crash)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>575</td>
<td>575</td>
<td>100%</td>
</tr>
<tr>
<td>E</td>
<td>778</td>
<td>778</td>
<td>100%</td>
</tr>
<tr>
<td>F</td>
<td>717</td>
<td>717</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>2070</td>
<td>2070</td>
<td>100%</td>
</tr>
</tbody>
</table>

Indicate area of mounting failure. NONE

FRONT VIEW OF WINDSHIELD

INDICATE WIDTH OF MOLDING

![Diagram of front view of windshield with labeled measurements](image)

ZERO POINT (0,0)

REMARKS:

I certify that I have read and performed each instruction.

Signature: __________________ Date: 9/9/08
DATA SHEET 42
WINDSHIELD ZONE INTRUSION (FMVSS 219)

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide

NHTSA No.: C80504
Test Date: 9/9/08

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No
TEST SPEED: X 32 to 40 kmph 0 to 48 kmph 0 to 56 kmph
DRIVER DUMMY: X 5th female 50th male
PASSENGER DUMMY: X 5th female 50th male

1. Place a 165 mm diameter rigid sphere, with a mass of 6.8 kg on the instrument panel so that it is simultaneously touching the instrument panel and the windshield. (571.219 S6.1(a))

2. Roll the sphere from one side of the windshield to the other while marking on the windshield where the sphere contacts the windshield. (571.219 S6.1(b))

3. From the outermost contactable points on the windshield draw a horizontal line to the edges of the windshield. (571.219 S6.1(b))

4. Draw a line on the inner surface of the windshield that is 13 mm below the line determined in items 2 and 3

5. After the crash test, record any points where a part of the exterior of the vehicle has marked, penetrated, or broken the windshield.

Provide all dimensions necessary to reproduce the protected area.

FRONT VIEW OF WINDSHIELD
WINDSHIELD DIMENSIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mm</td>
<td>1150</td>
</tr>
<tr>
<td>B</td>
<td>mm</td>
<td>411</td>
</tr>
<tr>
<td>C</td>
<td>mm</td>
<td>1434</td>
</tr>
<tr>
<td>D</td>
<td>mm</td>
<td>778</td>
</tr>
<tr>
<td>E</td>
<td>mm</td>
<td>509</td>
</tr>
<tr>
<td>F</td>
<td>mm</td>
<td>526</td>
</tr>
</tbody>
</table>

AREA OF PROTECTED ZONE FAILURES:

B. Provide coordinates of the area that the protected zone was penetrated more than 0.25 inches by a vehicle component other than one which is normally in contact with the windshield.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

C. Provide coordinates of the area beneath the protected zone template that the inner surface of the windshield was penetrated by a vehicle component.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]
Date: 9/9/08
Stoddard Solvent Spillage Measurements

A. From impact until vehicle motion ceases: 0.0 grams
 (Maximum Allowable = 28 grams)

B. For the 5 minute period after motion ceases: 0.0 grams
 (Maximum Allowable = 142 grams)

C. For the following 25 minutes: 0.0 grams
 (Maximum Allowable = 28 grams/minute)

D. Spillage: NONE

REMARKS: NO SPILLAGE
DATA SHEET NO. 43
FMVSS 301 STATIC ROLLOVER DATA

Test Vehicle: 2008 MERCEDES C300
Test Program: FMVSS 208 Compliance
NHTSA No.: C80504
Test Date: 9/9/08

1. The specified fixture rollover rate for each 90° of rotation is 60 to 180 seconds.
2. The position hold time at each position is 300 seconds (minimum).
3. Details of Stoddard Solvent spillage locations: None

<table>
<thead>
<tr>
<th>Test Phase</th>
<th>Rotation Time (sec.)</th>
<th>Hold Time (sec.)</th>
<th>Spillage (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0° to 90°</td>
<td>123</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td>90° to 180°</td>
<td>116</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td>180° to 270°</td>
<td>110</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td>270° to 360°</td>
<td>121</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Driver Head X Acceleration vs. Time</td>
<td>A-1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Driver Head Y Acceleration vs. Time</td>
<td>A-1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Driver Head Z Acceleration vs. Time</td>
<td>A-1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Driver Head Resultant Acceleration vs. Time</td>
<td>A-1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Driver Head X Velocity vs. Time</td>
<td>A-2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Driver Head Y Velocity vs. Time</td>
<td>A-2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Driver Head Z Velocity vs. Time</td>
<td>A-2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Driver Neck Force X vs. Time</td>
<td>A-3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Driver Neck Force Y vs. Time</td>
<td>A-3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Driver Neck Force Z vs. Time</td>
<td>A-3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Driver Neck Force Resultant vs. Time</td>
<td>A-3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Driver Neck Moment X vs. Time</td>
<td>A-4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Driver Neck Moment Y vs. Time</td>
<td>A-4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Driver Neck Moment Z vs. Time</td>
<td>A-4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Driver Neck Moment Resultant vs. Time</td>
<td>A-4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Driver Chest X Acceleration vs. Time</td>
<td>A-5</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Driver Chest Y Acceleration vs. Time</td>
<td>A-5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Driver Chest Z Acceleration vs. Time</td>
<td>A-5</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Driver Chest Resultant Acceleration vs. Time</td>
<td>A-5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Driver Chest X Velocity vs. Time</td>
<td>A-6</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Driver Chest Y Velocity vs. Time</td>
<td>A-6</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Driver Chest Z Velocity vs. Time</td>
<td>A-6</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Driver Chest Displacement vs. Time</td>
<td>A-6</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Driver Left Femur Force vs. Time</td>
<td>A-7</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Driver Right Femur Force vs. Time</td>
<td>A-7</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Passenger Head X Acceleration vs. Time</td>
<td>A-8</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Passenger Head Y Acceleration vs. Time</td>
<td>A-8</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Passenger Head Z Acceleration vs. Time</td>
<td>A-8</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Passenger Head Resultant Acceleration vs. Time</td>
<td>A-8</td>
<td></td>
</tr>
</tbody>
</table>
25 MPH FRONTAL UNBELTED
2008 MERCEDES C300 (C80504)

Test Date: 09/09/2008
Speed: 24.7 mph (39.8 km/h)

DRIVER HEAD X Velocity (kph) vs TIME (ms)
Max: 39.8 kph
Tmax: 26.1 ms
Min: -10.1 kph
Tmin: 205.8 ms
CFC 180

DRIVER HEAD Y Velocity (kph) vs TIME (ms)
Max: 0.1 kph
Tmax: 29.1 ms
Min: -7.1 kph
Tmin: 146.0 ms
CFC 180

DRIVER HEAD Z Velocity (kph) vs TIME (ms)
Max: 3.5 kph
Tmax: 296.4 ms
Min: -12.0 kph
Tmin: 109.1 ms
CFC 180
25 MPH FRONTAL UNBELTED
2008 MERCEDES C300 (C80504)
Test Date: 09/09/2008
Speed: 24.7 mph (39.8 km/h)

Max: 640.4 N
Tmax: 89.6 ms
Min: -194.6 N
Tmin: 147.9 ms
CFC 1000

Max: 129.0 N
Tmax: 42.8 ms
Min: -35.1 N
Tmin: 119.4 ms
CFC 1000

Max: 1244.1 N
Tmax: 45.5 ms
Min: -150.4 N
Tmin: 94.2 ms
CFC 1000

Max: 1256.2 N
Tmax: 45.5 ms
Min: 0.7 N
Tmin: 0.0 ms
CFC 1000
25 MPH FRONTAL UNBELTED
2008 MERCEDES C300 (C80504)
Test Date: 09/09/2008
Speed: 24.7 mph (39.8 km/h)

Max: 39.8 kph
Tmax: 0.0 ms
Min: -12.4 kph
Tmin: 113.3 ms
CFC 180

Max: 0.5 kph
Tmax: 267.7 ms
Min: -3.1 kph
Tmin: 66.9 ms
CFC 180

Max: 1.8 kph
Tmax: 300.0 ms
Min: -6.4 kph
Tmin: 134.0 ms
CFC 180

Max: 0.3 mm
Tmax: 12.5 ms
Min: -12.9 mm
Tmin: 52.0 ms
CFC 600
25 MPH FRONTAL UNBELTED
2008 MERCEDES C300 (C80504)

Test Date: 09/09/2008
Speed: 24.7 mph (39.8 km/h)

DRIVER LEFT FEMUR (N) vs TIME (ms)

Max: 164.6 N
Tmax: 36.8 ms
Min: -3005.0 N
Tmin: 47.5 ms
CFC 600

DRIVER RIGHT FEMUR (N) vs TIME (ms)

Max: 216.5 N
Tmax: 236.4 ms
Min: -4380.1 N
Tmin: 50.9 ms
CFC 600
25 MPH FRONTAL UNBELTED
2008 MERCEDES C300 (C80504)

Test Date: 09/09/2008
Speed: 24.7 mph (39.8 km/h)

PASSENGER CHEST X (G's) vs TIME (ms)
Max: 2.4 G's
Tmax: 173.3 ms
Min: -39.5 G's
Tmin: 76.2 ms
CFC 180

PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 2.0 G's
Tmax: 53.2 ms
Min: -2.0 G's
Tmin: 107.0 ms
CFC 180

PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 14.3 G's
Tmax: 82.5 ms
Min: -4.8 G's
Tmin: 114.5 ms
CFC 180

PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 41.5 G's
Tmax: 76.8 ms
Min: 0.0 G's
Tmin: 0.0 ms
CFC 180
25 MPH FRONTAL UNBELTED
2008 MERCEDES C300 (C80504)

Test Date: 09/09/2008
Speed: 24.7 mph (39.8 km/h)

PASSenger Chest X Velocity (kph) vs TIME (ms)
Max: 39.8 kph
Tmax: 0.0 ms
Min: -14.3 kph
Tmin: 152.3 ms
CFC 180

PASSenger Chest Y Velocity (kph) vs TIME (ms)
Max: 0.3 kph
Tmax: 57.1 ms
Min: -3.0 kph
Tmin: 300.0 ms
CFC 180

PASSenger Chest Z Velocity (kph) vs TIME (ms)
Max: 12.3 kph
Tmax: 300.0 ms
Min: -3.0 kph
Tmin: 59.7 ms
CFC 180

PASSenger Chest Displacement (mm) vs TIME (ms)
Max: 0.6 mm
Tmax: 159.7 ms
Min: -3.7 mm
Tmin: 75.0 ms
CFC 600

No valid data after 170 msec.
25 MPH FRONTAL UNBELTED
2008 MERCEDES C300 (C80504)

Test Date: 09/09/2008
Speed: 24.7 mph (39.8 km/h)

PASSENGER LEFT FEMUR (N) vs TIME (ms)
Max: 181.2 N
Tmax: 109.0 ms
Min: -3817.4 N
Tmin: 52.4 ms
CFC 600

PASSENGER RIGHT FEMUR (N) vs TIME (ms)
Max: 168.3 N
Tmax: 37.2 ms
Min: -3695.8 N
Tmin: 63.9 ms
CFC 600
25 MPH FRONTAL UNBELTED
2008 MERCEDES C300 (C80504)
Test Date: 09/09/2008
Speed: 24.7 mph (39.8 km/h)

Max: 27.4 Nm
Tmax: 152.8 ms
Min: -8.8 Nm
Tmin: 66.1 ms
CFC 600

Max: 77.9 Nm
Tmax: 74.1 ms
Min: -9.8 Nm
Tmin: 154.4 ms
CFC 600
25 MPH FRONTAL UNBELTED
2008 MERCEDES C300 (C80504)

Test Date: 09/09/2008
Speed: 24.7 mph (39.8 km/h)

TOP OF ENGINE X (G's) vs TIME (ms)

Max: 30.1 G's
Tmax: 50.9 ms
Min: -76.7 G's
Tmin: 36.2 ms
CFC 60

TOP OF ENGINE X Velocity (kph) vs TIME (ms)

Max: 39.8 kph
Tmax: 0.0 ms
Min: -7.0 kph
Tmin: 85.8 ms
CFC 180

BOTTOM OF ENGINE X (G's) vs TIME (ms)

Max: 19.7 G's
Tmax: 63.4 ms
Min: -53.3 G's
Tmin: 42.8 ms
CFC 60

BOTTOM OF ENGINE X Velocity (kph) vs TIME (ms)

Max: 39.8 kph
Tmax: 0.0 ms
Min: -2.5 kph
Tmin: 129.7 ms
CFC 180
25 MPH FRONTAL UNBELTED
2008 MERCEDES C300 (C80504)
Test Date: 09/09/2008
Speed: 24.7 mph (39.8 km/h)

BARRIER FORCE - UPPER LEFT (KN) vs TIME (ms)
Max: 2.6 KN
Tmax: 9.1 ms
Min: -17.9 KN
Tmin: 21.7 ms
CFC 60

BARRIER FORCE - UPPER CENTER (KN) vs TIME (ms)
Max: 0.6 KN
Tmax: 126.6 ms
Min: -57.2 KN
Tmin: 43.8 ms
CFC 60

BARRIER FORCE - UPPER RIGHT (KN) vs TIME (ms)
Max: 2.5 KN
Tmax: 6.5 ms
Min: -16.0 KN
Tmin: 17.7 ms
CFC 60
25 MPH FRONTAL UNBELTED
2008 MERCEDES C300 (C80504)
Test Date: 09/09/2008
Speed: 24.7 mph (39.8 km/h)

BARRIER FORCE - LOWER LEFT (KN) vs TIME (ms)
Max: 1.1 KN
Tmax: 0.0 ms
Min: -197.7 KN
Tmin: 33.7 ms
CFC 60

BARRIER FORCE - LOWER CENTER (KN) vs TIME (ms)
Max: 1.7 KN
Tmax: 0.0 ms
Min: -158.1 KN
Tmin: 43.0 ms
CFC 60

BARRIER FORCE - LOWER RIGHT (KN) vs TIME (ms)
Max: 0.6 KN
Tmax: 300.0 ms
Min: -177.3 KN
Tmin: 31.5 ms
CFC 60
25 MPH FRONTAL UNBELTED
2008 MERCEDES C300 (C80504)

Test Date: 09/09/2008
Speed: 24.7 mph (39.8 km/h)

BARRIER FORCE - SUM LEFT (KN) vs TIME (ms)
Max: 1.2 KN
Tmax: 3.9 ms
Min: -214.5 KN
Tmin: 33.7 ms
CFC 60

BARRIER FORCE - SUM CENTER (KN) vs TIME (ms)
Max: 2.1 KN
Tmax: 0.0 ms
Min: -215.0 KN
Tmin: 43.3 ms
CFC 60

BARRIER FORCE - SUM RIGHT (KN) vs TIME (ms)
Max: 1.5 KN
Tmax: 4.2 ms
Min: -187.6 KN
Tmin: 31.6 ms
CFC 60

BARRIER FORCE - SUM ALL (KN) vs TIME (ms)
Max: 2.1 KN
Tmax: 0.0 ms
Min: -553.3 KN
Tmin: 42.3 ms
CFC 60
APPENDIX B

LOW RISK TEST DATA
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5th Fem. P1 Driver Head X Acceleration vs. Time (Trial 1)</td>
<td>B-1</td>
</tr>
<tr>
<td>2</td>
<td>5th Fem. P1 Driver Head Y Acceleration vs. Time (Trial 1)</td>
<td>B-1</td>
</tr>
<tr>
<td>3</td>
<td>5th Fem. P1 Driver Head Z Acceleration vs. Time (Trial 1)</td>
<td>B-1</td>
</tr>
<tr>
<td>4</td>
<td>5th Fem. P1 Driver Head Resultant Acceleration vs. Time (Trial 1)</td>
<td>B-1</td>
</tr>
<tr>
<td>5</td>
<td>5th Fem. P1 Driver Head X Velocity vs. Time (Trial 1)</td>
<td>B-2</td>
</tr>
<tr>
<td>6</td>
<td>5th Fem. P1 Driver Head Y Velocity vs. Time (Trial 1)</td>
<td>B-2</td>
</tr>
<tr>
<td>7</td>
<td>5th Fem. P1 Driver Head Z Velocity vs. Time (Trial 1)</td>
<td>B-2</td>
</tr>
<tr>
<td>8</td>
<td>5th Fem. P1 Driver Neck Force X vs. Time (Trial 1)</td>
<td>B-3</td>
</tr>
<tr>
<td>9</td>
<td>5th Fem. P1 Driver Neck Force Y vs. Time (Trial 1)</td>
<td>B-3</td>
</tr>
<tr>
<td>10</td>
<td>5th Fem. P1 Driver Neck Force Z vs. Time (Trial 1)</td>
<td>B-3</td>
</tr>
<tr>
<td>11</td>
<td>5th Fem. P1 Driver Neck Force Resultant vs. Time (Trial 1)</td>
<td>B-3</td>
</tr>
<tr>
<td>12</td>
<td>5th Fem. P1 Driver Neck Moment X vs. Time (Trial 1)</td>
<td>B-4</td>
</tr>
<tr>
<td>13</td>
<td>5th Fem. P1 Driver Neck Moment Y vs. Time (Trial 1)</td>
<td>B-4</td>
</tr>
<tr>
<td>14</td>
<td>5th Fem. P1 Driver Neck Moment Z vs. Time (Trial 1)</td>
<td>B-4</td>
</tr>
<tr>
<td>15</td>
<td>5th Fem. P1 Driver Occipital Condyle Moment vs. Time (Trial 1)</td>
<td>B-4</td>
</tr>
<tr>
<td>16</td>
<td>5th Fem. P1 Driver Chest X Acceleration vs. Time (Trial 1)</td>
<td>B-5</td>
</tr>
<tr>
<td>17</td>
<td>5th Fem. P1 Driver Chest Y Acceleration vs. Time (Trial 1)</td>
<td>B-5</td>
</tr>
<tr>
<td>18</td>
<td>5th Fem. P1 Driver Chest Z Acceleration vs. Time (Trial 1)</td>
<td>B-5</td>
</tr>
<tr>
<td>19</td>
<td>5th Fem. P1 Driver Chest Resultant Acceleration vs. Time (Trial 1)</td>
<td>B-5</td>
</tr>
<tr>
<td>20</td>
<td>5th Fem. P1 Driver Chest X Velocity vs. Time (Trial 1)</td>
<td>B-6</td>
</tr>
<tr>
<td>21</td>
<td>5th Fem. P1 Driver Chest Y Velocity vs. Time (Trial 1)</td>
<td>B-6</td>
</tr>
<tr>
<td>22</td>
<td>5th Fem. P1 Driver Chest Z Velocity vs. Time (Trial 1)</td>
<td>B-6</td>
</tr>
<tr>
<td>23</td>
<td>5th Fem. P1 Driver Chest Displacement vs. Time (Trial 1)</td>
<td>B-6</td>
</tr>
<tr>
<td>24</td>
<td>5th Fem. P1 Driver Left Femur Force vs. Time (Trial 1)</td>
<td>B-7</td>
</tr>
<tr>
<td>25</td>
<td>5th Fem. P1 Driver Right Femur Force vs. Time (Trial 1)</td>
<td>B-7</td>
</tr>
<tr>
<td>26</td>
<td>Fire Voltage #1 vs. Time</td>
<td>B-8</td>
</tr>
<tr>
<td>27</td>
<td>Fire Current #1 vs. Time</td>
<td>B-8</td>
</tr>
<tr>
<td>28</td>
<td>Fire Voltage #2 vs. Time</td>
<td>B-8</td>
</tr>
<tr>
<td>29</td>
<td>Fire Current #2 vs. Time</td>
<td>B-8</td>
</tr>
</tbody>
</table>
Figure No. 30. 5th Fem. P1 Driver Nij (N_{TF}) vs. Time (Trial 1) B-9
Figure No. 31. 5th Fem. P1 Driver Nij (N_{TE}) vs. Time (Trial 1) B-9
Figure No. 32. 5th Fem. P1 Driver Nij (N_{CF}) vs. Time (Trial 1) B-9
Figure No. 33. 5th Fem. P1 Driver Nij (N_{CE}) vs. Time (Trial 1) B-9
Figure No. 34. 5th Fem. P1 Driver Head X Acceleration vs. Time (Trial 2) B-10
Figure No. 35. 5th Fem. P1 Driver Head Y Acceleration vs. Time (Trial 2) B-10
Figure No. 36. 5th Fem. P1 Driver Head Z Acceleration vs. Time (Trial 2) B-10
Figure No. 37. 5th Fem. P1 Driver Head Resultant Acceleration vs. Time (Trial 2) B-10
Figure No. 38. 5th Fem. P1 Driver Head X Velocity vs. Time (Trial 2) B-11
Figure No. 39. 5th Fem. P1 Driver Head Y Velocity vs. Time (Trial 2) B-11
Figure No. 40. 5th Fem. P1 Driver Head Z Velocity vs. Time (Trial 2) B-11
Figure No. 41. 5th Fem. P1 Driver Neck Force X vs. Time (Trial 2) B-12
Figure No. 42. 5th Fem. P1 Driver Neck Force Y vs. Time (Trial 2) B-12
Figure No. 43. 5th Fem. P1 Driver Neck Force Z vs. Time (Trial 2) B-12
Figure No. 44. 5th Fem. P1 Driver Neck Force Resultant vs. Time (Trial 2) B-12
Figure No. 45. 5th Fem. P1 Driver Neck Moment X vs. Time (Trial 2) B-13
Figure No. 46. 5th Fem. P1 Driver Neck Moment Y vs. Time (Trial 2) B-13
Figure No. 47. 5th Fem. P1 Driver Neck Moment Z vs. Time (Trial 2) B-13
Figure No. 48. 5th Fem. P1 Driver Occipital Condyle Moment vs. Time (Trial 2) B-13
Figure No. 49. 5th Fem. P1 Driver Chest X Acceleration vs. Time (Trial 2) B-14
Figure No. 50. 5th Fem. P1 Driver Chest Y Acceleration vs. Time (Trial 2) B-14
Figure No. 51. 5th Fem. P1 Driver Chest Z Acceleration vs. Time (Trial 2) B-14
Figure No. 52. 5th Fem. P1 Driver Chest Resultant Acceleration vs. Time (Trial 2) B-14
Figure No. 53. 5th Fem. P1 Driver Chest X Velocity vs. Time (Trial 2) B-15
Figure No. 54. 5th Fem. P1 Driver Chest Y Velocity vs. Time (Trial 2) B-15
Figure No. 55. 5th Fem. P1 Driver Chest Z Velocity vs. Time (Trial 2) B-15
Figure No. 56. 5th Fem. P1 Driver Chest Displacement vs. Time (Trial 2) B-15
Figure No. 57. 5th Fem. P1 Driver Left Femur Force vs. Time (Trial 2) B-16
Figure No. 58. 5th Fem. P1 Driver Right Femur Force vs. Time (Trial 2) B-16
Figure No. 59. Fire Voltage #1 vs. Time B-17
Figure No. 60. Fire Current #1 vs. Time
Figure No. 61. Fire Voltage #2 vs. Time
Figure No. 62. Fire Current #2 vs. Time
Figure No. 63. 5th Fem. P1 Driver Nij (N_{TF}) vs. Time (Trial 3)
Figure No. 64. 5th Fem. P1 Driver Nij (N_{TE}) vs. Time (Trial 3)
Figure No. 65. 5th Fem. P1 Driver Nij (N_{CF}) vs. Time (Trial 3)
Figure No. 66. 5th Fem. P1 Driver Nij (N_{CE}) vs. Time (Trial 3)
Figure No. 67. 5th Fem. P1 Driver Head X Acceleration vs. Time (Trial 3)
Figure No. 68. 5th Fem. P1 Driver Head Y Acceleration vs. Time (Trial 3)
Figure No. 69. 5th Fem. P1 Driver Head Z Acceleration vs. Time (Trial 3)
Figure No. 70. 5th Fem. P1 Driver Head Resultant Acceleration vs. Time (Trial 3)
Figure No. 71. 5th Fem. P1 Driver Head X Velocity vs. Time (Trial 3)
Figure No. 72. 5th Fem. P1 Driver Head Y Velocity vs. Time (Trial 3)
Figure No. 73. 5th Fem. P1 Driver Head Z Velocity vs. Time (Trial 3)
Figure No. 74. 5th Fem. P1 Driver Neck Force X vs. Time (Trial 3)
Figure No. 75. 5th Fem. P1 Driver Neck Force Y vs. Time (Trial 3)
Figure No. 76. 5th Fem. P1 Driver Neck Force Z vs. Time (Trial 3)
Figure No. 77. 5th Fem. P1 Driver Neck Force Resultant vs. Time (Trial 3)
Figure No. 78. 5th Fem. P1 Driver Neck Moment X vs. Time (Trial 3)
Figure No. 79. 5th Fem. P1 Driver Neck Moment Y vs. Time (Trial 3)
Figure No. 80. 5th Fem. P1 Driver Neck Moment Z vs. Time (Trial 3)
Figure No. 81. 5th Fem. P1 Driver Occipital Condyle Moment vs. Time (Trial 3)
Figure No. 82. 5th Fem. P1 Driver Chest X Acceleration vs. Time (Trial 3)
Figure No. 83. 5th Fem. P1 Driver Chest Y Acceleration vs. Time (Trial 3)
Figure No. 84. 5th Fem. P1 Driver Chest Z Acceleration vs. Time (Trial 3)
Figure No. 85. 5th Fem. P1 Driver Chest Resultant Acceleration vs. Time (Trial 3)
Figure No. 86. 5th Fem. P1 Driver Chest X Velocity vs. Time (Trial 3)
Figure No. 87. 5th Fem. P1 Driver Chest Y Velocity vs. Time (Trial 3)
Figure No. 88. 5th Fem. P1 Driver Chest Z Velocity vs. Time (Trial 3)
Figure No. 89. 5th Fem. P1 Driver Chest Displacement vs. Time (Trial 3)
Figure No. 90. 5th Fem. P1 Driver Left Femur Force vs. Time (Trial 3) B-25
Figure No. 91. 5th Fem. P1 Driver Right Femur Force vs. Time (Trial 3) B-25
Figure No. 92. Fire Voltage #1 vs. Time B-26
Figure No. 93. Fire Current #1 vs. Time B-26
Figure No. 94. Fire Voltage #2 vs. Time B-26
Figure No. 95. Fire Current #2 vs. Time B-26
Figure No. 96. 5th Fem. P1 Driver Nij (NTF) vs. Time (Trial 3) B-27
Figure No. 97. 5th Fem. P1 Driver Nij (NTE) vs. Time (Trial 3) B-27
Figure No. 98. 5th Fem. P1 Driver Nij (NCF) vs. Time (Trial 3) B-27
Figure No. 99. 5th Fem. P1 Driver Nij (NCE) vs. Time (Trial 3) B-27
Figure No. 100. 5th Fem. P1 Driver Head X Acceleration vs. Time (Trial 4) B-28
Figure No. 101. 5th Fem. P1 Driver Head Y Acceleration vs. Time (Trial 4) B-28
Figure No. 102. 5th Fem. P1 Driver Head Z Acceleration vs. Time (Trial 4) B-28
Figure No. 103. 5th Fem. P1 Driver Head Resultant Acceleration vs. Time (Trial 4) B-28
Figure No. 104. 5th Fem. P1 Driver Head X Velocity vs. Time (Trial 4) B-29
Figure No. 105. 5th Fem. P1 Driver Head Y Velocity vs. Time (Trial 4) B-29
Figure No. 106. 5th Fem. P1 Driver Head Z Velocity vs. Time (Trial 4) B-29
Figure No. 107. 5th Fem. P1 Driver Neck Force X vs. Time (Trial 4) B-30
Figure No. 108. 5th Fem. P1 Driver Neck Force Y vs. Time (Trial 4) B-30
Figure No. 109. 5th Fem. P1 Driver Neck Force Z vs. Time (Trial 4) B-30
Figure No. 110. 5th Fem. P1 Driver Neck Force Resultant vs. Time (Trial 4) B-30
Figure No. 111. 5th Fem. P1 Driver Neck Moment X vs. Time (Trial 4) B-31
Figure No. 112. 5th Fem. P1 Driver Neck Moment Y vs. Time (Trial 4) B-31
Figure No. 113. 5th Fem. P1 Driver Neck Moment Z vs. Time (Trial 4) B-31
Figure No. 114. 5th Fem. P1 Driver Occipital Condyle Moment vs. Time (Trial 4) B-31
Figure No. 115. 5th Fem. P1 Driver Chest X Acceleration vs. Time (Trial 4) B-32
Figure No. 116. 5th Fem. P1 Driver Chest Y Acceleration vs. Time (Trial 4) B-32
Figure No. 117. 5th Fem. P1 Driver Chest Z Acceleration vs. Time (Trial 4) B-32
Figure No. 118. 5th Fem. P1 Driver Chest Resultant Acceleration vs. Time (Trial 4) B-32
Figure No. 119. 5th Fem. P1 Driver Chest X Velocity vs. Time (Trial 4) B-33
Figure No. 120. 5th Fem. P1 Driver Chest Y Velocity vs. Time (Trial 4) B-33
Figure No. 121. 5th Fem. P1 Driver Chest Z Velocity vs. Time (Trial 4) B-33
Figure No. 122. 5th Fem. P1 Driver Chest Displacement vs. Time (Trial 4) B-33
Figure No. 123. 5th Fem. P1 Driver Left Femur Force vs. Time (Trial 4) B-34
Figure No. 124. 5th Fem. P1 Driver Right Femur Force vs. Time (Trial 4) B-34
Figure No. 125. Fire Voltage #1 vs. Time B-35
Figure No. 126. Fire Current #1 vs. Time B-35
Figure No. 127. Fire Voltage #2 vs. Time B-35
Figure No. 128. Fire Current #2 vs. Time B-35
Figure No. 129. 5th Fem. P1 Driver Nij (NT) vs. Time (Trial 4) B-36
Figure No. 130. 5th Fem. P1 Driver Nij (NT) vs. Time (Trial 4) B-36
Figure No. 131. 5th Fem. P1 Driver Nij (NT) vs. Time (Trial 4) B-36
Figure No. 132. 5th Fem. P1 Driver Nij (NT) vs. Time (Trial 4) B-36
Figure No. 133. 5th Fem. P2 Driver Head X Acceleration vs. Time B-37
Figure No. 134. 5th Fem. P2 Driver Head Y Acceleration vs. Time B-37
Figure No. 135. 5th Fem. P2 Driver Head Z Acceleration vs. Time B-37
Figure No. 136. 5th Fem. P2 Driver Head Resultant Acceleration vs. Time B-37
Figure No. 137. 5th Fem. P2 Driver Head X Velocity vs. Time B-38
Figure No. 138. 5th Fem. P2 Driver Head Y Velocity vs. Time B-38
Figure No. 139. 5th Fem. P2 Driver Head Z Velocity vs. Time B-38
Figure No. 140. 5th Fem. P2 Driver Neck Force X vs. Time B-39
Figure No. 141. 5th Fem. P2 Driver Neck Force Y vs. Time B-39
Figure No. 142. 5th Fem. P2 Driver Neck Force Z vs. Time B-39
Figure No. 143. 5th Fem. P2 Driver Neck Force Resultant vs. Time B-39
Figure No. 144. 5th Fem. P2 Driver Neck Moment X vs. Time B-40
Figure No. 145. 5th Fem. P2 Driver Neck Moment Y vs. Time B-40
Figure No. 146. 5th Fem. P2 Driver Neck Moment Z vs. Time B-40
Figure No. 147. 5th Fem. P2 Driver Occipital Condyle Moment vs. Time B-40
Figure No. 148. 5th Fem. P2 Driver Chest X Acceleration vs. Time B-41
Figure No. 149. 5th Fem. P2 Driver Chest Y Acceleration vs. Time B-41
Figure No. 150. 5th Fem. P2 Driver Chest Z Acceleration vs. Time
Figure No. 151. 5th Fem. P2 Driver Chest Resultant Acceleration vs. Time
Figure No. 152. 5th Fem. P2 Driver Chest X Velocity vs. Time
Figure No. 153. 5th Fem. P2 Driver Chest Y Velocity vs. Time
Figure No. 154. 5th Fem. P2 Driver Chest Z Velocity vs. Time
Figure No. 155. 5th Fem. P2 Driver Chest Displacement vs. Time
Figure No. 156. 5th Fem. P2 Driver Left Femur Force vs. Time
Figure No. 157. 5th Fem. P2 Driver Right Femur Force vs. Time
Figure No. 158. Fire Voltage #1 vs. Time
Figure No. 159. Fire Current #1 vs. Time
Figure No. 160. Fire Voltage #2 vs. Time
Figure No. 161. Fire Current #2 vs. Time
Figure No. 162. 5th Fem. P2 Driver Nij (N\textsubscript{TF}) vs. Time
Figure No. 163. 5th Fem. P2 Driver Nij (N\textsubscript{TE}) vs. Time
Figure No. 164. 5th Fem. P2 Driver Nij (N\textsubscript{CF}) vs. Time
Figure No. 165. 5th Fem. P2 Driver Nij (N\textsubscript{CE}) vs. Time
Figure No. 166. 3YO P1 Passenger Head X Acceleration vs. Time
Figure No. 167. 3YO P1 Passenger Head Y Acceleration vs. Time
Figure No. 168. 3YO P1 Passenger Head Z Acceleration vs. Time
Figure No. 169. 3YO P1 Passenger Head Resultant Acceleration vs. Time
Figure No. 170. 3YO P1 Passenger Head X Velocity vs. Time
Figure No. 171. 3YO P1 Passenger Head Y Velocity vs. Time
Figure No. 172. 3YO P1 Passenger Head Z Velocity vs. Time
Figure No. 173. 3YO P1 Passenger Neck Force X vs. Time
Figure No. 174. 3YO P1 Passenger Neck Force Y vs. Time
Figure No. 175. 3YO P1 Passenger Neck Force Z vs. Time
Figure No. 176. 3YO P1 Passenger Neck Force Resultant vs. Time
Figure No. 177. 3YO P1 Passenger Neck Moment X vs. Time
Figure No. 178. 3YO P1 Passenger Neck Moment Y vs. Time
Figure No. 179. 3YO P1 Passenger Neck Moment Z vs. Time
Figure No. 180. 3YO P1 Passenger Occipital Condyle Moment vs. Time B-49
Figure No. 181. 3YO P1 Passenger Chest X Acceleration vs. Time B-50
Figure No. 182. 3YO P1 Passenger Chest Y Acceleration vs. Time B-50
Figure No. 183. 3YO P1 Passenger Chest Z Acceleration vs. Time B-50
Figure No. 184. 3YO P1 Passenger Chest Resultant Acceleration vs. Time B-50
Figure No. 185. 3YO P1 Passenger Chest X Velocity vs. Time B-51
Figure No. 186. 3YO P1 Passenger Chest Y Velocity vs. Time B-51
Figure No. 187. 3YO P1 Passenger Chest Z Velocity vs. Time B-51
Figure No. 188. 3YO P1 Passenger Chest Displacement vs. Time B-51
Figure No. 189. Fire Voltage #1 vs. Time B-52
Figure No. 190. Fire Current #1 vs. Time B-52
Figure No. 191. Fire Voltage #2 vs. Time B-52
Figure No. 192. Fire Current #2 vs. Time B-52
Figure No. 193. 3YO P1 Passenger Nij (N_{TF}) vs. Time B-53
Figure No. 194. 3YO P1 Passenger Nij (N_{TE}) vs. Time B-53
Figure No. 195. 3YO P1 Passenger Nij (N_{CF}) vs. Time B-53
Figure No. 196. 3YO P1 Passenger Nij (N_{CE}) vs. Time B-53
Figure No. 197. 3YO P2 Passenger Head X Acceleration vs. Time B-54
Figure No. 198. 3YO P2 Passenger Head Y Acceleration vs. Time B-54
Figure No. 199. 3YO P2 Passenger Head Z Acceleration vs. Time B-54
Figure No. 200. 3YO P2 Passenger Head Resultant Acceleration vs. Time B-54
Figure No. 201. 3YO P2 Passenger Head X Velocity vs. Time B-55
Figure No. 202. 3YO P2 Passenger Head Y Velocity vs. Time B-55
Figure No. 203. 3YO P2 Passenger Head Z Velocity vs. Time B-55
Figure No. 204. 3YO P2 Passenger Neck Force X vs. Time B-56
Figure No. 205. 3YO P2 Passenger Neck Force Y vs. Time B-56
Figure No. 206. 3YO P2 Passenger Neck Force Z vs. Time B-56
Figure No. 207. 3YO P2 Passenger Neck Force Resultant vs. Time B-56
Figure No. 208. 3YO P2 Passenger Neck Moment X vs. Time B-57
Figure No. 209. 3YO P2 Passenger Neck Moment Y vs. Time B-57
Figure No. 210. 3YO P2 Passenger Neck Moment Z vs. Time
Figure No. 211. 3YO P2 Passenger Occipital Condyle Moment vs. Time
Figure No. 212. 3YO P2 Passenger Chest X Acceleration vs. Time
Figure No. 213. 3YO P2 Passenger Chest Y Acceleration vs. Time
Figure No. 214. 3YO P2 Passenger Chest Z Acceleration vs. Time
Figure No. 215. 3YO P2 Passenger Chest Resultant Acceleration vs. Time
Figure No. 216. 3YO P2 Passenger Chest X Velocity vs. Time
Figure No. 217. 3YO P2 Passenger Chest Y Velocity vs. Time
Figure No. 218. 3YO P2 Passenger Chest Z Velocity vs. Time
Figure No. 219. 3YO P2 Passenger Chest Displacement vs. Time
Figure No. 220. Fire Voltage #1 vs. Time
Figure No. 221. Fire Current #1 vs. Time
Figure No. 222. Fire Voltage #2 vs. Time
Figure No. 223. Fire Current #2 vs. Time
Figure No. 224. 3YO P2 Passenger Nij (N_{TF}) vs. Time
Figure No. 225. 3YO P2 Passenger Nij (N_{TE}) vs. Time
Figure No. 226. 3YO P2 Passenger Nij (N_{CF}) vs. Time
Figure No. 227. 3YO P2 Passenger Nij (N_{CE}) vs. Time
Figure No. 228. 6YO P1 Passenger Head X Acceleration vs. Time
Figure No. 229. 6YO P1 Passenger Head Y Acceleration vs. Time
Figure No. 230. 6YO P1 Passenger Head Z Acceleration vs. Time
Figure No. 231. 6YO P1 Passenger Head Resultant Acceleration vs. Time
Figure No. 232. 6YO P1 Passenger Head X Velocity vs. Time
Figure No. 233. 6YO P1 Passenger Head Y Velocity vs. Time
Figure No. 234. 6YO P1 Passenger Head Z Velocity vs. Time
Figure No. 235. 6YO P1 Passenger Neck Force X vs. Time
Figure No. 236. 6YO P1 Passenger Neck Force Y vs. Time
Figure No. 237. 6YO P1 Passenger Neck Force Z vs. Time
Figure No. 238. 6YO P1 Passenger Neck Force Resultant vs. Time
Figure No. 239. 6YO P1 Passenger Neck Moment X vs. Time
Figure No. 240. 6YO P1 Passenger Neck Moment Y vs. Time B-65
Figure No. 241. 6YO P1 Passenger Neck Moment Z vs. Time B-65
Figure No. 242. 6YO P1 Passenger Occipital Condyle Moment vs. Time B-65
Figure No. 243. 6YO P1 Passenger Chest X Acceleration vs. Time B-66
Figure No. 244. 6YO P1 Passenger Chest Y Acceleration vs. Time B-66
Figure No. 245. 6YO P1 Passenger Chest Z Acceleration vs. Time B-66
Figure No. 246. 6YO P1 Passenger Chest Resultant Acceleration vs. Time B-66
Figure No. 247. 6YO P1 Passenger Chest X Velocity vs. Time B-67
Figure No. 248. 6YO P1 Passenger Chest Y Velocity vs. Time B-67
Figure No. 249. 6YO P1 Passenger Chest Z Velocity vs. Time B-67
Figure No. 250. 6YO P1 Passenger Chest Displacement vs. Time B-67
Figure No. 251. Fire Voltage #1 vs. Time B-68
Figure No. 252. Fire Current #1 vs. Time B-68
Figure No. 253. Fire Voltage #2 vs. Time B-68
Figure No. 254. Fire Current #2 vs. Time B-68
Figure No. 255. 6YO P1 Passenger Nij (N_{TF}) vs. Time B-69
Figure No. 256. 6YO P1 Passenger Nij (N_{TE}) vs. Time B-69
Figure No. 257. 6YO P1 Passenger Nij (N_{CF}) vs. Time B-69
Figure No. 258. 6YO P1 Passenger Nij (N_{CE}) vs. Time B-69
Figure No. 259. 6YO P2 Passenger Head X Acceleration vs. Time B-70
Figure No. 260. 6YO P2 Passenger Head Y Acceleration vs. Time B-70
Figure No. 261. 6YO P2 Passenger Head Z Acceleration vs. Time B-70
Figure No. 262. 6YO P2 Passenger Head Resultant Acceleration vs. Time B-70
Figure No. 263. 6YO P2 Passenger Head X Velocity vs. Time B-71
Figure No. 264. 6YO P2 Passenger Head Y Velocity vs. Time B-71
Figure No. 265. 6YO P2 Passenger Head Z Velocity vs. Time B-71
Figure No. 266. 6YO P2 Passenger Neck Force X vs. Time B-72
Figure No. 267. 6YO P2 Passenger Neck Force Y vs. Time B-72
Figure No. 268. 6YO P2 Passenger Neck Force Z vs. Time B-72
Figure No. 269. 6YO P2 Passenger Neck Force Resultant vs. Time B-72
Figure No. 270. 6YO P2 Passenger Neck Moment X vs. Time B-73
Figure No. 271. 6YO P2 Passenger Neck Moment Y vs. Time B-73
Figure No. 272. 6YO P2 Passenger Neck Moment Z vs. Time B-73
Figure No. 273. 6YO P2 Passenger Occipital Condyle Moment vs. Time B-73
Figure No. 274. 6YO P2 Passenger Chest X Acceleration vs. Time B-74
Figure No. 275. 6YO P2 Passenger Chest Y Acceleration vs. Time B-74
Figure No. 276. 6YO P2 Passenger Chest Z Acceleration vs. Time B-74
Figure No. 277. 6YO P2 Passenger Chest Resultant Acceleration vs. Time B-74
Figure No. 278. 6YO P2 Passenger Chest X Velocity vs. Time B-75
Figure No. 279. 6YO P2 Passenger Chest Y Velocity vs. Time B-75
Figure No. 280. 6YO P2 Passenger Chest Z Velocity vs. Time B-75
Figure No. 281. 6YO P2 Passenger Chest Displacement vs. Time B-75
Figure No. 282. Fire Voltage #1 vs. Time B-76
Figure No. 283. Fire Current #1 vs. Time B-76
Figure No. 284. Fire Voltage #2 vs. Time B-76
Figure No. 285. Fire Current #2 vs. Time B-76
Figure No. 286. 6YO P2 Passenger Nij (N_{TF}) vs. Time B-77
Figure No. 287. 6YO P2 Passenger Nij (N_{TE}) vs. Time B-77
Figure No. 288. 6YO P2 Passenger Nij (N_{CF}) vs. Time B-77
Figure No. 289. 6YO P2 Passenger Nij (N_{CE}) vs. Time B-77
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 1
Test Date: 5/7/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER HEAD X (G’s) vs TIME (ms)
Max: 28.0 G’s
Tmax: 107.8 ms
Min: -37.6 G’s
Tmin: 24.6 ms
CFC 1000

5TH FEM. DRIVER HEAD Y (G’s) vs TIME (ms)
Max: 4.9 G’s
Tmax: 6.2 ms
Min: -22.5 G’s
Tmin: 4.9 ms
CFC 1000

5TH FEM. DRIVER HEAD Z (G’s) vs TIME (ms)
Max: 20.8 G’s
Tmax: 5.6 ms
Min: -66.5 G’s
Tmin: 4.6 ms
CFC 1000

5TH FEM. DRIVER HEAD Resultant (G’s) vs TIME (ms)
Max: 70.7 G’s
Tmax: 4.6 ms
Min: 0.0 G’s
Tmin: 0.7 ms
CFC 1000
5TH FEM. DRIVER HEAD X Velocity (kph) vs TIME (ms)

Max: 4.9 kph
Tmax: 193.7 ms
Min: -23.6 kph
Tmin: 59.6 ms
CFC 180

5TH FEM. DRIVER HEAD Y Velocity (kph) vs TIME (ms)

Max: 0.3 kph
Tmax: 325.0 ms
Min: -2.0 kph
Tmin: 128.3 ms
CFC 180

5TH FEM. DRIVER HEAD Z Velocity (kph) vs TIME (ms)

Max: 36.6 kph
Tmax: 179.9 ms
Min: -0.8 kph
Tmin: 5.3 ms
CFC 180
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 1

Test Date: 5/7/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER NECK FX (N) vs TIME (ms)
Max: 119.3 N
Tmax: 4.4 ms
Min: -863.5 N
Tmin: 23.1 ms
CFC 1000

5TH FEM. DRIVER NECK FY (N) vs TIME (ms)
Max: 298.0 N
Tmax: 4.9 ms
Min: -34.6 N
Tmin: 38.8 ms
CFC 1000

5TH FEM. DRIVER NECK FZ (N) vs TIME (ms)
Max: 1287.8 N
Tmax: 23.0 ms
Min: -426.3 N
Tmin: 142.7 ms
CFC 1000

5TH FEM. DRIVER NECK FResultant (N) vs TIME (ms)
Max: 1556.4 N
Tmax: 23.0 ms
Min: 0.9 N
Tmin: 0.1 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 1
Test Date: 5/7/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER NECK MX (Nm) vs TIME (ms)
Max: 8.5 Nm
Tmax: 40.4 ms
Min: -13.9 Nm
Tmin: 21.9 ms
CFC 600

5TH FEM. DRIVER NECK MY (Nm) vs TIME (ms)
Max: 9.5 Nm
Tmax: 189.0 ms
Min: -57.6 Nm
Tmin: 23.2 ms
CFC 600

5TH FEM. DRIVER NECK MZ (Nm) vs TIME (ms)
Max: 4.6 Nm
Tmax: 156.9 ms
Min: -2.0 Nm
Tmin: 229.8 ms
CFC 600

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 9.5 Nm
Tmax: 188.1 ms
Min: -42.3 Nm
Tmin: 23.3 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 1
Test Date: 5/7/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER CHEST X (G's) vs TIME (ms)
Max: 5.4 G's
Tmax: 167.4 ms
Min: -19.5 G's
Tmin: 19.6 ms
CFC 180

5TH FEM. DRIVER CHEST Y (G's) vs TIME (ms)
Max: 0.9 G's
Tmax: 37.4 ms
Min: -2.4 G's
Tmin: 16.6 ms
CFC 180

5TH FEM. DRIVER CHEST Z (G's) vs TIME (ms)
Max: 7.0 G's
Tmax: 24.6 ms
Min: -9.1 G's
Tmin: 5.3 ms
CFC 180

5TH FEM. DRIVER CHEST Resultant (G's) vs TIME (ms)
Max: 20.0 G's
Tmax: 19.6 ms
Min: 0.0 G's
Tmin: 0.7 ms
CFC 180
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 1
Test Date: 5/7/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER CHEST X Velocity (kph) vs TIME (ms)
Max: 9.0 kph
Tmax: 325.0 ms
Min: -10.2 kph
Tmin: 34.4 ms
CFC 180

5TH FEM. DRIVER CHEST Y Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 3.6 ms
Min: -1.2 kph
Tmin: 87.8 ms
CFC 180

5TH FEM. DRIVER CHEST Z Velocity (kph) vs TIME (ms)
Max: 10.4 kph
Tmax: 192.6 ms
Min: -0.5 kph
Tmin: 6.5 ms
CFC 180

5TH FEM. DRIVER CHEST DISPLACEMENT (mm) vs TIME (ms)
Max: 0.0 mm
Tmax: 1.1 ms
Min: -15.5 mm
Tmin: 24.0 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 1

Test Date: 5/7/08
Speed: 0.0 mph (0.0 km/h)

[Graphs showing Dvr. nij (NTF) vs TIME SPECIAL CHS (ms), Dvr. nij (NTE) vs TIME SPECIAL CHS (ms), Dvr. nij (NCF) vs TIME SPECIAL CHS (ms), Dvr. nij (NCE) vs TIME SPECIAL CHS (ms) with their respective max, Tmax, Min, Tmin values for CFC 600.]
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 2
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER HEAD X Velocity (kph) vs TIME (ms)
Max: 5.4 kph
Tmax: 207.6 ms
Min: -20.9 kph
Tmin: 57.3 ms
CFC 180

5TH FEM. DRIVER HEAD Y Velocity (kph) vs TIME (ms)
Max: 4.2 kph
Tmax: 325.0 ms
Min: -0.3 kph
Tmin: 32.1 ms
CFC 180

5TH FEM. DRIVER HEAD Z Velocity (kph) vs TIME (ms)
Max: 43.8 kph
Tmax: 198.3 ms
Min: -0.8 kph
Tmin: 5.9 ms
CFC 180
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 2

Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER NECK FX (N) vs TIME (ms)
Max: 203.7 N
Tmax: 32.8 ms
Min: -204.0 N
Tmin: 173.6 ms
CFC 1000

5TH FEM. DRIVER NECK FY (N) vs TIME (ms)
Max: 190.6 N
Tmax: 4.9 ms
Min: -76.7 N
Tmin: 200.7 ms
CFC 1000

5TH FEM. DRIVER NECK FZ (N) vs TIME (ms)
Max: 661.5 N
Tmax: 7.0 ms
Min: -542.9 N
Tmin: 167.8 ms
CFC 1000

5TH FEM. DRIVER NECK FResultant (N) vs TIME (ms)
Max: 665.6 N
Tmax: 7.0 ms
Min: 5.4 N
Tmin: 0.1 ms
CFC 1000

B-12
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 2
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER NECK MX (Nm) vs TIME (ms)
Max: 4.1 Nm
Tmax: 55.1 ms
Min: -6.9 Nm
Tmin: 21.2 ms
CFC 600

5TH FEM. DRIVER NECK MY (Nm) vs TIME (ms)
Max: 24.8 Nm
Tmax: 33.9 ms
Min: -29.7 Nm
Tmin: 154.3 ms
CFC 600

5TH FEM. DRIVER NECK MZ (Nm) vs TIME (ms)
Max: 2.6 Nm
Tmax: 166.6 ms
Min: -3.8 Nm
Tmin: 49.3 ms
CFC 600

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 21.3 Nm
Tmax: 34.0 ms
Min: -26.6 Nm
Tmin: 154.0 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 2
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER LEFT FEMUR (N) vs TIME (ms)
Max: 172.5 N
Tmax: 23.6 ms
Min: -123.7 N
Tmin: 201.0 ms
CFC 600

5TH FEM. DRIVER RIGHT FEMUR (N) vs TIME (ms)
Max: 186.2 N
Tmax: 20.4 ms
Min: -159.2 N
Tmin: 201.2 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 2
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
Max: 15.6 Volts
Tmax: 0.3 ms
Min: -0.6 Volts
Tmin: 10.3 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
Max: 11.6 Amps
Tmax: 1.5 ms
Min: -1.4 Amps
Tmin: 200.4 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
Max: 15.1 Volts
Tmax: 200.3 ms
Min: -0.5 Volts
Tmin: 199.8 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
Max: 14.6 Amps
Tmax: 200.4 ms
Min: -0.2 Amps
Tmin: 199.9 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 2
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

Drv. nij (NTF) () vs TIME SPECIAL CHS (ms)
- Max: 0.3
- Tmax: 33.9 ms
- Min: 0.0
- Tmin: 0.1 ms

Drv. nij (NTE) () vs TIME SPECIAL CHS (ms)
- Max: 0.3
- Tmax: 13.9 ms
- Min: 0.0
- Tmin: 0.1 ms

Drv. nij (NCF) () vs TIME SPECIAL CHS (ms)
- Max: 0.1
- Tmax: 239.2 ms
- Min: 0.0
- Tmin: 0.1 ms

Drv. nij (NCE) () vs TIME SPECIAL CHS (ms)
- Max: 0.6
- Tmax: 154.2 ms
- Min: 0.0
- Tmin: 3.1 ms
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 3
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM DRIVER HEAD X (G's) vs TIME (ms)
Max: 39.3 G's
Tmax: 109.0 ms
Min: -35.5 G's
Tmin: 21.2 ms
CFC 1000

5TH FEM DRIVER HEAD Y (G's) vs TIME (ms)
Max: 6.3 G's
Tmax: 10.5 ms
Min: -9.5 G's
Tmin: 4.9 ms
CFC 1000

5TH FEM DRIVER HEAD Z (G's) vs TIME (ms)
Max: 41.7 G's
Tmax: 108.4 ms
Min: -43.5 G's
Tmin: 5.1 ms
CFC 1000

5TH FEM DRIVER HEAD Resultant (G's) vs TIME (ms)
Max: 56.3 G's
Tmax: 108.5 ms
Min: 0.1 G's
Tmin: 216.4 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 3
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER HEAD X Velocity (kph) vs TIME (ms)
Max: 0.1 kph
Tmax: 3.3 ms
Min: -27.4 kph
Tmin: 74.7 ms
CFC 180

5TH FEM. DRIVER HEAD Y Velocity (kph) vs TIME (ms)
Max: 2.7 kph
Tmax: 325.0 ms
Min: -0.1 kph
Tmin: 6.3 ms
CFC 180

5TH FEM. DRIVER HEAD Z Velocity (kph) vs TIME (ms)
Max: 53.4 kph
Tmax: 234.6 ms
Min: -1.0 kph
Tmin: 6.3 ms
CFC 180
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 3
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER NECK MX (Nm) vs TIME (ms)
Max: 1.8 Nm
Tmax: 0.7 ms
Min: -9.4 Nm
Tmin: 28.2 ms
CFC 600

5TH FEM. DRIVER NECK MY (Nm) vs TIME (ms)
Max: 13.4 Nm
Tmax: 272.0 ms
Min: -35.1 Nm
Tmin: 139.2 ms
CFC 600

5TH FEM. DRIVER NECK MZ (Nm) vs TIME (ms)
Max: 2.3 Nm
Tmax: 148.9 ms
Min: -3.2 Nm
Tmin: 30.9 ms
CFC 600

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 15.5 Nm
Tmax: 272.1 ms
Min: -32.6 Nm
Tmin: 139.3 ms
CFC 600

B-22
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 3
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER CHEST X (G's) vs TIME (ms)
Max: 6.0 G's
Tmax: 141.7 ms
Min: -13.3 G's
Tmin: 12.6 ms
CFC 180

5TH FEM. DRIVER CHEST Y (G's) vs TIME (ms)
Max: 0.8 G's
Tmax: 44.7 ms
Min: -2.5 G's
Tmin: 17.0 ms
CFC 180

5TH FEM. DRIVER CHEST Z (G's) vs TIME (ms)
Max: 4.8 G's
Tmax: 20.5 ms
Min: -4.3 G's
Tmin: 5.8 ms
CFC 180

5TH FEM. DRIVER CHEST Resultant (G's) vs TIME (ms)
Max: 14.0 G's
Tmax: 12.8 ms
Min: 0.3 G's
Tmin: 62.5 ms
CFC 180
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 3
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER CHEST X Velocity (kph) vs TIME (ms)
Max: 9.1 kph
Tmax: 325.0 ms
Min: -8.5 kph
Tmin: 34.8 ms
CFC 180

5TH FEM. DRIVER CHEST Y Velocity (kph) vs TIME (ms)
Max: 0.1 kph
Tmax: 6.3 ms
Min: -1.1 kph
Tmin: 180.5 ms
CFC 180

5TH FEM. DRIVER CHEST Z Velocity (kph) vs TIME (ms)
Max: 11.0 kph
Tmax: 182.0 ms
Min: -0.4 kph
Tmin: 7.6 ms
CFC 180

5TH FEM. DRIVER CHEST DISPLACEMENT (mm) vs TIME (ms)
Max: 0.0 mm
Tmax: 119.6 ms
Min: -8.8 mm
Tmin: 26.7 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 3

Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER LEFT FEMUR (N) vs TIME (ms)
- Maximum: 147.2 N
- Tmax: 19.2 ms
- Minimum: -148.2 N
- Tmin: 200.9 ms
- CFC 600

5TH FEM. DRIVER RIGHT FEMUR (N) vs TIME (ms)
- Maximum: 166.0 N
- Tmax: 17.7 ms
- Minimum: -172.0 N
- Tmin: 201.0 ms
- CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 3
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
Max: 15.7 Volts
Tmax: 0.3 ms
Min: -0.3 Volts
Tmin: 199.9 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
Max: 13.4 Amps
Tmax: 0.5 ms
Min: -1.4 Amps
Tmin: 200.4 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
Max: 15.2 Volts
Tmax: 200.3 ms
Min: -0.5 Volts
Tmin: 199.8 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
Max: 17.4 Amps
Tmax: 200.5 ms
Min: -0.2 Amps
Tmin: 199.8 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 3
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

Drive nij (NTF) vs TIME SPECIAL CHS (ms)
- Max: 0.2
- Tmax: 34.6 ms
- Min: 0.0
- Tmin: 0.1 ms

Drive nij (NTE) vs TIME SPECIAL CHS (ms)
- Max: 0.4
- Tmax: 24.6 ms
- Min: 0.0
- Tmin: 0.1 ms

Drive nij (NCF) vs TIME SPECIAL CHS (ms)
- Max: 0.1
- Tmax: 271.8 ms
- Min: 0.0
- Tmin: 0.1 ms

Drive nij (NCE) vs TIME SPECIAL CHS (ms)
- Max: 0.7
- Tmax: 139.9 ms
- Min: 0.0
- Tmin: 4.4 ms
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 4
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER NECK FX (N) vs TIME (ms)
Max: 136.6 N
Tmax: 4.6 ms
Min: -452.3 N
Tmin: 24.2 ms
CFC 1000

5TH FEM. DRIVER NECK FY (N) vs TIME (ms)
Max: 253.9 N
Tmax: 5.1 ms
Min: -84.6 N
Tmin: 0.8 ms
CFC 1000

5TH FEM. DRIVER NECK FZ (N) vs TIME (ms)
Max: 1237.1 N
Tmax: 32.3 ms
Min: -748.9 N
Tmin: 140.9 ms
CFC 1000

5TH FEM. DRIVER NECK FResultant (N) vs TIME (ms)
Max: 1254.6 N
Tmax: 32.3 ms
Min: 4.9 N
Tmin: 0.1 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 4
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER NECK MX (Nm) vs TIME (ms)
Max: 14.4 Nm
Tmax: 39.3 ms
Min: -14.5 Nm
Tmin: 24.9 ms
CFC 600

5TH FEM. DRIVER NECK MY (Nm) vs TIME (ms)
Max: 10.2 Nm
Tmax: 261.3 ms
Min: -36.8 Nm
Tmin: 131.6 ms
CFC 600

5TH FEM. DRIVER NECK MZ (Nm) vs TIME (ms)
Max: 5.7 Nm
Tmax: 169.4 ms
Min: -2.8 Nm
Tmin: 250.1 ms
CFC 600

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 12.1 Nm
Tmax: 261.3 ms
Min: -32.6 Nm
Tmin: 131.1 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 4
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER CHEST X (G's) vs TIME (ms)
Max: 5.9 G's
Tmax: 130.7 ms
Min: -15.4 G's
Tmin: 11.9 ms
CFC 180

5TH FEM. DRIVER CHEST Y (G's) vs TIME (ms)
Max: 2.6 G's
Tmax: 22.1 ms
Min: -4.9 G's
Tmin: 11.9 ms
CFC 180

5TH FEM. DRIVER CHEST Z (G's) vs TIME (ms)
Max: 5.6 G's
Tmax: 21.5 ms
Min: -4.5 G's
Tmin: 5.9 ms
CFC 180

5TH FEM. DRIVER CHEST Resultant (G's) vs TIME (ms)
Max: 16.4 G's
Tmax: 11.9 ms
Min: 0.0 G's
Tmin: 2.7 ms
CFC 180
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 4
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER LEFT FEMUR (N) vs TIME (ms)
Max: 186.6 N
Tmax: 20.3 ms
Min: -100.8 N
Tmin: 201.1 ms
CFC 600

5TH FEM. DRIVER RIGHT FEMUR (N) vs TIME (ms)
Max: 243.1 N
Tmax: 18.5 ms
Min: -161.2 N
Tmin: 201.0 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P1) Trial 4
Test Date: 7/14/08
Speed: 0.0 mph (0.0 km/h)

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
Max: 16.1 Volts
Tmax: 0.3 ms
Min: -0.8 Volts
Tmin: 10.3 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
Max: 13.7 Amps
Tmax: 0.7 ms
Min: -0.1 Amps
Tmin: 2.0 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
Max: 15.9 Volts
Tmax: 200.3 ms
Min: -0.6 Volts
Tmin: 199.8 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
Max: 13.2 Amps
Tmax: 200.8 ms
Min: -0.2 Amps
Tmin: 199.8 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P2)

Test Date: 7/15/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER HEAD X (G's) vs TIME (ms)
Max: 17.8 G's
Tmax: 193.8 ms
Min: -13.5 G's
Tmin: 15.6 ms
CFC 1000

5TH FEM. DRIVER HEAD Y (G's) vs TIME (ms)
Max: 3.9 G's
Tmax: 170.3 ms
Min: -2.4 G's
Tmin: 239.0 ms
CFC 1000

5TH FEM. DRIVER HEAD Z (G's) vs TIME (ms)
Max: 18.9 G's
Tmax: 13.3 ms
Min: -2.2 G's
Tmin: 62.2 ms
CFC 1000

5TH FEM. DRIVER HEAD Resultant (G's) vs TIME (ms)
Max: 21.3 G's
Tmax: 15.5 ms
Min: 0.1 G's
Tmin: 0.1 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P2)
Test Date: 7/15/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER NECK FX (N) vs TIME (ms)
Max: 74.5 N
Tmax: 0.9 ms
Min: -467.8 N
Tmin: 34.1 ms
CFC 1000

5TH FEM. DRIVER NECK FY (N) vs TIME (ms)
Max: 65.7 N
Tmax: 183.4 ms
Min: -75.5 N
Tmin: 0.9 ms
CFC 1000

5TH FEM. DRIVER NECK FZ (N) vs TIME (ms)
Max: 762.5 N
Tmax: 28.9 ms
Min: -155.7 N
Tmin: 58.4 ms
CFC 1000

5TH FEM. DRIVER NECK FResultant (N) vs TIME (ms)
Max: 880.6 N
Tmax: 29.1 ms
Min: 3.0 N
Tmin: 0.1 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P2)

Test Date: 7/15/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER CHEST X (G's) vs TIME (ms)
- Max: 13.3 G's
- Tmax: 17.1 ms
- Min: -37.6 G's
- Tmin: 10.5 ms
- CFC 180

5TH FEM. DRIVER CHEST Y (G's) vs TIME (ms)
- Max: 2.4 G's
- Tmax: 20.3 ms
- Min: -3.6 G's
- Tmin: 7.6 ms
- CFC 180

5TH FEM. DRIVER CHEST Z (G's) vs TIME (ms)
- Max: 9.2 G's
- Tmax: 11.2 ms
- Min: -1.5 G's
- Tmin: 168.3 ms
- CFC 180

5TH FEM. DRIVER CHEST Resultant (G's) vs TIME (ms)
- Max: 38.5 G's
- Tmax: 10.5 ms
- Min: 0.2 G's
- Tmin: 300.5 ms
- CFC 180
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P2)
Test Date: 7/15/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER CHEST X VELOCITY (kph) vs TIME (ms)
Max: 11.3 kph
Tmax: 325.0 ms
Min: -10.6 kph
Tmin: 51.3 ms
CFC 180

5TH FEM. DRIVER CHEST Y VELOCITY (kph) vs TIME (ms)
Max: 1.5 kph
Tmax: 183.3 ms
Min: -0.2 kph
Tmin: 15.9 ms
CFC 180

5TH FEM. DRIVER CHEST Z VELOCITY (kph) vs TIME (ms)
Max: 6.5 kph
Tmax: 124.5 ms
Min: -0.1 kph
Tmin: 4.4 ms
CFC 180

5TH FEM. DRIVER CHEST DISPLACEMENT (mm) vs TIME (ms)
Max: -0.0 mm
Tmax: 0.1 ms
Min: -24.1 mm
Tmin: 12.0 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P2)
Test Date: 7/15/08
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER LEFT FEMUR (N) vs TIME (ms)

Max: 425.9 N
Tmax: 34.3 ms
Min: -74.9 N
Tmin: 1.3 ms
CFC 600

5TH FEM. DRIVER RIGHT FEMUR (N) vs TIME (ms)

Max: 441.1 N
Tmax: 15.0 ms
Min: -90.7 N
Tmin: 1.2 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (5th P2)
Test Date: 7/15/08
Speed: 0.0 mph (0.0 km/h)

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
Max: 15.8 Volts
Tmax: 0.3 ms
Min: -0.4 Volts
Tmin: 10.3 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
Max: 11.8 Amps
Tmax: 1.0 ms
Min: -1.2 Amps
Tmin: 200.4 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
Max: 16.0 Volts
Tmax: 200.4 ms
Min: -0.9 Volts
Tmin: 210.3 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
Max: 6.1 Amps
Tmax: 200.3 ms
Min: -0.2 Amps
Tmin: 199.9 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (3YO P1)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER HEAD X (G's) vs TIME (ms)
Max: 1.2 G's
Tmax: 90.4 ms
Min: -32.5 G's
Tmin: 6.7 ms
CFC 1000

3YR OLD PASSENGER HEAD Y (G's) vs TIME (ms)
Max: 8.7 G's
Tmax: 7.8 ms
Min: -6.3 G's
Tmin: 15.6 ms
CFC 1000

3YR OLD PASSENGER HEAD Z (G's) vs TIME (ms)
Max: 6.4 G's
Tmax: 14.4 ms
Min: -6.1 G's
Tmin: 9.5 ms
CFC 1000

3YR OLD PASSENGER HEAD Resultant (G's) vs TIME (ms)
Max: 32.8 G's
Tmax: 6.7 ms
Min: 0.0 G's
Tmin: 1.5 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (3YO P1)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER NECK FX (N) vs TIME (ms)
Max: 176.1 N
Tmax: 6.9 ms
Min: -9.0 N
Tmin: 5.9 ms
CFC 1000

3YR OLD PASSENGER NECK FY (N) vs TIME (ms)
Max: 64.3 N
Tmax: 17.9 ms
Min: -46.1 N
Tmin: 9.9 ms
CFC 1000

3YR OLD PASSENGER NECK FZ (N) vs TIME (ms)
Max: 265.5 N
Tmax: 17.6 ms
Min: -4.4 N
Tmin: 4.1 ms
CFC 1000

3YR OLD PASSENGER NECK FResultant (N) vs TIME (ms)
Max: 275.7 N
Tmax: 17.6 ms
Min: 0.4 N
Tmin: 3.0 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (3YO P1)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER NECK MX (Nm) vs TIME (ms)
Max: 4.5 Nm
Tmax: 14.2 ms
Min: -1.3 Nm
Tmin: 18.1 ms
CFC 600

3YR OLD PASSENGER NECK MY (Nm) vs TIME (ms)
Max: 5.6 Nm
Tmax: 9.0 ms
Min: -3.5 Nm
Tmin: 100.0 ms
CFC 600

3YR OLD PASSENGER NECK MZ (Nm) vs TIME (ms)
Max: 3.3 Nm
Tmax: 37.1 ms
Min: -2.6 Nm
Tmin: 14.4 ms
CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 5.6 Nm
Tmax: 9.0 ms
Min: -3.5 Nm
Tmin: 100.0 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (3YO P1)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER CHEST X (G's) vs TIME (ms)
Max: 0.2 G's
Tmax: 73.8 ms
Min: -8.0 G's
Tmin: 9.8 ms
CFC 180

3YR OLD PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 1.2 G's
Tmax: 43.1 ms
Min: -4.0 G's
Tmin: 18.8 ms
CFC 180

3YR OLD PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 1.6 G's
Tmax: 46.0 ms
Min: -3.0 G's
Tmin: 8.1 ms
CFC 180

3YR OLD PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 8.3 G's
Tmax: 9.7 ms
Min: 0.0 G's
Tmin: 3.3 ms
CFC 180
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (3YO P1)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER CHEST X Velocity (kph) vs TIME (ms)
- Max: -0.0 kph
- Tmax: 0.1 ms
- Min: -7.7 kph
- Tmin: 100.0 ms
- CFC 180

3YR OLD PASSENGER CHEST Y Velocity (kph) vs TIME (ms)
- Max: 0.1 kph
- Tmax: 16.0 ms
- Min: -0.5 kph
- Tmin: 37.3 ms
- CFC 180

3YR OLD PASSENGER CHEST Z Velocity (kph) vs TIME (ms)
- Max: 2.3 kph
- Tmax: 100.0 ms
- Min: -0.5 kph
- Tmin: 23.2 ms
- CFC 180

3YR OLD PASSENGER CHEST DISPLACEMENT (mm) vs TIME (ms)
- Max: -0.0 mm
- Tmax: 2.5 ms
- Min: -6.0 mm
- Tmin: 14.5 ms
- CFC 600
Injury Values Calculated between 0ms and 100ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
- Max: 16.9 Volts
- Tmax: 0.3 ms
- Min: -1.2 Volts
- Tmin: 10.3 ms
- CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
- Max: 2.6 Amps
- Tmax: 0.2 ms
- Min: -0.0 Amps
- Tmin: 10.3 ms
- CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
- Max: 0.0 Volts
- Tmax: 70.3 ms
- Min: -0.0 Volts
- Tmin: 31.5 ms
- CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
- Max: 0.0 Amps
- Tmax: 0.2 ms
- Min: -0.0 Amps
- Tmin: 88.6 ms
- CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (3YO P2)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER HEAD X (G's) vs TIME (ms)
- Max: 5.3 G's
- Tmax: 62.7 ms
- Min: -75.0 G's
- Tmin: 6.1 ms
- CFC 1000

3YR OLD PASSENGER HEAD Y (G's) vs TIME (ms)
- Max: 24.4 G's
- Tmax: 7.2 ms
- Min: -9.8 G's
- Tmin: 14.8 ms
- CFC 1000

3YR OLD PASSENGER HEAD Z (G's) vs TIME (ms)
- Max: 22.8 G's
- Tmax: 10.0 ms
- Min: -26.5 G's
- Tmin: 7.9 ms
- CFC 1000

3YR OLD PASSENGER HEAD Resultant (G's) vs TIME (ms)
- Max: 76.2 G's
- Tmax: 6.1 ms
- Min: 0.0 G's
- Tmin: 1.0 ms
- CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (3YO P2)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER HEAD X Velocity (kph) vs TIME (ms)
Max: 0.1 kph
Tmax: 4.4 ms
Min: -23.8 kph
Tmin: 51.5 ms
CFC 180

3YR OLD PASSENGER HEAD Y Velocity (kph) vs TIME (ms)
Max: 1.1 kph
Tmax: 12.5 ms
Min: -0.6 kph
Tmin: 28.1 ms
CFC 180

3YR OLD PASSENGER HEAD Z Velocity (kph) vs TIME (ms)
Max: 21.0 kph
Tmax: 100.0 ms
Min: -0.1 kph
Tmin: 9.3 ms
CFC 180
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (3YO P2)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER NECK FX (N) vs TIME (ms)
Max: 437.8 N
Tmax: 5.9 ms
Min: -69.2 N
Tmin: 33.7 ms
CFC 1000

3YR OLD PASSENGER NECK FY (N) vs TIME (ms)
Max: 54.0 N
Tmax: 10.7 ms
Min: -37.0 N
Tmin: 20.8 ms
CFC 1000

3YR OLD PASSENGER NECK FZ (N) vs TIME (ms)
Max: 444.1 N
Tmax: 34.5 ms
Min: -133.4 N
Tmin: 7.7 ms
CFC 1000

3YR OLD PASSENGER NECK FResultant (N) vs TIME (ms)
Max: 485.5 N
Tmax: 9.9 ms
Min: 0.3 N
Tmin: 3.6 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (3YO P2)
Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER CHEST X (G's) vs TIME (ms)
Max: 1.8 G's
Tmax: 18.5 ms
Min: -9.7 G's
Tmin: 7.8 ms
CFC 180

3YR OLD PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 1.2 G's
Tmax: 21.6 ms
Min: -1.4 G's
Tmin: 11.6 ms
CFC 180

3YR OLD PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 4.9 G's
Tmax: 74.2 ms
Min: -4.5 G's
Tmin: 9.5 ms
CFC 180

3YR OLD PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 9.7 G's
Tmax: 7.8 ms
Min: 0.0 G's
Tmin: 1.6 ms
CFC 180
Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER CHEST X Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 6.0 ms
Min: -9.3 kph
Tmin: 82.3 ms
CFC 180

3YR OLD PASSENGER CHEST Y Velocity (kph) vs TIME (ms)
Max: 0.1 kph
Tmax: 80.7 ms
Min: -0.3 kph
Tmin: 52.7 ms
CFC 180

3YR OLD PASSENGER CHEST Z Velocity (kph) vs TIME (ms)
Max: 4.7 kph
Tmax: 100.0 ms
Min: -1.8 kph
Tmin: 43.1 ms
CFC 180

3YR OLD PASSENGER CHEST DISPLACEMENT (mm) vs TIME (ms)
Max: 1.1 mm
Tmax: 21.9 ms
Min: -1.8 mm
Tmin: 13.9 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (3YO P2)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
Max: 16.8 Volts
Tmax: 0.3 ms
Min: -1.2 Volts
Tmin: 10.3 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
Max: 2.7 Amps
Tmax: 0.2 ms
Min: -0.0 Amps
Tmin: 11.9 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
Max: 0.0 Volts
Tmax: 56.6 ms
Min: -0.0 Volts
Tmin: 63.0 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
Max: 0.0 Amps
Tmax: 0.2 ms
Min: -0.0 Amps
Tmin: 6.4 ms
CFC 1000

B-60
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (3YO P2)
Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

PASS. nij (NTF) () vs TIME SPECIAL CHS (ms)
Max: 0.3
Tmax: 9.9 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NTE) () vs TIME SPECIAL CHS (ms)
Max: 0.6
Tmax: 34.6 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NCF) () vs TIME SPECIAL CHS (ms)
Max: 0.3
Tmax: 7.7 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NCE) () vs TIME SPECIAL CHS (ms)
Max: 0.0
Tmax: 3.2 ms
Min: 0.0
Tmin: 0.4 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (6YO P1)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER HEAD X (G's) vs TIME (ms)
Max: 1.0 G's
Tmax: 82.6 ms
Min: -28.1 G's
Tmin: 6.6 ms
CFC 1000

6YR OLD PASSENGER HEAD Y (G's) vs TIME (ms)
Max: 7.6 G's
Tmax: 8.9 ms
Min: -16.0 G's
Tmin: 7.2 ms
CFC 1000

6YR OLD PASSENGER HEAD Z (G's) vs TIME (ms)
Max: 7.7 G's
Tmax: 34.9 ms
Min: -4.7 G's
Tmin: 8.8 ms
CFC 1000

6YR OLD PASSENGER HEAD Resultant (G's) vs TIME (ms)
Max: 28.8 G's
Tmax: 6.7 ms
Min: 0.0 G's
Tmin: 1.0 ms
CFC 1000
Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER HEAD X Velocity (kph) vs TIME (ms)
- Max: 0.0 kph
- Tmax: 0.1 ms
- Min: -22.0 kph
- Tmin: 70.2 ms
- CFC 180

6YR OLD PASSENGER HEAD Y Velocity (kph) vs TIME (ms)
- Max: 0.0 kph
- Tmax: 0.7 ms
- Min: -5.6 kph
- Tmin: 99.9 ms
- CFC 180

6YR OLD PASSENGER HEAD Z Velocity (kph) vs TIME (ms)
- Max: 16.2 kph
- Tmax: 100.0 ms
- Min: -0.1 kph
- Tmin: 10.0 ms
- CFC 180
Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER NECK FX (N) vs TIME (ms)
- Max: 243.5 N
- Tmax: 33.1 ms
- Min: -5.8 N
- Tmin: 1.4 ms
- CFC 1000

6YR OLD PASSENGER NECK FY (N) vs TIME (ms)
- Max: 91.6 N
- Tmax: 35.3 ms
- Min: -59.8 N
- Tmin: 2.3 ms
- CFC 1000

6YR OLD PASSENGER NECK FZ (N) vs TIME (ms)
- Max: 492.0 N
- Tmax: 39.2 ms
- Min: -91.6 N
- Tmin: 2.5 ms
- CFC 1000

6YR OLD PASSENGER NECK FResultant (N) vs TIME (ms)
- Max: 540.0 N
- Tmax: 35.4 ms
- Min: 1.7 N
- Tmin: 1.2 ms
- CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (6YO P1)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER NECK MX (Nm) vs TIME (ms)
Max: 1.4 Nm
Tmax: 95.5 ms
Min: -4.2 Nm
Tmin: 37.0 ms
CFC 600

6YR OLD PASSENGER NECK MY (Nm) vs TIME (ms)
Max: 12.3 Nm
Tmax: 30.8 ms
Min: -5.4 Nm
Tmin: 66.6 ms
CFC 600

6YR OLD PASSENGER NECK MZ (Nm) vs TIME (ms)
Max: 8.5 Nm
Tmax: 43.6 ms
Min: -4.5 Nm
Tmin: 96.0 ms
CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 8.1 Nm
Tmax: 30.9 ms
Min: -6.0 Nm
Tmin: 100.0 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (6YO P1)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER CHEST X (G's) vs TIME (ms)
Max: 1.2 G's
Tmax: 7.2 ms
Min: -10.9 G's
Tmin: 33.9 ms
CFC 180

6YR OLD PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 0.6 G's
Tmax: 84.4 ms
Min: -3.1 G's
Tmin: 15.5 ms
CFC 180

6YR OLD PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 1.8 G's
Tmax: 15.0 ms
Min: -5.2 G's
Tmin: 8.1 ms
CFC 180

6YR OLD PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 10.9 G's
Tmax: 33.9 ms
Min: 0.0 G's
Tmin: 0.6 ms
CFC 180
Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER CHEST X Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 0.6 ms
Min: -10.8 kph
Tmin: 54.4 ms
CFC 180

6YR OLD PASSENGER CHEST Y Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 7.0 ms
Min: -1.1 kph
Tmin: 47.2 ms
CFC 180

6YR OLD PASSENGER CHEST Z Velocity (kph) vs TIME (ms)
Max: 1.0 kph
Tmax: 100.0 ms
Min: -0.5 kph
Tmin: 10.6 ms
CFC 180

6YR OLD PASSENGER CHEST DISPLACEMENT (mm) vs TIME (ms)
Max: 0.0 mm
Tmax: 0.7 ms
Min: -4.2 mm
Tmin: 38.3 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (6YO P1)

Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
Max: 16.5 Volts
Tmax: 0.3 ms
Min: -0.5 Volts
Tmin: 10.3 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
Max: 6.0 Amps
Tmax: 1.1 ms
Min: -0.2 Amps
Tmin: 10.3 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
Max: 0.0 Volts
Tmax: 77.7 ms
Min: -0.0 Volts
Tmin: 7.2 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
Max: 0.2 Amps
Tmax: 1.1 ms
Min: -0.0 Amps
Tmin: 20.8 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (6YO P1)
Test Date: 5/6/08
Speed: 0.0 mph (0.0 km/h)

PASS. nij (NTF) () vs TIME SPECIAL CHS (ms)
Max: 0.2
Tmax: 35.4 ms
Min: 0.0
Tmin: 0.5 ms
CFC 600

Pass. nij (NTE) () vs TIME SPECIAL CHS (ms)
Max: 0.2
Tmax: 99.2 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NCF) () vs TIME SPECIAL CHS (ms)
Max: 0.0
Tmax: 0.1 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NCE) () vs TIME SPECIAL CHS (ms)
Max: 0.1
Tmax: 2.6 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (6YO P2)

Test Date: 5/5/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER HEAD X (G's) vs TIME (ms)

Max: 2.2 G's
Tmax: 98.9 ms
Min: -99.0 G's
Tmin: 6.0 ms
CFC 1000

6YR OLD PASSENGER HEAD Y (G's) vs TIME (ms)

Max: 4.4 G's
Tmax: 9.1 ms
Min: -7.6 G's
Tmin: 20.9 ms
CFC 1000

6YR OLD PASSENGER HEAD Z (G's) vs TIME (ms)

Max: 23.7 G's
Tmax: 6.9 ms
Min: -12.7 G's
Tmin: 5.7 ms
CFC 1000

6YR OLD PASSENGER HEAD Resultant (G's) vs TIME (ms)

Max: 99.3 G's
Tmax: 6.0 ms
Min: 0.1 G's
Tmin: 0.1 ms
CFC 1000

B-70
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (6YO P2)
Test Date: 5/5/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER HEAD X Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 3.3 ms
Min: -26.9 kph
Tmin: 51.5 ms
CFC 180

6YR OLD PASSENGER HEAD Y Velocity (kph) vs TIME (ms)
Max: -0.0 kph
Tmax: 0.1 ms
Min: -2.6 kph
Tmin: 100.0 ms
CFC 180

6YR OLD PASSENGER HEAD Z Velocity (kph) vs TIME (ms)
Max: 23.0 kph
Tmax: 100.0 ms
Min: -0.1 kph
Tmin: 6.2 ms
CFC 180
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (6YO P2)

Test Date: 5/5/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER NECK FX (N) vs TIME (ms)
Max: 415.8 N
Tmax: 6.9 ms
Min: -1.0 N
Tmin: 0.2 ms
CFC 1000

6YR OLD PASSENGER NECK FY (N) vs TIME (ms)
Max: 63.8 N
Tmax: 18.3 ms
Min: -74.7 N
Tmin: 1.6 ms
CFC 1000

6YR OLD PASSENGER NECK FZ (N) vs TIME (ms)
Max: 402.8 N
Tmax: 42.3 ms
Min: -417.0 N
Tmin: 8.9 ms
CFC 1000

6YR OLD PASSENGER NECK FResultant (N) vs TIME (ms)
Max: 489.6 N
Tmax: 8.9 ms
Min: 2.9 N
Tmin: 0.2 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (6YO P2)
Test Date: 5/5/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

- **6YR OLD PASSENGER NECK MX (Nm) vs TIME (ms)**
 - Max: 4.3 Nm
 - Tmax: 32.4 ms
 - Min: -4.7 Nm
 - Tmin: 19.0 ms
 - CFC 600

- **6YR OLD PASSENGER NECK MY (Nm) vs TIME (ms)**
 - Max: 15.1 Nm
 - Tmax: 11.7 ms
 - Min: -14.1 Nm
 - Tmax: 62.0 ms
 - CFC 600

- **6YR OLD PASSENGER NECK MZ (Nm) vs TIME (ms)**
 - Max: 0.4 Nm
 - Tmax: 100.0 ms
 - Min: -3.3 Nm
 - Tmin: 62.5 ms
 - CFC 600

- **Pass. Occipital Condyle Moment (Nm) vs TIME (ms)**
 - Max: 10.7 Nm
 - Tmax: 11.8 ms
 - Min: -15.5 Nm
 - Tmax: 58.8 ms
 - CFC 600
Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER CHEST X (G's) vs TIME (ms)

- Max: 1.6 G's
- Tmax: 45.7 ms
- Min: -16.4 G's
- Tmin: 47.3 ms
- CFC 180

6YR OLD PASSENGER CHEST Y (G's) vs TIME (ms)

- Max: 1.3 G's
- Tmax: 27.5 ms
- Min: -1.9 G's
- Tmin: 22.5 ms
- CFC 180

6YR OLD PASSENGER CHEST Z (G's) vs TIME (ms)

- Max: 2.5 G's
- Tmax: 78.8 ms
- Min: -2.3 G's
- Tmin: 34.4 ms
- CFC 180

6YR OLD PASSENGER CHEST Resultant (G's) vs TIME (ms)

- Max: 16.4 G's
- Tmax: 47.3 ms
- Min: 0.1 G's
- Tmin: 0.1 ms
- CFC 180
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (6YO P2)
Test Date: 5/5/08
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER CHEST X Velocity (kph) vs TIME (ms)
- Max: -0.0 kph
- Tmax: 0.1 ms
- Min: -9.3 kph
- Tmin: 100.0 ms
- CFC 180

6YR OLD PASSENGER CHEST Y Velocity (kph) vs TIME (ms)
- Max: 0.1 kph
- Tmax: 11.0 ms
- Min: -0.8 kph
- Tmin: 100.0 ms
- CFC 180

6YR OLD PASSENGER CHEST Z Velocity (kph) vs TIME (ms)
- Max: 2.9 kph
- Tmax: 100.0 ms
- Min: -0.8 kph
- Tmin: 44.1 ms
- CFC 180

6YR OLD PASSENGER CHEST DISPLACEMENT (mm) vs TIME (ms)
- Max: 0.1 mm
- Tmax: 10.9 ms
- Min: -0.9 mm
- Tmin: 48.1 ms
- CFC 600
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (6YO P2)

Test Date: 5/5/08
Speed: 0.0 mph (0.0 km/h)

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
Max: 16.3 Volts
Tmax: 0.4 ms
Min: -0.2 Volts
Tmin: 10.3 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
Max: 8.3 Amps
Tmax: 2.3 ms
Min: -0.0 Amps
Tmin: 64.7 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
Max: 0.0 Volts
Tmax: 15.9 ms
Min: -0.0 Volts
Tmin: 3.0 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
Max: 0.3 Amps
Tmax: 2.3 ms
Min: -0.0 Amps
Tmin: 65.3 ms
CFC 1000
LOW RISK DEPLOYMENT
2008 Mercedes C300 (C80504) (6YO P2)
Test Date: 5/5/08
Speed: 0.0 mph (0.0 km/h)

Pass. nji (NTF) () vs TIME SPECIAL CHS (ms)
Max: 0.1
Tmax: 14.6 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nji (NTE) () vs TIME SPECIAL CHS (ms)
Max: 0.5
Tmax: 58.7 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nji (NCF) () vs TIME SPECIAL CHS (ms)
Max: 0.2
Tmax: 10.7 ms
Min: 0.0
Tmin: 0.2 ms
CFC 600

Pass. nji (NCE) () vs TIME SPECIAL CHS (ms)
Max: 0.1
Tmax: 2.5 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

B-77
APPENDIX C

CRASH TEST PHOTOGRAPHS
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vehicle Certification Label</td>
<td>C-1</td>
</tr>
<tr>
<td>2</td>
<td>Tire Placard</td>
<td>C-2</td>
</tr>
<tr>
<td>3</td>
<td>Pre-Test Front View of Test Vehicle</td>
<td>C-3</td>
</tr>
<tr>
<td>4</td>
<td>Post-Test Front View of Test Vehicle</td>
<td>C-4</td>
</tr>
<tr>
<td>5</td>
<td>Pre-Test Left Side View of Test Vehicle</td>
<td>C-5</td>
</tr>
<tr>
<td>6</td>
<td>Post-Test Left Side View of Test Vehicle</td>
<td>C-6</td>
</tr>
<tr>
<td>7</td>
<td>Pre-Test Right Side View of Test Vehicle</td>
<td>C-7</td>
</tr>
<tr>
<td>8</td>
<td>Post-Test Right Side View of Test Vehicle</td>
<td>C-8</td>
</tr>
<tr>
<td>9</td>
<td>Pre-Test Right Front Three-Quarter View of Test Vehicle</td>
<td>C-9</td>
</tr>
<tr>
<td>10</td>
<td>Post-Test Right Front Three-Quarter View of Test Vehicle</td>
<td>C-10</td>
</tr>
<tr>
<td>11</td>
<td>Pre-Test Left Front Three-Quarter View of Test Vehicle</td>
<td>C-11</td>
</tr>
<tr>
<td>12</td>
<td>Post-Test Left Front Three-Quarter View of Test Vehicle</td>
<td>C-12</td>
</tr>
<tr>
<td>13</td>
<td>Pre-Test Right Rear Three-Quarter View of Test Vehicle</td>
<td>C-13</td>
</tr>
<tr>
<td>14</td>
<td>Post-Test Right Rear Three-Quarter View of Test Vehicle</td>
<td>C-14</td>
</tr>
<tr>
<td>15</td>
<td>Pre-Test Left Rear Three-Quarter View of Test Vehicle</td>
<td>C-15</td>
</tr>
<tr>
<td>16</td>
<td>Post-Test Left Rear Three-Quarter View of Test Vehicle</td>
<td>C-16</td>
</tr>
<tr>
<td>17</td>
<td>Pre-Test Rear View of Test Vehicle</td>
<td>C-17</td>
</tr>
<tr>
<td>18</td>
<td>Post-Test Rear View of Test Vehicle</td>
<td>C-18</td>
</tr>
<tr>
<td>19</td>
<td>Pre-Test Windshield View</td>
<td>C-19</td>
</tr>
<tr>
<td>20</td>
<td>Post-Test Windshield View</td>
<td>C-20</td>
</tr>
<tr>
<td>21</td>
<td>Pre-Test Engine Compartment View</td>
<td>C-21</td>
</tr>
<tr>
<td>22</td>
<td>Post-Test Engine Compartment View</td>
<td>C-22</td>
</tr>
<tr>
<td>23</td>
<td>Pre-Test Fuel Filler Cap View</td>
<td>C-23</td>
</tr>
<tr>
<td>24</td>
<td>Post-Test Fuel Filler Cap View</td>
<td>C-24</td>
</tr>
<tr>
<td>25</td>
<td>Pre-Test Front Underbody View</td>
<td>C-25</td>
</tr>
</tbody>
</table>
Photo No. 26. Post-Test Front Underbody View
Photo No. 27. Pre-Test Mid Underbody View
Photo No. 28. Post-Test Mid Underbody View
Photo No. 29. Post-Test Mid Rear Underbody View
Photo No. 30. Pre-Test Rear Underbody View
Photo No. 31. Post-Test Rear Underbody View
Photo No. 32. Pre-Test Driver Dummy Front View (head position)
Photo No. 33. Post-Test Driver Dummy Front View (head position)
Photo No. 34. Pre-Test Driver Dummy Position Left Side View
Photo No. 35. Post-Test Driver Dummy Position Left Side View
Photo No. 36. Pre-Test Driver Dummy Position Left Side View (door open)
Photo No. 37. Post-Test Driver Dummy Position Left Side View (door open)
Photo No. 38. Pre-Test Driver Dummy Seat Position
Photo No. 39. Post-Test Driver Dummy Seat Position
Photo No. 40. Pre-Test Driver Dummy Feet Position
Photo No. 41. Post-Test Driver Dummy Feet Position
Photo No. 42. Pre-Test Driver Side Knee Bolster View
Photo No. 43. Post-Test Driver Side Knee Bolster View
Photo No. 44. Post-Test Driver Dummy Airbag Contact
Photo No. 45. Post-Test Driver Dummy Head Contact (headrest)
Photo No. 46. Post-Test Driver Dummy Knee Contact
Photo No. 47. Pre-Test Passenger Dummy Front View (head position)
Photo No. 48. Post-Test Passenger Dummy Front View (head position)
Photo No. 49. Pre-Test Passenger Dummy Position Right Side View
Photo No. 50. Post-Test Passenger Dummy Position Right Side View
Photo No. 51. Pre-Test Passenger Dummy Position Right Side View (door open)
Photo No. 52. Post-Test Passenger Dummy Position Right Side View (door open)
Photo No. 53. Pre-Test Passenger Dummy Seat Position C-53
Photo No. 54. Post-Test Passenger Dummy Seat Position C-54
Photo No. 55. Pre-Test Passenger Dummy Feet Position C-55
Photo No. 56. Post-Test Passenger Dummy Feet Position C-56
Photo No. 57. Pre-Test Passenger Side Knee Bolster View C-57
Photo No. 58. Post-Test Passenger Side Knee Bolster View C-58
Photo No. 59. Post-Test Passenger Dummy Head Contact View (a-pillar) C-59
Photo No. 60. Post-Test Passenger Dummy Knee Contact C-60
Photo No. 61. Post-Test Passenger Dummy Airbag Contact C-61
Photo No. 62. Rollover 90 Degrees C-62
Photo No. 63. Rollover 180 Degrees C-63
Photo No. 64. Rollover 270 Degrees C-64
Photo No. 65. Rollover 360 Degrees C-65
Photo No. 66. Temperature Plot C-66
Photo No. 67. Vehicle in Relation to The Load Cell Grid C-67
<table>
<thead>
<tr>
<th></th>
<th>KG</th>
<th>LBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GVWR</td>
<td>2120</td>
<td>4672</td>
</tr>
<tr>
<td>GAWR FRONT</td>
<td>1070</td>
<td>2358</td>
</tr>
<tr>
<td>GAWR REAR</td>
<td>1085</td>
<td>2391</td>
</tr>
</tbody>
</table>

This vehicle conforms to all applicable U.S. Federal Motor Vehicle Safety, Bumper and Theft Prevention Standards in effect on the date of manufacture shown above.

Vehicle Certification Label
Tire Placard

<table>
<thead>
<tr>
<th>Seating Capacity</th>
<th>Total</th>
<th>Front</th>
<th>Rear</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

The combined weight of occupants and cargo should never exceed 370 kg or 815 lbs.

<table>
<thead>
<tr>
<th>Original Tire Size</th>
<th>Cold Tire Inflation Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>225/45 R17</td>
<td>FRONT: 210 KPA, 30 PSI</td>
</tr>
<tr>
<td>245/40 R17</td>
<td>REAR: 240 KPA, 35 PSI</td>
</tr>
<tr>
<td>Compact Spare Tire</td>
<td>COLD TIRE INFLATION PRESSURE</td>
</tr>
<tr>
<td>T125/90 R16 98M</td>
<td>420 KPA, 60 PSI</td>
</tr>
</tbody>
</table>

See Owner’s Manual for Additional Information.
Pre-Test Front View of Test Vehicle
Post-Test Front View of Test Vehicle
Pre-Test Left Side View of Test Vehicle
Post-Test Left Side View of Test Vehicle
Post-Test Right Side View of Test Vehicle
Post-Test Right Front Three-Quarter View of Test Vehicle
Pre-Test Left Front Three-Quarter View of Test Vehicle
Post-Test Left Front Three-Quarter View of Test Vehicle
Post-Test Right Rear Three-Quarter View of Test Vehicle
Pre-Test Left Rear Three-Quarter View of Test Vehicle
Pre-Test Rear View of Test Vehicle
Post-Test Rear View of Test Vehicle
Pre-Test Engine Compartment View
Post-Test Fuel Filler Cap View
Post-Test Front Underbody View
Pre-Test Mid Underbody View
Post-Test Mid Underbody View
Pre-Test Rear Underbody View
Post-Test Rear Underbody View
Pre-Test Driver Dummy Front View (head position)
Post-Test Driver Dummy Front View (head position)
Pre-Test Driver Dummy Position Left Side View (door open)
Post-Test Driver Dummy Position Left Side View (door open)
Pre-Test Driver Dummy Seat Position
Pre-Test Driver Dummy Feet Position
Post-Test Driver Dummy Feet Position
Pre-Test Driver Side Knee Bolster View
Post-Test Driver Side Knee Bolster View
Post-Test Driver Dummy Airbag Contact
Post-Test Driver Dummy Head Contact (headrest)
Post-Test Driver Dummy Knee Contact
Pre-Test Passenger Dummy Front View (head position)
Post-Test Passenger Dummy Front View (head position)
Pre-Test Passenger Dummy Position Right Side View
Pre-Test Passenger Dummy Position Right Side View (door open)
Pre-Test Passenger Dummy Seat Position C80504
25 MPH FRONTAL
08090901
2008 MERCEDES C300
Pre-Test Passenger Dummy Feet Position
Post-Test Passenger Dummy Feet Position
Pre-Test Passenger Side Knee Bolster View
Post-Test Passenger Dummy Head Contact View (C-pillar)
Rollover 90 Degrees
Temperature Plot
Vehicle in Relation to The Load Cell Grid
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo No. 1</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Left Side View (Trial 1)</td>
<td>D-1</td>
</tr>
<tr>
<td>Photo No. 2</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Left Side View (Trial 1)</td>
<td>D-2</td>
</tr>
<tr>
<td>Photo No. 3</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Right Side View (Trial 1)</td>
<td>D-3</td>
</tr>
<tr>
<td>Photo No. 4</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Right Side View (Trial 1)</td>
<td>D-4</td>
</tr>
<tr>
<td>Photo No. 5</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Airbag Left Side View (Trial 1)</td>
<td>D-5</td>
</tr>
<tr>
<td>Photo No. 6</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Airbag Right Side View (Trial 1)</td>
<td>D-6</td>
</tr>
<tr>
<td>Photo No. 7</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Head Contact (headrest) (Trial 1)</td>
<td>D-7</td>
</tr>
<tr>
<td>Photo No. 8</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Left Side View (Trial 2)</td>
<td>D-8</td>
</tr>
<tr>
<td>Photo No. 9</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Left Side View (Trial 2)</td>
<td>D-9</td>
</tr>
<tr>
<td>Photo No. 10</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Right Side View (Trial 2)</td>
<td>D-10</td>
</tr>
<tr>
<td>Photo No. 11</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Right Side View (Trial 2)</td>
<td>D-11</td>
</tr>
<tr>
<td>Photo No. 12</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Airbag Left Side View (Trial 2)</td>
<td>D-12</td>
</tr>
<tr>
<td>Photo No. 13</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Airbag Right Side View (Trial 2)</td>
<td>D-13</td>
</tr>
<tr>
<td>Photo No. 14</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Head Contact (headrest) (Trial 2)</td>
<td>D-14</td>
</tr>
<tr>
<td>Photo No. 15</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Left Side View (Trial 3)</td>
<td>D-15</td>
</tr>
<tr>
<td>Photo No. 16</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Left Side View (Trial 3)</td>
<td>D-16</td>
</tr>
<tr>
<td>Photo No. 17</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Right Side View (Trial 3)</td>
<td>D-17</td>
</tr>
<tr>
<td>Photo No. 18</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Right Side View (Trial 3)</td>
<td>D-18</td>
</tr>
<tr>
<td>Photo No. 19</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Airbag Left Side View (Trial 3)</td>
<td>D-19</td>
</tr>
<tr>
<td>Photo No. 20</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Airbag Right Side View (Trial 3)</td>
<td>D-20</td>
</tr>
<tr>
<td>Photo No. 21</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Left Side View (Trial 4)</td>
<td>D-21</td>
</tr>
<tr>
<td>Photo No. 22</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Left Side View (Trial 4)</td>
<td>D-22</td>
</tr>
<tr>
<td>Photo No. 23</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Right Side View (Trial 4)</td>
<td>D-23</td>
</tr>
<tr>
<td>Photo No. 24</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Right Side View (Trial 4)</td>
<td>D-24</td>
</tr>
<tr>
<td>Photo No. 25</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Airbag Left Side View (Trial 4)</td>
<td>D-25</td>
</tr>
<tr>
<td>Photo No. 26</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Airbag Right Side View (Trial 4)</td>
<td>D-26</td>
</tr>
<tr>
<td>Photo No. 27</td>
<td>Pre-Test 5th Fem. P2 Driver Dummy Left Side View</td>
<td>D-27</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>57</td>
<td>Pre-Test 6YO P2 Passenger Dummy Right Side View</td>
<td>D-57</td>
</tr>
<tr>
<td>58</td>
<td>Post-Test 6YO P2 Passenger Dummy Right Side View</td>
<td>D-58</td>
</tr>
<tr>
<td>59</td>
<td>Post-Test 6YO P2 Passenger Dummy Airbag Left Side View</td>
<td>D-59</td>
</tr>
<tr>
<td>60</td>
<td>Post-Test 6YO P2 Passenger Dummy Airbag Right Side View</td>
<td>D-60</td>
</tr>
<tr>
<td>61</td>
<td>Passenger Geometric Center (2008 Mercedes C300)</td>
<td>D-61</td>
</tr>
</tbody>
</table>
Post-Test 5th Fem. P1 Driver Dummy Right Side View (Trial 1)
Post-Test 5th Fem. P1 Driver Dummy Airbag Right Side View (Trial 1)
Post-Test 5th Fem. P1 Driver Dummy Head Contact (headrest) (Trial 1)
Post-Test 5th Fem. P1 Driver Dummy Left Side View (Trial 2)
Post-Test 5th Fem. P1 Driver Dummy Right Side View (Trial 2)
Post-Test 5th Fem. P1 Driver Dummy Head Contact (headrest) (Trial 2)
Post-Test 5th Fem. P1 Driver Dummy Left Side View (Trial 3)
Pre-Test 5th Fem. P1 Driver Dummy Right Side View (Trial 3)
Post-Test 5th Fem. P1 Driver Dummy Right Side View (Trial 3)
Post-Test 5th Fem. P1 Driver Dummy Airbag Left Side View (Trial 3)
Post-Test 5th Fem. P2 Driver Dummy Airbag Left Side View
Post-Test 5th Fem. P2 Driver Dummy Head Contact (visor)
Post-Test 5th Fem. P2 Driver Dummy Head Contact (headrest)
Post-Test 3YO P1 Passenger Dummy Left Side View
Post-Test 3YO P1 Passenger Dummy Right Side View
Post-Test 3YO P1 Passenger Dummy Airbag Left Side View
Post-Test 3YO P1 Passenger Dummy Airbag Right Side View
Post-Test 3YO P1 Passenger Dummy Head Contact (seatback)
Pre-Test 3YO P2 Passenger Dummy Right Side View
Post-Test 3YO P2 Passenger Dummy Right Side View
Pre-Test 6YO P1 Passenger Dummy Right Side View
Post-Test 6YO P1 Passenger Dummy Right Side View
Post-Test 6YO P1 Passenger Dummy Airbag Right Side View
Post-Test 6YO P1 Passenger Dummy Head Contact (seatback)
Pre-Test 6YO P2 Passenger Dummy Left Side View
Post-Test 6YO P2 Passenger Dummy Left Side View
Pre-Test 6YO P2 Passenger Dummy Right Side View
Passenger Geometric Center (2008 Mercedes C300)
APPENDIX E
SUPPRESSION PHOTOGRAPHS
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>Cosco Dream Ride Car Bed Belted, Middle Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>No. 2</td>
<td>Cosco Dream Ride Car Bed Belted, Rearward Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>No. 3</td>
<td>Unbelted 5th Percentile Female Dummy Reactivation, Middle Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>No. 4</td>
<td>Britax Handle With Care 191 Belted, Forward Seat Track</td>
<td>E-2</td>
</tr>
<tr>
<td>No. 5</td>
<td>Britax Handle With Care 191 Belted, Middle Seat Track</td>
<td>E-2</td>
</tr>
<tr>
<td>No. 6</td>
<td>Britax Handle With Care 191 Belted, Rearward Seat Track</td>
<td>E-2</td>
</tr>
<tr>
<td>No. 7</td>
<td>Britax Handle With Care 191 Unbelted, Forward Seat Track</td>
<td>E-2</td>
</tr>
<tr>
<td>No. 8</td>
<td>Britax Handle With Care 191 Unbelted, Middle Seat Track</td>
<td>E-3</td>
</tr>
<tr>
<td>No. 9</td>
<td>Britax Handle With Care 191 Unbelted, Rearward Seat Track</td>
<td>E-3</td>
</tr>
<tr>
<td>No. 10</td>
<td>Britax Handle With Care 191 Forward Facing Unbelted, Forward Seat Track</td>
<td>E-3</td>
</tr>
<tr>
<td>No. 11</td>
<td>Britax Handle With Care 191 Forward Facing Unbelted, Middle Seat Track</td>
<td>E-3</td>
</tr>
<tr>
<td>No. 12</td>
<td>Britax Handle With Care 191 Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-4</td>
</tr>
<tr>
<td>No. 13</td>
<td>Unbelted 5th Percentile Female Dummy Reactivation, Rearward Seat Track</td>
<td>E-4</td>
</tr>
<tr>
<td>No. 14</td>
<td>Evenflo First Choice 204 Belted, Forward Seat Track</td>
<td>E-5</td>
</tr>
<tr>
<td>No. 15</td>
<td>Evenflo First Choice 204 Belted, Middle Seat Track</td>
<td>E-5</td>
</tr>
<tr>
<td>No. 16</td>
<td>Evenflo First Choice 204 Belted, Rearward Seat Track</td>
<td>E-5</td>
</tr>
<tr>
<td>No. 17</td>
<td>Evenflo First Choice 204 Unbelted, Middle Seat Track</td>
<td>E-5</td>
</tr>
<tr>
<td>No. 18</td>
<td>Evenflo First Choice 204 Unbelted, Rearward Seat Track</td>
<td>E-6</td>
</tr>
<tr>
<td>No. 19</td>
<td>Evenflo First Choice 204 Forward Facing Unbelted, Forward Seat Track</td>
<td>E-6</td>
</tr>
<tr>
<td>No. 20</td>
<td>Evenflo First Choice 204 Forward Facing Unbelted, Middle Seat Track</td>
<td>E-6</td>
</tr>
<tr>
<td>No. 21</td>
<td>Evenflo First Choice 204 Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-6</td>
</tr>
<tr>
<td>No. 22</td>
<td>Unbelted 5th Percentile Female Dummy Reactivation, Middle Seat Track</td>
<td>E-7</td>
</tr>
<tr>
<td>No. 23</td>
<td>Graco Infant W/ Base Belted, Forward Seat Track</td>
<td>E-8</td>
</tr>
<tr>
<td>No. 24</td>
<td>Graco Infant W/ Base Belted, Middle Seat Track</td>
<td>E-8</td>
</tr>
<tr>
<td>No. 25</td>
<td>Graco Infant W/ Base Belted, Rearward Seat Track</td>
<td>E-8</td>
</tr>
<tr>
<td>No. 26</td>
<td>Graco Infant W/ Base Unbelted, Forward Seat Track</td>
<td>E-8</td>
</tr>
<tr>
<td>No. 27</td>
<td>Graco Infant W/ Base Unbelted, Middle Seat Track</td>
<td>E-9</td>
</tr>
<tr>
<td>No. 28</td>
<td>Graco Infant W/ Base Unbelted, Rearward Seat Track</td>
<td>E-9</td>
</tr>
<tr>
<td>No. 29</td>
<td>Graco Infant W/ Base Forward Facing Unbelted, Forward Seat Track</td>
<td>E-9</td>
</tr>
<tr>
<td>No. 30</td>
<td>Graco Infant W/ Base Forward Facing Unbelted, Middle Seat Track</td>
<td>E-9</td>
</tr>
<tr>
<td>No. 31</td>
<td>Graco Infant W/ Base Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-10</td>
</tr>
<tr>
<td>No. 32</td>
<td>Graco Infant W/O Base Belted, Forward Seat Track</td>
<td>E-10</td>
</tr>
<tr>
<td>No. 33</td>
<td>Graco Infant W/O Base Belted, Middle Seat Track</td>
<td>E-10</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Description</td>
<td>Page #</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>34</td>
<td>Graco Infant W/O Base Belted, Rearward Seat Track</td>
<td>E-10</td>
</tr>
<tr>
<td>35</td>
<td>Graco Infant W/O Base Unbelted, Forward Seat Track</td>
<td>E-11</td>
</tr>
<tr>
<td>36</td>
<td>Graco Infant W/O Base Unbelted, Middle Seat Track</td>
<td>E-11</td>
</tr>
<tr>
<td>37</td>
<td>Graco Infant W/O Base Unbelted, Rearward Seat Track</td>
<td>E-11</td>
</tr>
<tr>
<td>38</td>
<td>Graco Infant W/O Base Forward Facing Unbelted, Forward Seat Track</td>
<td>E-11</td>
</tr>
<tr>
<td>39</td>
<td>Graco Infant W/O Base Forward Facing Unbelted, Middle Seat Track</td>
<td>E-12</td>
</tr>
<tr>
<td>40</td>
<td>Graco Infant W/O Base Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-12</td>
</tr>
<tr>
<td>41</td>
<td>Unbelted 5th Percentile Female Dummy Reactivation, Forward Seat Track</td>
<td>E-12</td>
</tr>
<tr>
<td>42</td>
<td>Britax Roundabout 161 Forward Facing Belted, Forward Seat Track</td>
<td>E-13</td>
</tr>
<tr>
<td>43</td>
<td>Britax Roundabout 161 Forward Facing Belted, Middle Seat Track</td>
<td>E-13</td>
</tr>
<tr>
<td>44</td>
<td>Britax Roundabout 161 Forward Facing Belted, Rearward Seat Track</td>
<td>E-13</td>
</tr>
<tr>
<td>45</td>
<td>Britax Roundabout 161 Forward Facing Unbelted, Forward Seat Track</td>
<td>E-13</td>
</tr>
<tr>
<td>46</td>
<td>Britax Roundabout 161 Forward Facing Unbelted, Middle Seat Track</td>
<td>E-14</td>
</tr>
<tr>
<td>47</td>
<td>Britax Roundabout 161 Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-14</td>
</tr>
<tr>
<td>48</td>
<td>Britax Roundabout 161 Rear Facing Belted, Forward Seat Track</td>
<td>E-14</td>
</tr>
<tr>
<td>49</td>
<td>Britax Roundabout 161 Rear Facing Belted, Middle Seat Track</td>
<td>E-14</td>
</tr>
<tr>
<td>50</td>
<td>Britax Roundabout 161 Rear Facing Belted, Rearward Seat Track</td>
<td>E-15</td>
</tr>
<tr>
<td>51</td>
<td>Britax Roundabout 161 Rear Facing Unbelted, Forward Seat Track</td>
<td>E-15</td>
</tr>
<tr>
<td>52</td>
<td>Britax Roundabout 161 Rear Facing Unbelted, Middle Seat Track</td>
<td>E-15</td>
</tr>
<tr>
<td>53</td>
<td>Britax Roundabout 161 Rear Facing Unbelted, Rearward Seat Track</td>
<td>E-15</td>
</tr>
<tr>
<td>54</td>
<td>Unbelted 5th Percentile Female Dummy Reactivation, Rearward Seat Track</td>
<td>E-16</td>
</tr>
<tr>
<td>55</td>
<td>Century Encore Forward Facing Belted, Forward Seat Track</td>
<td>E-17</td>
</tr>
<tr>
<td>56</td>
<td>Century Encore Forward Facing Belted, Middle Seat Track</td>
<td>E-17</td>
</tr>
<tr>
<td>57</td>
<td>Century Encore Forward Facing Belted, Rearward Seat Track</td>
<td>E-17</td>
</tr>
<tr>
<td>58</td>
<td>Century Encore Forward Facing Unbelted, Forward Seat Track</td>
<td>E-17</td>
</tr>
<tr>
<td>59</td>
<td>Century Encore Forward Facing Unbelted, Middle Seat Track</td>
<td>E-18</td>
</tr>
<tr>
<td>60</td>
<td>Century Encore Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-18</td>
</tr>
<tr>
<td>61</td>
<td>Century Encore Rear Facing Belted, Forward Seat Track</td>
<td>E-18</td>
</tr>
<tr>
<td>62</td>
<td>Century Encore Rear Facing Belted, Middle Seat Track</td>
<td>E-18</td>
</tr>
<tr>
<td>63</td>
<td>Century Encore Rear Facing Belted, Rearward Seat Track</td>
<td>E-19</td>
</tr>
<tr>
<td>64</td>
<td>Century Encore Rear Facing Unbelted, Forward Seat Track</td>
<td>E-19</td>
</tr>
<tr>
<td>65</td>
<td>Century Encore Rear Facing Unbelted, Middle Seat Track</td>
<td>E-19</td>
</tr>
<tr>
<td>66</td>
<td>Century Encore Rear Facing Unbelted, Rearward Seat Track</td>
<td>E-19</td>
</tr>
<tr>
<td>67</td>
<td>Unbelted 5th Percentile Female Dummy Reactivation, Middle Seat Track</td>
<td>E-20</td>
</tr>
<tr>
<td>68</td>
<td>Evenflo Medallion 254 Forward Facing Belted, Forward Seat Track</td>
<td>E-21</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Description</td>
<td>Page #</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>69</td>
<td>Evenflo Medallion 254 Forward Facing Belted, Middle Seat Track</td>
<td>E-21</td>
</tr>
<tr>
<td>70</td>
<td>Evenflo Medallion 254 Forward Facing Belted, Rearward Seat Track</td>
<td>E-21</td>
</tr>
<tr>
<td>71</td>
<td>Evenflo Medallion 254 Forward Facing Unbelted, Forward Seat Track</td>
<td>E-21</td>
</tr>
<tr>
<td>72</td>
<td>Evenflo Medallion 254 Forward Facing Unbelted, Middle Seat Track</td>
<td>E-22</td>
</tr>
<tr>
<td>73</td>
<td>Evenflo Medallion 254 Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-22</td>
</tr>
<tr>
<td>74</td>
<td>Evenflo Medallion 254 Rear Facing Belted, Forward Seat Track</td>
<td>E-22</td>
</tr>
<tr>
<td>75</td>
<td>Evenflo Medallion 254 Rear Facing Belted, Middle Seat Track</td>
<td>E-22</td>
</tr>
<tr>
<td>76</td>
<td>Evenflo Medallion 254 Rear Facing Belted, Rearward Seat Track</td>
<td>E-23</td>
</tr>
<tr>
<td>77</td>
<td>Evenflo Medallion 254 Rear Facing Unbelted, Forward Seat Track</td>
<td>E-23</td>
</tr>
<tr>
<td>78</td>
<td>Evenflo Medallion 254 Rear Facing Unbelted, Middle Seat Track</td>
<td>E-23</td>
</tr>
<tr>
<td>79</td>
<td>Evenflo Medallion 254 Rear Facing Unbelted, Rearward Seat Track</td>
<td>E-23</td>
</tr>
<tr>
<td>80</td>
<td>Unbelted 5th Percentile Female Dummy Reactivation, Forward Seat Track</td>
<td>E-24</td>
</tr>
</tbody>
</table>
Britax Handle With Care 191 Unbelted, Middle Seat Track

Britax Handle With Care 191 Unbelted, Rearward Seat Track

Britax Handle With Care 191 Forward Facing Unbelted, Forward Seat Track

Britax Handle With Care 191 Forward Facing Unbelted, Middle Seat Track
DOT/NHTSA 208 Suppression Test – 2008 Mercedes C300 (C80504)

12 Month Section B Rear Facing CRS

Britax Handle With Care 191 Forward Facing Unbelted, Rearward Seat Track

Unbelted 5th Percentile Female Dummy Reactivation, Rearward Seat Track
DOT/NHTSA 208 Suppression Test – 2008 Mercedes C300 (C80504)

12 Month Section B Rear Facing CRS

Evenflo First Choice 204 Unbelted, Rearward Seat Track

Evenflo First Choice 204 Forward Facing Unbelted, Middle Seat Track

Evenflo First Choice 204 Forward Facing Unbelted, Rearward Seat Track
Unbelted 5th Percentile Female Dummy Reactivation,
Middle Seat Track
Britax Roundabout 161 Rear Facing Belted, Rearward Seat Track

Britax Roundabout 161 Rear Facing Unbelted, Forward Seat Track

Britax Roundabout 161 Rear Facing Unbelted, Middle Seat Track

Britax Roundabout 161 Rear Facing Unbelted, Rearward Seat Track
Unbelted 5th Percentile Female Dummy Reactivation, Rearward Seat Track
Century Encore Rear Facing Belted, Rearward Seat Track

Century Encore Rear Facing Unbelted, Forward Seat Track

Century Encore Rear Facing Unbelted, Middle Seat Track

Century Encore Rear Facing Unbelted, Rearward Seat Track
Unbelted 5th Percentile Female Dummy Reactivation, Middle Seat Track
DOT/NHTSA 208 Suppression Test – 2008 Mercedes C300 (C80504)

12 Month Section C Forward Facing Convertible CRS

Evenflo Medallion 254 Forward Facing Belted, Forward Seat Track

Evenflo Medallion 254 Forward Facing Belted, Middle Seat Track

Evenflo Medallion 254 Forward Facing Belted, Rearward Seat Track

Evenflo Medallion 254 Forward Facing Unbelted, Forward Seat Track
Unbelted 5th Percentile Female Dummy Reactivation, Forward Seat Track
APPENDIX F

INSTRUMENTATION CALIBRATION
<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>G04-Z09</td>
<td>Entran</td>
<td>03/13/08</td>
</tr>
<tr>
<td>Head Y</td>
<td>G04-Z26</td>
<td>Entran</td>
<td>03/13/08</td>
</tr>
<tr>
<td>Head Z</td>
<td>J14-J20</td>
<td>Entran</td>
<td>03/13/08</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>1748</td>
<td>Denton</td>
<td>05/22/08</td>
</tr>
<tr>
<td>Chest X</td>
<td>G16-Z03</td>
<td>Entran</td>
<td>03/13/08</td>
</tr>
<tr>
<td>Chest Y</td>
<td>A28-H02</td>
<td>Entran</td>
<td>03/13/08</td>
</tr>
<tr>
<td>Chest Z</td>
<td>J03-J09</td>
<td>Entran</td>
<td>03/13/08</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>516</td>
<td>Servo</td>
<td>08/05/08</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>995</td>
<td>Denton</td>
<td>05/01/08</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>991</td>
<td>Denton</td>
<td>05/01/08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P47096</td>
<td>Endevco</td>
<td>08/05/08</td>
</tr>
<tr>
<td>Head Y</td>
<td>P47093</td>
<td>Endevco</td>
<td>08/05/08</td>
</tr>
<tr>
<td>Head Z</td>
<td>P47094</td>
<td>Endevco</td>
<td>08/05/08</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>1703</td>
<td>Denton</td>
<td>06/25/08</td>
</tr>
<tr>
<td>Chest X</td>
<td>P55696</td>
<td>Endevco</td>
<td>07/28/08</td>
</tr>
<tr>
<td>Chest Y</td>
<td>P55697</td>
<td>Endevco</td>
<td>07/28/08</td>
</tr>
<tr>
<td>Chest Z</td>
<td>P55698</td>
<td>Endevco</td>
<td>07/28/08</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>511</td>
<td>Servo</td>
<td>08/05/08</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>83</td>
<td>Denton</td>
<td>04/15/08</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>84</td>
<td>Denton</td>
<td>04/15/08</td>
</tr>
</tbody>
</table>
INSTRUMENTS FOR LOW RISK 5TH FEMALE DUMMY NO. 124 (P1 TRIAL 1)

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P52176</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>P52175</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>P52177</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>1562</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>P22805</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>P52148</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>P52147</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>124</td>
<td>Servo</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>1360</td>
<td>Denton</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>1359</td>
<td>Denton</td>
</tr>
</tbody>
</table>

INSTRUMENTS FOR LOW RISK 5TH FEMALE DUMMY NO. 124 (P1 TRIALS 2, 3, 4 & P2)

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P52176</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>P52175</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>P52177</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>376</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>P22805</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>P52148</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>P52147</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>124</td>
<td>Servo</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>1359</td>
<td>Denton</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>1360</td>
<td>Denton</td>
</tr>
</tbody>
</table>
INSTRUMENTS FOR LOW RISK 3 YEAR OLD CHILD DUMMY NO. 031 (P1 & P2)

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P59223</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>P59224</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>P59227</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>210</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>P59229</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>P59228</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>P59230</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>031</td>
<td>Servo</td>
</tr>
</tbody>
</table>

INSTRUMENTS FOR LOW RISK 6 YEAR OLD CHILD DUMMY NO. 155 (P1 & P2)

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>B05-J08</td>
<td>Entran</td>
</tr>
<tr>
<td>Head Y</td>
<td>A29-N17</td>
<td>Entran</td>
</tr>
<tr>
<td>Head Z</td>
<td>C24-A03</td>
<td>Entran</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>252</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>P52144</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>G22-D16</td>
<td>Entran</td>
</tr>
<tr>
<td>Chest Z</td>
<td>G21-M14</td>
<td>Entran</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>155</td>
<td>Servo</td>
</tr>
</tbody>
</table>

VEHICLE INSTRUMENTS

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Rear Seat Crossmember X</td>
<td>J06-J07</td>
<td>Entran</td>
</tr>
<tr>
<td>Right Rear Seat Crossmember X</td>
<td>C09-Y11</td>
<td>Entran</td>
</tr>
<tr>
<td>Top of Engine X</td>
<td>AJ820</td>
<td>Endevco</td>
</tr>
<tr>
<td>Bottom of Engine X</td>
<td>L13-R27</td>
<td>Entran</td>
</tr>
<tr>
<td>Left Brake Caliper X</td>
<td>J23-J06</td>
<td>Entran</td>
</tr>
<tr>
<td>Right Brake Caliper X</td>
<td>P27029</td>
<td>Endevco</td>
</tr>
<tr>
<td>Instrument Panel X</td>
<td>P27024</td>
<td>Endevco</td>
</tr>
<tr>
<td>Trunk Z</td>
<td>F09-N03</td>
<td>Entran</td>
</tr>
</tbody>
</table>